Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3a72a634
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3a72a634
编写于
11月 20, 2018
作者:
P
peizhilin
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'upstream/develop' into windows/build
上级
81f750a8
48be9dc3
变更
100
展开全部
隐藏空白更改
内联
并排
Showing
100 changed file
with
4394 addition
and
1075 deletion
+4394
-1075
.gitignore
.gitignore
+2
-0
paddle/fluid/framework/details/exception_holder.h
paddle/fluid/framework/details/exception_holder.h
+2
-0
paddle/fluid/framework/executor.cc
paddle/fluid/framework/executor.cc
+0
-12
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.cc
...uid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.cc
+356
-72
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h
...luid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h
+100
-5
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass_tester.cc
...mework/ir/conv_elementwise_add_mkldnn_fuse_pass_tester.cc
+67
-70
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+3
-7
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+1
-1
paddle/fluid/framework/lod_tensor.h
paddle/fluid/framework/lod_tensor.h
+0
-3
paddle/fluid/framework/mixed_vector.h
paddle/fluid/framework/mixed_vector.h
+22
-67
paddle/fluid/framework/tensor.cc
paddle/fluid/framework/tensor.cc
+7
-24
paddle/fluid/framework/tensor.h
paddle/fluid/framework/tensor.h
+17
-58
paddle/fluid/framework/tensor_impl.h
paddle/fluid/framework/tensor_impl.h
+13
-9
paddle/fluid/framework/tensor_util_test.cc
paddle/fluid/framework/tensor_util_test.cc
+3
-1
paddle/fluid/memory/CMakeLists.txt
paddle/fluid/memory/CMakeLists.txt
+2
-5
paddle/fluid/memory/allocation/CMakeLists.txt
paddle/fluid/memory/allocation/CMakeLists.txt
+64
-0
paddle/fluid/memory/allocation/aligned_allocator.cc
paddle/fluid/memory/allocation/aligned_allocator.cc
+31
-0
paddle/fluid/memory/allocation/aligned_allocator.h
paddle/fluid/memory/allocation/aligned_allocator.h
+100
-0
paddle/fluid/memory/allocation/allocation_and_eigen_test.cu
paddle/fluid/memory/allocation/allocation_and_eigen_test.cu
+48
-0
paddle/fluid/memory/allocation/allocation_with_underlying.h
paddle/fluid/memory/allocation/allocation_with_underlying.h
+33
-0
paddle/fluid/memory/allocation/allocator.cc
paddle/fluid/memory/allocation/allocator.cc
+45
-0
paddle/fluid/memory/allocation/allocator.h
paddle/fluid/memory/allocation/allocator.h
+145
-0
paddle/fluid/memory/allocation/allocator_facade.cc
paddle/fluid/memory/allocation/allocator_facade.cc
+271
-0
paddle/fluid/memory/allocation/allocator_facade.h
paddle/fluid/memory/allocation/allocator_facade.h
+57
-0
paddle/fluid/memory/allocation/allocator_facade_test.cc
paddle/fluid/memory/allocation/allocator_facade_test.cc
+87
-0
paddle/fluid/memory/allocation/allocator_strategy.cc
paddle/fluid/memory/allocation/allocator_strategy.cc
+41
-0
paddle/fluid/memory/allocation/allocator_strategy.h
paddle/fluid/memory/allocation/allocator_strategy.h
+30
-0
paddle/fluid/memory/allocation/auto_increment_allocator.cc
paddle/fluid/memory/allocation/auto_increment_allocator.cc
+78
-0
paddle/fluid/memory/allocation/auto_increment_allocator.h
paddle/fluid/memory/allocation/auto_increment_allocator.h
+79
-0
paddle/fluid/memory/allocation/best_fit_allocator.cc
paddle/fluid/memory/allocation/best_fit_allocator.cc
+168
-0
paddle/fluid/memory/allocation/best_fit_allocator.h
paddle/fluid/memory/allocation/best_fit_allocator.h
+132
-0
paddle/fluid/memory/allocation/best_fit_allocator_test.cc
paddle/fluid/memory/allocation/best_fit_allocator_test.cc
+137
-0
paddle/fluid/memory/allocation/best_fit_allocator_test.cu
paddle/fluid/memory/allocation/best_fit_allocator_test.cu
+87
-0
paddle/fluid/memory/allocation/buffered_allocator.cc
paddle/fluid/memory/allocation/buffered_allocator.cc
+80
-0
paddle/fluid/memory/allocation/buffered_allocator.h
paddle/fluid/memory/allocation/buffered_allocator.h
+58
-0
paddle/fluid/memory/allocation/buffered_allocator_test.cc
paddle/fluid/memory/allocation/buffered_allocator_test.cc
+144
-0
paddle/fluid/memory/allocation/conditional_allocator.cc
paddle/fluid/memory/allocation/conditional_allocator.cc
+48
-0
paddle/fluid/memory/allocation/conditional_allocator.h
paddle/fluid/memory/allocation/conditional_allocator.h
+61
-0
paddle/fluid/memory/allocation/cpu_allocator.cc
paddle/fluid/memory/allocation/cpu_allocator.cc
+45
-0
paddle/fluid/memory/allocation/cpu_allocator.h
paddle/fluid/memory/allocation/cpu_allocator.h
+45
-0
paddle/fluid/memory/allocation/cuda_allocator.cc
paddle/fluid/memory/allocation/cuda_allocator.cc
+48
-0
paddle/fluid/memory/allocation/cuda_allocator.h
paddle/fluid/memory/allocation/cuda_allocator.h
+47
-0
paddle/fluid/memory/allocation/legacy_allocator.cc
paddle/fluid/memory/allocation/legacy_allocator.cc
+307
-0
paddle/fluid/memory/allocation/legacy_allocator.h
paddle/fluid/memory/allocation/legacy_allocator.h
+37
-0
paddle/fluid/memory/allocation/locked_allocator.cc
paddle/fluid/memory/allocation/locked_allocator.cc
+48
-0
paddle/fluid/memory/allocation/locked_allocator.h
paddle/fluid/memory/allocation/locked_allocator.h
+41
-0
paddle/fluid/memory/allocation/pinned_allocator.cc
paddle/fluid/memory/allocation/pinned_allocator.cc
+40
-0
paddle/fluid/memory/allocation/pinned_allocator.h
paddle/fluid/memory/allocation/pinned_allocator.h
+40
-0
paddle/fluid/memory/allocation/retry_allocator.cc
paddle/fluid/memory/allocation/retry_allocator.cc
+75
-0
paddle/fluid/memory/allocation/retry_allocator.h
paddle/fluid/memory/allocation/retry_allocator.h
+66
-0
paddle/fluid/memory/allocation/retry_allocator_test.cc
paddle/fluid/memory/allocation/retry_allocator_test.cc
+98
-0
paddle/fluid/memory/allocation/zero_size_allocator.cc
paddle/fluid/memory/allocation/zero_size_allocator.cc
+34
-0
paddle/fluid/memory/allocation/zero_size_allocator.h
paddle/fluid/memory/allocation/zero_size_allocator.h
+50
-0
paddle/fluid/memory/detail/system_allocator.cc
paddle/fluid/memory/detail/system_allocator.cc
+1
-6
paddle/fluid/memory/malloc.cc
paddle/fluid/memory/malloc.cc
+10
-209
paddle/fluid/memory/malloc.h
paddle/fluid/memory/malloc.h
+10
-80
paddle/fluid/memory/malloc_test.cc
paddle/fluid/memory/malloc_test.cc
+0
-198
paddle/fluid/memory/memcpy.cc
paddle/fluid/memory/memcpy.cc
+10
-0
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+1
-1
paddle/fluid/operators/beam_search_op_test.cc
paddle/fluid/operators/beam_search_op_test.cc
+2
-1
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+12
-8
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+23
-20
paddle/fluid/operators/detection/generate_proposals_op.cu
paddle/fluid/operators/detection/generate_proposals_op.cu
+5
-6
paddle/fluid/operators/detection/multiclass_nms_op.cc
paddle/fluid/operators/detection/multiclass_nms_op.cc
+20
-18
paddle/fluid/operators/distributed/grpc_serde.cc
paddle/fluid/operators/distributed/grpc_serde.cc
+15
-21
paddle/fluid/operators/distributed/sendrecvop_utils.cc
paddle/fluid/operators/distributed/sendrecvop_utils.cc
+42
-48
paddle/fluid/operators/distributed/sendrecvop_utils.h
paddle/fluid/operators/distributed/sendrecvop_utils.h
+23
-6
paddle/fluid/operators/distributed/variable_response.cc
paddle/fluid/operators/distributed/variable_response.cc
+4
-4
paddle/fluid/operators/layer_norm_op.h
paddle/fluid/operators/layer_norm_op.h
+19
-0
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+2
-2
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+8
-0
paddle/fluid/operators/math/jit_kernel_layer_norm.cc
paddle/fluid/operators/math/jit_kernel_layer_norm.cc
+241
-0
paddle/fluid/operators/math/selected_rows_functor_test.cu.cc
paddle/fluid/operators/math/selected_rows_functor_test.cu.cc
+2
-1
paddle/fluid/operators/prelu_op.h
paddle/fluid/operators/prelu_op.h
+3
-1
paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
.../fluid/operators/reader/create_recordio_file_reader_op.cc
+2
-5
paddle/fluid/operators/scatter_test.cc
paddle/fluid/operators/scatter_test.cc
+21
-25
paddle/fluid/operators/strided_memcpy_test.cc
paddle/fluid/operators/strided_memcpy_test.cc
+9
-11
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+1
-0
paddle/fluid/platform/cpu_info.cc
paddle/fluid/platform/cpu_info.cc
+8
-1
paddle/fluid/platform/cpu_info.h
paddle/fluid/platform/cpu_info.h
+2
-0
paddle/fluid/platform/cuda_device_guard.cc
paddle/fluid/platform/cuda_device_guard.cc
+22
-0
paddle/fluid/platform/cuda_device_guard.h
paddle/fluid/platform/cuda_device_guard.h
+45
-0
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+14
-12
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+20
-5
paddle/fluid/platform/init.cc
paddle/fluid/platform/init.cc
+4
-1
paddle/fluid/platform/lock_guard_ptr.h
paddle/fluid/platform/lock_guard_ptr.h
+55
-0
paddle/fluid/platform/place.h
paddle/fluid/platform/place.h
+1
-0
paddle/fluid/platform/transform_test.cu
paddle/fluid/platform/transform_test.cu
+4
-9
paddle/fluid/platform/variant.h
paddle/fluid/platform/variant.h
+1
-0
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+2
-0
paddle/fluid/pybind/tensor_py.h
paddle/fluid/pybind/tensor_py.h
+45
-16
paddle/testing/paddle_gtest_main.cc
paddle/testing/paddle_gtest_main.cc
+6
-9
python/paddle/dataset/wmt16.py
python/paddle/dataset/wmt16.py
+2
-1
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-2
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+0
-4
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+24
-3
python/paddle/fluid/tests/unittests/test_conv2d_op.py
python/paddle/fluid/tests/unittests/test_conv2d_op.py
+1
-1
python/paddle/fluid/tests/unittests/test_data_balance.py
python/paddle/fluid/tests/unittests/test_data_balance.py
+1
-1
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
+3
-2
python/paddle/v2/dataset/wmt16.py
python/paddle/v2/dataset/wmt16.py
+6
-3
未找到文件。
.gitignore
浏览文件 @
3a72a634
...
...
@@ -4,6 +4,7 @@ paddle/operators/tensor.save
python/paddle/v2/fluid/tests/book/image_classification_resnet.inference.model/
python/paddle/v2/fluid/tests/book/image_classification_vgg.inference.model/
python/paddle/v2/fluid/tests/book/label_semantic_roles.inference.model/
paddle/fluid/operators/distributed/send_recv.proto
*.DS_Store
*.vs
build/
...
...
@@ -28,4 +29,5 @@ third_party/
build_*
# clion workspace.
cmake-build-*
paddle/fluid/operators/distributed/send_recv.proto
model_test
paddle/fluid/framework/details/exception_holder.h
浏览文件 @
3a72a634
...
...
@@ -30,6 +30,8 @@ class ExceptionHolder {
Catch
(
exp
);
}
catch
(
platform
::
EnforceNotMet
exp
)
{
Catch
(
exp
);
}
catch
(
std
::
exception
&
ex
)
{
LOG
(
FATAL
)
<<
"std::exception caught, "
<<
ex
.
what
();
}
catch
(...)
{
LOG
(
FATAL
)
<<
"Unknown exception caught"
;
}
...
...
paddle/fluid/framework/executor.cc
浏览文件 @
3a72a634
...
...
@@ -418,11 +418,6 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
DeleteUnusedTensors
(
*
local_scope
,
op
.
get
(),
gc
.
get
(),
&
(
ctx
->
cur_ref_cnts_
));
}
if
(
FLAGS_benchmark
)
{
VLOG
(
20
)
<<
"Memory used after operator "
+
op
->
Type
()
+
" running: "
<<
memory
::
memory_usage
(
place_
);
}
}
if
(
gc
!=
nullptr
)
{
...
...
@@ -444,13 +439,6 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
scope
->
DropKids
();
}
}
if
(
FLAGS_benchmark
)
{
VLOG
(
20
)
<<
"-------------------------------------------------------"
;
VLOG
(
20
)
<<
"Memory used after deleting local scope: "
<<
memory
::
memory_usage
(
place_
);
VLOG
(
20
)
<<
"-------------------------------------------------------"
;
}
}
void
Executor
::
RunPreparedContext
(
...
...
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.cc
浏览文件 @
3a72a634
...
...
@@ -14,14 +14,15 @@
#include "paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h"
#include <functional>
#include <utility>
#include <list>
#include <map>
#include <tuple>
#include "paddle/fluid/framework/ir/graph_traits.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
namespace
{
// The function keeps the graph consistent by replacing
// a node 'from' in the set of inputs nodes
...
...
@@ -51,99 +52,382 @@ void CorrectGraphEdges(Graph* graph, Node* from, Node* to) {
}
}
}
}
// namespace
using
graph_ptr
=
std
::
unique_ptr
<
ir
::
Graph
>
;
graph_ptr
ConvElementwiseAddMKLDNNFusePass
::
ApplyImpl
(
graph_ptr
graph
)
const
{
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
bool
IsReachable
(
ir
::
Graph
*
graph
,
Node
*
from
,
Node
*
to
)
{
auto
find_node
=
[](
ir
::
Graph
*
graph
,
const
Node
*
node
)
->
Node
*
{
for
(
auto
n
:
graph
->
Nodes
())
{
if
(
n
==
node
)
{
return
n
;
}
}
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
()
;
return
nullptr
;
}
;
patterns
::
Conv
conv_pattern
{
pattern
,
name_scope_
};
auto
conv_output
=
conv_pattern
();
if
(
from
==
to
)
{
return
true
;
}
patterns
::
ElementwiseAdd
elementwise_add_pattern
{
pattern
,
name_scope_
};
elementwise_add_pattern
(
conv_output
);
std
::
map
<
Node
*
,
bool
>
visited
;
conv_output
->
AsIntermediate
();
for
(
auto
&
node
:
GraphTraits
::
DFS
(
*
graph
))
{
visited
[
&
node
]
=
false
;
}
auto
conv_op_has_bias
=
[](
const
Node
&
conv_op
)
->
std
::
pair
<
bool
,
Node
*>
{
auto
bias_input_names
=
conv_op
.
Op
()
->
Inputs
();
auto
bias_it
=
bias_input_names
.
find
(
"Bias"
);
if
(
bias_it
!=
std
::
end
(
bias_input_names
))
{
bool
has_bias
=
!
bias_it
->
second
.
empty
();
if
(
has_bias
)
{
auto
conv_bias_names
=
bias_it
->
second
;
auto
conv_bias_names_it
=
std
::
find_if
(
std
::
begin
(
conv_op
.
inputs
),
std
::
end
(
conv_op
.
inputs
),
[
&
conv_bias_names
](
Node
*
n
)
->
bool
{
return
n
->
Name
()
==
conv_bias_names
[
0
];
});
return
std
::
make_pair
(
has_bias
,
*
conv_bias_names_it
);
}
}
visited
[
from
]
=
true
;
return
std
::
make_pair
(
false
,
nullptr
)
;
}
;
std
::
list
<
Node
*>
queue
;
queue
.
push_back
(
from
)
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
GET_IR_NODE_FROM_SUBGRAPH
(
conv_op
,
conv_op
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_input
,
conv_input
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_filter
,
conv_filter
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_output
,
conv_output
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_op
,
elementwise_add_op
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_x
,
elementwise_add_x
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_out
,
elementwise_add_out
,
elementwise_add_pattern
);
while
(
!
queue
.
empty
())
{
auto
cur
=
find_node
(
graph
,
queue
.
front
());
queue
.
pop_front
();
if
(
FindFuseOption
(
*
conv_op
,
*
elementwise_add_op
)
!=
FUSE_MKLDNN
)
return
;
if
(
!
cur
)
return
false
;
OpDesc
op_desc
;
op_desc
.
SetType
(
"conv2d"
);
for
(
auto
n
:
cur
->
outputs
)
{
if
(
n
==
to
)
{
return
true
;
}
op_desc
.
SetInput
(
"Input"
,
{
conv_input
->
Name
()});
op_desc
.
SetInput
(
"Filter"
,
{
conv_filter
->
Name
()});
op_desc
.
SetInput
(
"ResidualData"
,
{
elementwise_add_x
->
Name
()});
op_desc
.
SetOutput
(
"Output"
,
{
conv_output
->
Name
()});
if
(
!
visited
[
n
])
{
visited
[
n
]
=
true
;
queue
.
push_back
(
n
);
}
}
}
return
false
;
}
bool
has_bias
;
Node
*
conv_bias
;
boost
::
optional
<
Node
*>
HasBias
(
const
Node
&
op
,
const
std
::
string
&
bias_name
)
{
auto
bias_input_names
=
op
.
Op
()
->
Inputs
();
auto
bias_it
=
bias_input_names
.
find
(
bias_name
);
std
::
tie
(
has_bias
,
conv_bias
)
=
conv_op_has_bias
(
*
conv_op
);
if
(
bias_it
!=
std
::
end
(
bias_input_names
))
{
bool
has_bias
=
!
bias_it
->
second
.
empty
();
if
(
has_bias
)
{
op_desc
.
SetInput
(
"Bias"
,
{
conv_bias
->
Name
()});
auto
bias_names
=
bias_it
->
second
;
auto
bias_names_it
=
std
::
find_if
(
std
::
begin
(
op
.
inputs
),
std
::
end
(
op
.
inputs
),
[
&
bias_names
](
Node
*
n
)
->
bool
{
return
n
->
Name
()
==
bias_names
[
0
];
});
return
*
bias_names_it
;
}
}
for
(
const
auto
&
attr
:
conv_op
->
Op
()
->
GetAttrMap
())
{
op_desc
.
SetAttr
(
attr
.
first
,
attr
.
second
);
}
return
boost
::
none
;
}
op_desc
.
SetAttr
(
"fuse_residual_connection"
,
true
);
ResidualConnectionMKLDNNFusePass
::
IdentityFuseHandle
::
IdentityFuseHandle
(
const
ResidualConnectionMKLDNNFusePass
::
CanFuseFunc
&
can_fuse_func
,
const
ResidualConnectionMKLDNNFusePass
::
IdentityConvFunc
&
get_node_from_conv_op
,
const
ResidualConnectionMKLDNNFusePass
::
IdentityElementwiseAddFunc
&
get_node_from_elementwise_add_op
)
:
fusion_stats
{
std
::
make_shared
<
int
>
(
0
)},
can_fuse_func
{
can_fuse_func
},
get_node_from_conv_op
{
get_node_from_conv_op
},
get_node_from_elementwise_add_op
{
get_node_from_elementwise_add_op
}
{}
void
ResidualConnectionMKLDNNFusePass
::
IdentityFuseHandle
::
operator
()(
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
Node
*
conv_op
;
Node
*
conv_input
;
Node
*
conv_filter
;
Node
*
conv_output
;
Node
*
elementwise_add_op
;
Node
*
elementwise_add_identity
;
Node
*
elementwise_add_out
;
std
::
tie
(
conv_op
,
conv_input
,
conv_filter
,
conv_output
)
=
get_node_from_conv_op
(
subgraph
);
std
::
tie
(
elementwise_add_op
,
elementwise_add_identity
,
elementwise_add_out
)
=
get_node_from_elementwise_add_op
(
subgraph
);
if
(
!
can_fuse_func
(
conv_op
,
elementwise_add_op
))
return
;
if
(
!
IsReachable
(
graph
,
elementwise_add_identity
,
conv_output
))
return
;
OpDesc
op_desc
;
op_desc
.
SetType
(
"conv2d"
);
op_desc
.
SetInput
(
"Input"
,
{
conv_input
->
Name
()});
op_desc
.
SetInput
(
"Filter"
,
{
conv_filter
->
Name
()});
op_desc
.
SetInput
(
"ResidualData"
,
{
elementwise_add_identity
->
Name
()});
op_desc
.
SetOutput
(
"Output"
,
{
conv_output
->
Name
()});
auto
conv_bias
=
HasBias
(
*
conv_op
,
"Bias"
);
if
(
conv_bias
)
{
op_desc
.
SetInput
(
"Bias"
,
{(
*
conv_bias
)
->
Name
()});
}
auto
fused_conv_op
=
g
->
CreateOpNode
(
&
op_desc
);
for
(
const
auto
&
attr
:
conv_op
->
Op
()
->
GetAttrMap
())
{
op_desc
.
SetAttr
(
attr
.
first
,
attr
.
second
);
}
IR_NODE_LINK_TO
(
conv_input
,
fused_conv_op
);
IR_NODE_LINK_TO
(
conv_filter
,
fused_conv_op
);
IR_NODE_LINK_TO
(
elementwise_add_x
,
fused_conv_op
);
IR_NODE_LINK_TO
(
fused_conv_op
,
conv_output
);
op_desc
.
SetAttr
(
"fuse_residual_connection"
,
true
);
if
(
has_bias
)
{
IR_NODE_LINK_TO
(
conv_bias
,
fused_conv_op
);
}
auto
fused_conv_op
=
graph
->
CreateOpNode
(
&
op_desc
);
CorrectGraphEdges
(
g
,
elementwise_add_out
,
conv_output
);
GraphSafeRemoveNodes
(
g
,
{
elementwise_add_out
,
conv_op
,
elementwise_add_op
});
};
IR_NODE_LINK_TO
(
conv_input
,
fused_conv_op
);
IR_NODE_LINK_TO
(
conv_filter
,
fused_conv_op
);
IR_NODE_LINK_TO
(
elementwise_add_identity
,
fused_conv_op
);
IR_NODE_LINK_TO
(
fused_conv_op
,
conv_output
);
gpd
(
graph
.
get
(),
handler
);
if
(
conv_bias
)
{
IR_NODE_LINK_TO
((
*
conv_bias
),
fused_conv_op
);
}
CorrectGraphEdges
(
graph
,
elementwise_add_out
,
conv_output
);
GraphSafeRemoveNodes
(
graph
,
{
elementwise_add_out
,
conv_op
,
elementwise_add_op
});
(
*
fusion_stats
)
++
;
}
ResidualConnectionMKLDNNFusePass
::
ProjectionFuseHandle
::
ProjectionFuseHandle
(
const
ResidualConnectionMKLDNNFusePass
::
CanFuseFunc
&
can_fuse_func
,
const
ResidualConnectionMKLDNNFusePass
::
ProjectionConvFunc
&
get_node_from_conv_x_op
,
const
ResidualConnectionMKLDNNFusePass
::
ProjectionConvFunc
&
get_node_from_conv_y_op
,
const
ResidualConnectionMKLDNNFusePass
::
ProjectionElementwiseAddFunc
&
get_node_from_elementwise_add_op
)
:
fusion_stats
{
std
::
make_shared
<
int
>
(
0
)},
can_fuse_func
{
can_fuse_func
},
get_node_from_conv_x_op
{
get_node_from_conv_x_op
},
get_node_from_conv_y_op
{
get_node_from_conv_y_op
},
get_node_from_elementwise_add_op
{
get_node_from_elementwise_add_op
}
{}
void
ResidualConnectionMKLDNNFusePass
::
ProjectionFuseHandle
::
operator
()(
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
Node
*
conv_x_op
;
Node
*
conv_x_input
;
Node
*
conv_x_filter
;
Node
*
conv_x_output
;
Node
*
conv_y_op
;
Node
*
conv_y_input
;
Node
*
conv_y_filter
;
Node
*
conv_y_output
;
Node
*
elementwise_add_op
;
Node
*
elementwise_add_out
;
std
::
tie
(
conv_x_op
,
conv_x_input
,
conv_x_filter
,
conv_x_output
)
=
get_node_from_conv_x_op
(
subgraph
);
std
::
tie
(
conv_y_op
,
conv_y_input
,
conv_y_filter
,
conv_y_output
)
=
get_node_from_conv_y_op
(
subgraph
);
std
::
tie
(
elementwise_add_op
,
elementwise_add_out
)
=
get_node_from_elementwise_add_op
(
subgraph
);
if
(
!
can_fuse_func
(
conv_x_op
,
elementwise_add_op
))
return
;
if
(
!
can_fuse_func
(
conv_y_op
,
elementwise_add_op
))
return
;
Node
*
projection_node
;
Node
*
residual_conv_op
;
Node
*
residual_conv_input
;
Node
*
residual_conv_filter
;
Node
*
residual_conv_output
;
if
(
IsReachable
(
graph
,
conv_x_input
,
conv_y_output
))
{
projection_node
=
conv_x_output
;
residual_conv_op
=
conv_y_op
;
residual_conv_input
=
conv_y_input
;
residual_conv_filter
=
conv_y_filter
;
residual_conv_output
=
conv_y_output
;
}
else
if
(
IsReachable
(
graph
,
conv_y_input
,
conv_x_output
))
{
projection_node
=
conv_y_output
;
residual_conv_op
=
conv_x_op
;
residual_conv_input
=
conv_x_input
;
residual_conv_filter
=
conv_x_filter
;
residual_conv_output
=
conv_x_output
;
}
else
{
return
;
}
OpDesc
op_desc
;
op_desc
.
SetType
(
"conv2d"
);
op_desc
.
SetInput
(
"Input"
,
{
residual_conv_input
->
Name
()});
op_desc
.
SetInput
(
"Filter"
,
{
residual_conv_filter
->
Name
()});
op_desc
.
SetInput
(
"ResidualData"
,
{
projection_node
->
Name
()});
op_desc
.
SetOutput
(
"Output"
,
{
residual_conv_output
->
Name
()});
auto
residual_conv_bias
=
HasBias
(
*
residual_conv_op
,
"Bias"
);
if
(
residual_conv_bias
)
{
op_desc
.
SetInput
(
"Bias"
,
{(
*
residual_conv_bias
)
->
Name
()});
}
for
(
const
auto
&
attr
:
residual_conv_op
->
Op
()
->
GetAttrMap
())
{
op_desc
.
SetAttr
(
attr
.
first
,
attr
.
second
);
}
op_desc
.
SetAttr
(
"fuse_residual_connection"
,
true
);
auto
fused_conv_op
=
graph
->
CreateOpNode
(
&
op_desc
);
IR_NODE_LINK_TO
(
residual_conv_input
,
fused_conv_op
);
IR_NODE_LINK_TO
(
residual_conv_filter
,
fused_conv_op
);
IR_NODE_LINK_TO
(
projection_node
,
fused_conv_op
);
IR_NODE_LINK_TO
(
fused_conv_op
,
residual_conv_output
);
if
(
residual_conv_bias
)
{
IR_NODE_LINK_TO
((
*
residual_conv_bias
),
fused_conv_op
);
}
CorrectGraphEdges
(
graph
,
elementwise_add_out
,
residual_conv_output
);
GraphSafeRemoveNodes
(
graph
,
{
elementwise_add_out
,
residual_conv_op
,
elementwise_add_op
});
(
*
fusion_stats
)
++
;
}
std
::
tuple
<
Node
*
,
Node
*
,
Node
*
,
Node
*>
ResidualConnectionMKLDNNFusePass
::
GetNodesFromConv
(
const
patterns
::
Conv
&
conv_pattern
,
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
const
{
GET_IR_NODE_FROM_SUBGRAPH
(
conv_op
,
conv_op
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_input
,
conv_input
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_filter
,
conv_filter
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_output
,
conv_output
,
conv_pattern
);
return
std
::
make_tuple
(
conv_op
,
conv_input
,
conv_filter
,
conv_output
);
}
GraphWithStats
ResidualConnectionMKLDNNFusePass
::
FuseConvAsX
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
{
ir
::
Graph
*
graph
;
int
stats
;
std
::
tie
(
graph
,
stats
)
=
graph_with_stats
;
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
Conv
conv_pattern
{
pattern
,
name_scope
};
auto
conv_output
=
conv_pattern
();
patterns
::
ElementwiseAdd
elementwise_add_pattern
{
pattern
,
name_scope
};
elementwise_add_pattern
(
conv_output
,
pattern
->
NewNode
(
elementwise_add_pattern
.
elementwise_add_y_repr
()));
conv_output
->
AsIntermediate
();
auto
get_node_from_elementwise_add
=
[
&
elementwise_add_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
->
std
::
tuple
<
Node
*
,
Node
*
,
Node
*>
{
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_op
,
elementwise_add_op
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_y
,
elementwise_add_y
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_out
,
elementwise_add_out
,
elementwise_add_pattern
);
return
std
::
make_tuple
(
elementwise_add_op
,
elementwise_add_y
,
elementwise_add_out
);
};
return
ExecuteHandleOnGraph
<
IdentityFuseHandle
>
(
&
gpd
,
graph_with_stats
,
[
this
,
&
conv_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
{
return
GetNodesFromConv
(
conv_pattern
,
subgraph
);
},
get_node_from_elementwise_add
);
}
GraphWithStats
ResidualConnectionMKLDNNFusePass
::
FuseConvAsY
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
Conv
conv_pattern
{
pattern
,
name_scope
};
auto
conv_output
=
conv_pattern
();
patterns
::
ElementwiseAdd
elementwise_add_pattern
{
pattern
,
name_scope
};
elementwise_add_pattern
(
pattern
->
NewNode
(
elementwise_add_pattern
.
elementwise_add_x_repr
()),
conv_output
);
conv_output
->
AsIntermediate
();
auto
get_node_from_elementwise_add
=
[
&
elementwise_add_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
->
std
::
tuple
<
Node
*
,
Node
*
,
Node
*>
{
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_op
,
elementwise_add_op
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_x
,
elementwise_add_x
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_out
,
elementwise_add_out
,
elementwise_add_pattern
);
return
std
::
make_tuple
(
elementwise_add_op
,
elementwise_add_x
,
elementwise_add_out
);
};
return
ExecuteHandleOnGraph
<
IdentityFuseHandle
>
(
&
gpd
,
graph_with_stats
,
[
this
,
&
conv_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
{
return
GetNodesFromConv
(
conv_pattern
,
subgraph
);
},
get_node_from_elementwise_add
);
}
GraphWithStats
ResidualConnectionMKLDNNFusePass
::
FuseProjectionConv
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
Conv
conv_x_pattern
{
pattern
,
name_scope
};
auto
conv_x_output
=
conv_x_pattern
();
patterns
::
Conv
conv_y_pattern
{
pattern
,
name_scope
};
auto
conv_y_output
=
conv_y_pattern
();
patterns
::
ElementwiseAdd
elementwise_add_pattern
{
pattern
,
name_scope
};
elementwise_add_pattern
(
conv_x_output
,
conv_y_output
);
conv_x_output
->
AsIntermediate
();
conv_y_output
->
AsIntermediate
();
auto
get_node_from_elementwise_add
=
[
&
elementwise_add_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
->
std
::
tuple
<
Node
*
,
Node
*>
{
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_op
,
elementwise_add_op
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_out
,
elementwise_add_out
,
elementwise_add_pattern
);
return
std
::
make_tuple
(
elementwise_add_op
,
elementwise_add_out
);
};
return
ExecuteHandleOnGraph
<
ProjectionFuseHandle
>
(
&
gpd
,
graph_with_stats
,
[
this
,
&
conv_x_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
{
return
GetNodesFromConv
(
conv_x_pattern
,
subgraph
);
},
[
this
,
&
conv_y_pattern
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
{
return
GetNodesFromConv
(
conv_y_pattern
,
subgraph
);
},
get_node_from_elementwise_add
);
}
graph_ptr
ResidualConnectionMKLDNNFusePass
::
ApplyImpl
(
graph_ptr
graph
)
const
{
FusePassBase
::
Init
(
name_scope_
,
graph
.
get
());
auto
fused_graph_with_stats
=
FuseConvAsY
(
name_scope_
,
FuseConvAsX
(
name_scope_
,
FuseProjectionConv
(
name_scope_
,
std
::
make_pair
(
graph
.
get
(),
0
))));
std
::
cout
<<
"Fused graph "
<<
fused_graph_with_stats
.
second
<<
std
::
endl
;
AddStatis
(
fused_graph_with_stats
.
second
);
return
graph
;
}
}
// namespace ir
...
...
@@ -151,4 +435,4 @@ graph_ptr ConvElementwiseAddMKLDNNFusePass::ApplyImpl(graph_ptr graph) const {
}
// namespace paddle
REGISTER_PASS
(
conv_elementwise_add_mkldnn_fuse_pass
,
paddle
::
framework
::
ir
::
ConvElementwiseAdd
MKLDNNFusePass
);
paddle
::
framework
::
ir
::
ResidualConnection
MKLDNNFusePass
);
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h
浏览文件 @
3a72a634
...
...
@@ -15,24 +15,119 @@
#pragma once
#include <string>
#include <tuple>
#include <utility>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include <boost/optional.hpp>
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
ConvElementwiseAddMKLDNNFusePass
:
public
FusePassBase
{
using
graph_ptr
=
std
::
unique_ptr
<
ir
::
Graph
>
;
using
GraphWithStats
=
std
::
pair
<
ir
::
Graph
*
,
int
>
;
void
CorrectGraphEdges
(
Graph
*
graph
,
Node
*
from
,
Node
*
to
);
bool
IsReachable
(
ir
::
Graph
*
graph
,
Node
*
from
,
Node
*
to
);
boost
::
optional
<
Node
*>
HasBias
(
const
Node
&
op
,
const
std
::
string
&
bias_name
);
class
ResidualConnectionMKLDNNFusePass
:
public
FusePassBase
{
private:
GraphWithStats
FuseConvAsX
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
;
GraphWithStats
FuseConvAsY
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
;
GraphWithStats
FuseProjectionConv
(
const
std
::
string
&
name_scope
,
const
GraphWithStats
&
graph_with_stats
)
const
;
template
<
typename
RetType
>
using
GetNodeFunc
=
std
::
function
<
RetType
(
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
>
;
using
IdentityConvFunc
=
GetNodeFunc
<
std
::
tuple
<
Node
*
,
Node
*
,
Node
*
,
Node
*>>
;
using
IdentityElementwiseAddFunc
=
GetNodeFunc
<
std
::
tuple
<
Node
*
,
Node
*
,
Node
*>>
;
using
ProjectionConvFunc
=
IdentityConvFunc
;
using
ProjectionElementwiseAddFunc
=
GetNodeFunc
<
std
::
tuple
<
Node
*
,
Node
*>>
;
using
CanFuseFunc
=
std
::
function
<
bool
(
Node
*
,
Node
*
)
>
;
std
::
tuple
<
Node
*
,
Node
*
,
Node
*
,
Node
*>
GetNodesFromConv
(
const
patterns
::
Conv
&
conv_pattern
,
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
const
;
std
::
tuple
<
Node
*
,
Node
*
,
Node
*
,
Node
*>
GetNodesFromProjectionConv
(
const
patterns
::
Conv
&
conv_pattern
,
const
GraphPatternDetector
::
subgraph_t
&
subgraph
)
const
;
template
<
typename
HandleType
,
typename
...
OpFuncs
>
GraphWithStats
ExecuteHandleOnGraph
(
GraphPatternDetector
*
gpd
,
const
GraphWithStats
&
graph_with_stats
,
OpFuncs
&&
...
op_funcs
)
const
{
ir
::
Graph
*
graph
;
int
stats
;
std
::
tie
(
graph
,
stats
)
=
graph_with_stats
;
auto
can_fuse
=
[
this
](
Node
*
op1
,
Node
*
op2
)
->
bool
{
return
this
->
FindFuseOption
(
*
op1
,
*
op2
)
==
FUSE_MKLDNN
;
};
auto
fuse_handle
=
HandleType
{
can_fuse
,
std
::
forward
<
OpFuncs
>
(
op_funcs
)...};
(
*
gpd
)(
graph
,
fuse_handle
);
return
std
::
make_pair
(
graph
,
stats
+
fuse_handle
.
get_stats
());
}
struct
IdentityFuseHandle
{
IdentityFuseHandle
(
const
CanFuseFunc
&
can_fuse_func
,
const
IdentityConvFunc
&
get_node_from_conv_op
,
const
IdentityElementwiseAddFunc
&
get_node_from_elementwise_add_op
);
void
operator
()(
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
);
int
get_stats
()
const
{
return
*
fusion_stats
;
}
private:
std
::
shared_ptr
<
int
>
fusion_stats
;
CanFuseFunc
can_fuse_func
;
IdentityConvFunc
get_node_from_conv_op
;
IdentityElementwiseAddFunc
get_node_from_elementwise_add_op
;
};
struct
ProjectionFuseHandle
{
ProjectionFuseHandle
(
const
CanFuseFunc
&
can_fuse_func
,
const
ProjectionConvFunc
&
get_node_from_conv_x_op
,
const
ProjectionConvFunc
&
get_node_from_conv_y_op
,
const
ProjectionElementwiseAddFunc
&
get_node_from_elementwise_add_op
);
void
operator
()(
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
);
int
get_stats
()
const
{
return
*
fusion_stats
;
}
private:
std
::
shared_ptr
<
int
>
fusion_stats
;
CanFuseFunc
can_fuse_func
;
ProjectionConvFunc
get_node_from_conv_x_op
;
ProjectionConvFunc
get_node_from_conv_y_op
;
ProjectionElementwiseAddFunc
get_node_from_elementwise_add_op
;
};
public:
virtual
~
ConvElementwiseAdd
MKLDNNFusePass
()
{}
virtual
~
ResidualConnection
MKLDNNFusePass
()
{}
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
;
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
graph_ptr
graph
)
const
;
const
std
::
string
name_scope_
{
"residual_connection
s
_fuse_pass"
};
const
std
::
string
name_scope_
{
"residual_connection_fuse_pass"
};
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass_tester.cc
浏览文件 @
3a72a634
...
...
@@ -40,7 +40,7 @@ void SetOp(ProgramDesc* prog, const std::string& type,
op
->
SetOutput
(
output
.
first
,
{
output
.
second
});
}
struct
IsReachable
{
struct
Test
IsReachable
{
using
func
=
std
::
function
<
bool
(
const
std
::
string
&
,
const
std
::
string
&
)
>
;
auto
operator
()(
const
std
::
unique_ptr
<
ir
::
Graph
>&
graph
)
->
func
{
...
...
@@ -89,7 +89,9 @@ struct IsReachable {
}
};
void
AssertOpsCount
(
const
std
::
unique_ptr
<
ir
::
Graph
>&
graph
)
{
void
AssertOpsCount
(
const
std
::
unique_ptr
<
ir
::
Graph
>&
graph
,
int
expected_conv_count
,
int
expected_elementwise_add_count
=
0
)
{
int
conv_count
=
0
;
int
elementwise_add_count
=
0
;
...
...
@@ -101,8 +103,8 @@ void AssertOpsCount(const std::unique_ptr<ir::Graph>& graph) {
++
elementwise_add_count
;
}
}
EXPECT_EQ
(
conv_count
,
1
);
EXPECT_EQ
(
elementwise_add_count
,
0
);
EXPECT_EQ
(
conv_count
,
expected_conv_count
);
EXPECT_EQ
(
elementwise_add_count
,
expected_elementwise_add_count
);
}
ProgramDesc
BuildProgramDesc
(
const
std
::
vector
<
std
::
string
>&
transient_vars
,
...
...
@@ -127,22 +129,13 @@ ProgramDesc BuildProgramDesc(const std::vector<std::string>& transient_vars,
return
prog
;
}
}
// namespace
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionWithElementwiseAddRelu
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
},
{
"bias"
,
"weights"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"a"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"b"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"b"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
void
RunPassAndAssert
(
ProgramDesc
*
prog
,
const
std
::
string
&
from
,
const
std
::
string
&
to
,
int
expected_conv_num
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
*
prog
));
IsReachable
is_reachable
;
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"relu"
));
Test
IsReachable
is_reachable
;
EXPECT_TRUE
(
is_reachable
(
graph
)(
from
,
to
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"conv_elementwise_add_mkldnn_fuse_pass"
);
...
...
@@ -150,82 +143,87 @@ TEST(ConvElementwiseAddMKLDNNFusePass, ConvolutionWithElementwiseAddRelu) {
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"relu"
));
EXPECT_TRUE
(
is_reachable
(
graph
)(
from
,
to
));
EXPECT_EQ
(
original_nodes_num
-
nodes_removed
+
nodes_added
,
current_nodes_num
);
AssertOpsCount
(
graph
);
AssertOpsCount
(
graph
,
expected_conv_num
);
}
}
// namespace
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionWithElementwiseAddReluNoBias
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"weights"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"a"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"b"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"b"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionAsYWithElementwiseAddRelu
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"bias"
,
"weights"
});
IsReachable
is_reachable
;
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"relu"
));
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"a"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"conv_elementwise_add_mkldnn_fuse_pass"
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
RunPassAndAssert
(
&
prog
,
"a"
,
"relu"
,
1
);
}
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"relu"
));
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionAsYWithElementwiseAddReluNoBias
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"weights"
});
EXPECT_EQ
(
original_nodes_num
-
nodes_removed
+
nodes_added
,
current_nodes_num
);
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"a"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
AssertOpsCount
(
graph
);
RunPassAndAssert
(
&
prog
,
"a"
,
"relu"
,
1
);
}
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionElementwiseAdd
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
},
{
"bias"
,
"weights"
});
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionAsXWithElementwiseAddRelu
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"bias"
,
"weights"
});
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"a"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"b"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"b"
},
{
"Y"
,
"c"
}},
{
"Out"
,
"d"
});
{{
"Input"
,
"b"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"c"
},
{
"Y"
,
"a"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
IsReachable
is_reachable
;
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"d"
));
RunPassAndAssert
(
&
prog
,
"a"
,
"relu"
,
1
)
;
}
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"conv_elementwise_add_mkldnn_fuse_pass"
);
int
original_nodes_num
=
graph
->
Nodes
().
size
();
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
ConvolutionAsXWithElementwiseAddReluNoBias
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
},
{
"weights"
});
EXPECT_FALSE
(
is_reachable
(
graph
)(
"a"
,
"d"
));
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"c"
},
{
"Y"
,
"a"
}},
{
"Out"
,
"d"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"d"
}},
{
"Out"
,
"e"
});
EXPECT_EQ
(
original_nodes_num
-
nodes_removed
+
nodes_added
,
current_nodes_num
);
AssertOpsCount
(
graph
);
RunPassAndAssert
(
&
prog
,
"a"
,
"relu"
,
1
);
}
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
SigmoidConvolutionAddElementwiseRelu
)
{
TEST
(
ConvElementwiseAddMKLDNNFusePass
,
NoFusion
)
{
auto
prog
=
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
},
{
"bias"
,
"weights"
});
BuildProgramDesc
({
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
,
"g"
},
{
"weights"
});
SetOp
(
&
prog
,
"sigmoid"
,
{{
"X"
,
"a"
}},
{
"Out"
,
"b"
});
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Bias"
,
"bias"
},
{
"Filter"
,
"weights"
}},
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"b"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"c"
});
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"c"
},
{
"Y"
,
"d"
}},
{
"Out"
,
"e"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"e"
}},
{
"Out"
,
"f"
});
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
SetOp
(
&
prog
,
"conv2d"
,
{{
"Input"
,
"d"
},
{
"Filter"
,
"weights"
}},
{
"Output"
,
"e"
});
IsReachable
is_reachable
;
SetOp
(
&
prog
,
"elementwise_add"
,
{{
"X"
,
"c"
},
{
"Y"
,
"e"
}},
{
"Out"
,
"f"
});
SetOp
(
&
prog
,
"relu"
,
{{
"X"
,
"f"
}},
{
"Out"
,
"g"
});
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"f"
));
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
TestIsReachable
is_reachable
;
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"g"
));
auto
pass
=
PassRegistry
::
Instance
().
Get
(
"conv_elementwise_add_mkldnn_fuse_pass"
);
...
...
@@ -233,11 +231,10 @@ TEST(ConvElementwiseAddMKLDNNFusePass, SigmoidConvolutionAddElementwiseRelu) {
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
int
current_nodes_num
=
graph
->
Nodes
().
size
();
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"f"
));
EXPECT_TRUE
(
is_reachable
(
graph
)(
"a"
,
"g"
));
EXPECT_EQ
(
original_nodes_num
,
current_nodes_num
);
EXPECT_EQ
(
original_nodes_num
-
nodes_removed
+
nodes_added
,
current_nodes_num
);
AssertOpsCount
(
graph
);
AssertOpsCount
(
graph
,
2
,
1
);
}
}
// namespace ir
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
3a72a634
...
...
@@ -1084,16 +1084,12 @@ PDNode *patterns::Conv::operator()() {
return
output_var
;
}
PDNode
*
patterns
::
ElementwiseAdd
::
operator
()(
PDNode
*
x_var
)
{
PDNode
*
patterns
::
ElementwiseAdd
::
operator
()(
PDNode
*
x_var
,
PDNode
*
y_var
)
{
auto
elementwise_add_op
=
pattern
->
NewNode
(
elementwise_add_op_repr
())
->
assert_is_op
(
"elementwise_add"
);
x_var
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
auto
y_var
=
pattern
->
NewNode
(
elementwise_add_x_repr
())
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
x_var
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"X"
);
y_var
->
AsInput
()
->
assert_is_op_input
(
"elementwise_add"
,
"Y"
);
auto
out_var
=
pattern
->
NewNode
(
elementwise_add_out_repr
())
->
AsOutput
()
->
assert_is_op_output
(
"elementwise_add"
,
"Out"
);
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
3a72a634
...
...
@@ -664,7 +664,7 @@ struct ElementwiseAdd : public PatternBase {
ElementwiseAdd
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"elementwise_add"
)
{}
PDNode
*
operator
()(
PDNode
*
x_var
);
PDNode
*
operator
()(
PDNode
*
x_var
,
PDNode
*
y_var
);
PATTERN_DECL_NODE
(
elementwise_add_op
);
PATTERN_DECL_NODE
(
elementwise_add_x
);
...
...
paddle/fluid/framework/lod_tensor.h
浏览文件 @
3a72a634
...
...
@@ -111,9 +111,6 @@ class LoDTensor : public Tensor {
public:
LoDTensor
()
:
Tensor
()
{}
/* Constructor with place should only be used in pybind */
explicit
LoDTensor
(
const
platform
::
Place
&
place
)
:
Tensor
(
place
)
{}
explicit
LoDTensor
(
const
LoD
&
lod
)
:
lod_
(
lod
)
{}
void
set_lod
(
const
LoD
&
lod
)
{
lod_
=
lod
;
}
...
...
paddle/fluid/framework/mixed_vector.h
浏览文件 @
3a72a634
...
...
@@ -23,6 +23,7 @@
#include "paddle/fluid/framework/details/cow_ptr.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
#include "glog/logging.h"
...
...
@@ -31,46 +32,6 @@ namespace paddle {
namespace
framework
{
#if defined(PADDLE_WITH_CUDA)
namespace
details
{
struct
CUDABuffer
{
void
*
data_
{
nullptr
};
size_t
size_
{
0
};
platform
::
CUDAPlace
place_
;
CUDABuffer
()
{}
CUDABuffer
(
platform
::
Place
place
,
size_t
size
)
:
size_
(
size
),
place_
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
))
{
data_
=
memory
::
Alloc
(
place_
,
size
);
}
~
CUDABuffer
()
{
ClearMemory
();
}
CUDABuffer
(
const
CUDABuffer
&
o
)
=
delete
;
CUDABuffer
&
operator
=
(
const
CUDABuffer
&
o
)
=
delete
;
void
Resize
(
platform
::
Place
place
,
size_t
size
)
{
ClearMemory
();
place_
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
data_
=
memory
::
Alloc
(
place_
,
size
);
PADDLE_ENFORCE_NOT_NULL
(
data_
);
size_
=
size
;
}
void
Swap
(
CUDABuffer
&
o
)
{
std
::
swap
(
data_
,
o
.
data_
);
std
::
swap
(
place_
,
o
.
place_
);
std
::
swap
(
size_
,
o
.
size_
);
}
private:
void
ClearMemory
()
const
{
if
(
data_
!=
nullptr
)
{
memory
::
Free
(
place_
,
data_
);
}
}
};
}
// namespace details
// Vector<T> implements the std::vector interface, and can get Data or
// MutableData from any place. The data will be synced implicitly inside.
template
<
typename
T
>
...
...
@@ -103,8 +64,6 @@ class Vector {
o
.
ImmutableCPU
();
cpu_
=
o
.
cpu_
;
flag_
=
kDataInCPU
;
details
::
CUDABuffer
null
;
gpu_
.
Swap
(
null
);
return
*
this
;
}
...
...
@@ -199,7 +158,7 @@ class Vector {
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
place
),
"CUDA Data must on CUDA place"
);
ImmutableCUDA
(
place
);
return
reinterpret_cast
<
T
*>
(
gpu_
.
data_
);
return
reinterpret_cast
<
T
*>
(
gpu_
->
ptr
()
);
}
// get cuda ptr. mutable
...
...
@@ -234,13 +193,11 @@ class Vector {
std
::
mutex
&
Mutex
()
const
{
return
mtx_
;
}
std
::
unique_ptr
<
platform
::
CUDAPlace
>
CUDAPlace
()
const
{
if
(
gpu_
.
data_
==
nullptr
)
{
return
nullptr
;
}
else
{
return
std
::
unique_ptr
<
platform
::
CUDAPlace
>
(
new
platform
::
CUDAPlace
(
gpu_
.
place_
));
}
boost
::
optional
<
platform
::
CUDAPlace
>
CUDAPlace
()
const
{
return
gpu_
==
nullptr
?
boost
::
none
:
boost
::
optional
<
platform
::
CUDAPlace
>
(
boost
::
get
<
platform
::
CUDAPlace
>
(
gpu_
->
place
()));
}
private:
...
...
@@ -254,13 +211,12 @@ class Vector {
void
CopyToCPU
()
const
{
// COPY GPU Data To CPU
auto
*
dev_ctx
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
Place
(
gpu_
.
place_
)));
platform
::
DeviceContextPool
::
Instance
().
Get
(
gpu_
->
place
()));
auto
stream
=
dev_ctx
->
stream
();
void
*
src
=
gpu_
.
data_
;
void
*
src
=
gpu_
->
ptr
()
;
void
*
dst
=
cpu_
.
data
();
memory
::
Copy
(
platform
::
CPUPlace
(),
dst
,
gpu_
.
place_
,
src
,
gpu_
.
size_
,
stream
);
memory
::
Copy
(
platform
::
CPUPlace
(),
dst
,
CUDAPlace
().
get
(),
src
,
gpu_
->
size
(),
stream
);
dev_ctx
->
Wait
();
}
...
...
@@ -277,8 +233,7 @@ class Vector {
CopyCPUDataToCUDA
(
place
);
UnsetFlag
(
kDirty
);
SetFlag
(
kDataInCUDA
);
}
else
if
(
IsInCUDA
()
&&
!
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
)
==
gpu_
.
place_
))
{
}
else
if
(
IsInCUDA
()
&&
!
(
place
==
gpu_
->
place
()))
{
PADDLE_THROW
(
"This situation should not happen"
);
// Still dirty
}
else
{
...
...
@@ -290,7 +245,7 @@ class Vector {
// Even data is not dirty. However, data is not in CUDA. Copy data.
CopyCPUDataToCUDA
(
place
);
SetFlag
(
kDataInCUDA
);
}
else
if
(
!
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
)
==
gpu_
.
place_
))
{
}
else
if
(
!
(
place
==
gpu_
->
place
()
))
{
PADDLE_THROW
(
"This situation should not happen."
);
}
else
{
// Not Dirty && DataInCUDA && Device is same
...
...
@@ -301,13 +256,13 @@ class Vector {
void
CopyCPUDataToCUDA
(
const
platform
::
Place
&
place
)
const
{
void
*
src
=
cpu_
.
data
();
gpu_
.
Resize
(
place
,
cpu_
.
size
()
*
sizeof
(
T
));
void
*
dst
=
gpu_
.
data_
;
gpu_
=
memory
::
Alloc
(
place
,
cpu_
.
size
()
*
sizeof
(
T
));
void
*
dst
=
gpu_
->
ptr
()
;
auto
*
dev_ctx
=
static_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
place
));
auto
stream
=
dev_ctx
->
stream
();
memory
::
Copy
(
gpu_
.
place_
,
dst
,
platform
::
CPUPlace
(),
src
,
gpu_
.
size_
,
stream
);
memory
::
Copy
(
CUDAPlace
().
get
(),
dst
,
platform
::
CPUPlace
(),
src
,
gpu_
->
size
(),
stream
);
}
void
ImmutableCPU
()
const
{
...
...
@@ -329,7 +284,7 @@ class Vector {
bool
IsInCPU
()
const
{
return
flag_
&
kDataInCPU
;
}
mutable
std
::
vector
<
T
>
cpu_
;
mutable
details
::
CUDABuffe
r
gpu_
;
mutable
memory
::
AllocationPt
r
gpu_
;
mutable
int
flag_
;
mutable
std
::
mutex
mtx_
;
...
...
@@ -428,8 +383,8 @@ class Vector {
auto
&
mtx
=
m_
.
Data
().
Mutex
();
std
::
lock_guard
<
std
::
mutex
>
guard
(
mtx
);
auto
cuda_place
=
m_
.
Data
().
CUDAPlace
();
if
(
cuda_place
==
nullptr
||
*
cuda_place
==
boost
::
get
<
platform
::
CUDAPlace
>
(
place
))
{
if
(
cuda_place
==
boost
::
none
||
cuda_place
==
boost
::
get
<
platform
::
CUDAPlace
>
(
place
))
{
return
m_
.
Data
().
CUDAData
(
place
);
}
}
...
...
@@ -444,8 +399,8 @@ class Vector {
auto
&
mtx
=
m_
.
Data
().
Mutex
();
std
::
lock_guard
<
std
::
mutex
>
guard
(
mtx
);
auto
cuda_place
=
m_
.
Data
().
CUDAPlace
();
if
(
cuda_place
==
nullptr
||
*
cuda_place
==
boost
::
get
<
platform
::
CUDAPlace
>
(
place
))
{
if
(
cuda_place
==
boost
::
none
||
cuda_place
==
boost
::
get
<
platform
::
CUDAPlace
>
(
place
))
{
return
m_
.
MutableData
()
->
CUDAMutableData
(
place
);
}
}
...
...
paddle/fluid/framework/tensor.cc
浏览文件 @
3a72a634
...
...
@@ -32,10 +32,9 @@ size_t Tensor::memory_size() const {
}
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
std
::
type_index
type
,
memory
::
Allocator
::
Attr
attr
,
size_t
requested_size
)
{
if
(
holder_
!=
nullptr
)
{
holder_
->
set_type
(
type
);
}
type_
=
type
;
PADDLE_ENFORCE_GE
(
numel
(),
0
,
"When calling this method, the Tensor's numel must be "
"equal or larger than zero. "
...
...
@@ -48,35 +47,18 @@ void* Tensor::mutable_data(platform::Place place, std::type_index type,
/* some versions of boost::variant don't have operator!= */
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
holder_
->
size
()
<
size
+
offset_
)
{
if
(
platform
::
is_cpu_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
platform
::
CPUPlace
>
(
boost
::
get
<
platform
::
CPUPlace
>
(
place
),
size
,
type
));
}
else
if
(
platform
::
is_gpu_place
(
place
)
||
platform
::
is_cuda_pinned_place
(
place
))
{
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW
(
"CUDAPlace or CUDAPinnedPlace is not supported in CPU-only mode."
);
}
#else
if
(
platform
::
is_gpu_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
platform
::
CUDAPlace
>
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
),
size
,
type
));
}
else
if
(
platform
::
is_cuda_pinned_place
(
place
))
{
holder_
.
reset
(
new
PlaceholderImpl
<
platform
::
CUDAPinnedPlace
>
(
boost
::
get
<
platform
::
CUDAPinnedPlace
>
(
place
),
size
,
type
));
}
}
#endif
holder_
=
memory
::
AllocShared
(
place
,
size
,
attr
);
offset_
=
0
;
}
return
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
}
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
size_t
requested_size
)
{
void
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
memory
::
Allocator
::
Attr
attr
,
size_t
requested_size
)
{
PADDLE_ENFORCE
(
this
->
holder_
!=
nullptr
,
"Cannot invoke mutable data if current hold nothing."
);
return
mutable_data
(
place
,
holder_
->
type
()
,
requested_size
);
return
mutable_data
(
place
,
type_
,
attr
,
requested_size
);
}
Tensor
&
Tensor
::
ShareDataWith
(
const
Tensor
&
src
)
{
...
...
@@ -101,6 +83,7 @@ Tensor Tensor::Slice(int begin_idx, int end_idx) const {
Tensor
dst
;
dst
.
holder_
=
holder_
;
dst
.
set_layout
(
layout_
);
dst
.
type_
=
type_
;
DDim
dst_dims
=
dims_
;
dst_dims
[
0
]
=
end_idx
-
begin_idx
;
dst
.
Resize
(
dst_dims
);
...
...
paddle/fluid/framework/tensor.h
浏览文件 @
3a72a634
...
...
@@ -67,12 +67,7 @@ class Tensor {
friend
struct
EigenVector
;
public:
Tensor
()
:
offset_
(
0
)
{}
/*! Constructor with place should only be used in pybind. */
explicit
Tensor
(
const
platform
::
Place
&
place
)
:
offset_
(
0
)
{
holder_
->
set_place
(
place
);
}
Tensor
()
:
type_
(
typeid
(
float
)),
offset_
(
0
)
{}
/*! Return a pointer to mutable memory block. */
template
<
typename
T
>
...
...
@@ -89,12 +84,17 @@ class Tensor {
* @note If not exist, then allocation.
*/
template
<
typename
T
>
T
*
mutable_data
(
platform
::
Place
place
,
size_t
requested_size
=
0
);
T
*
mutable_data
(
platform
::
Place
place
,
memory
::
Allocator
::
Attr
attr
=
memory
::
Allocator
::
kDefault
,
size_t
requested_size
=
0
);
void
*
mutable_data
(
platform
::
Place
place
,
std
::
type_index
type
,
memory
::
Allocator
::
Attr
attr
=
memory
::
Allocator
::
kDefault
,
size_t
requested_size
=
0
);
void
*
mutable_data
(
platform
::
Place
place
,
size_t
requested_size
=
0
);
void
*
mutable_data
(
platform
::
Place
place
,
memory
::
Allocator
::
Attr
attr
=
memory
::
Allocator
::
kDefault
,
size_t
requested_size
=
0
);
/**
* @brief Return a pointer to mutable memory block.
...
...
@@ -106,7 +106,9 @@ class Tensor {
* @note If not exist, then allocation.
*/
template
<
typename
T
>
T
*
mutable_data
(
DDim
dims
,
platform
::
Place
place
,
size_t
requested_size
=
0
);
T
*
mutable_data
(
DDim
dims
,
platform
::
Place
place
,
memory
::
Allocator
::
Attr
attr
=
memory
::
Allocator
::
kDefault
,
size_t
requested_size
=
0
);
/*! Return the dimensions of the memory block. */
const
DDim
&
dims
()
const
;
...
...
@@ -139,7 +141,7 @@ class Tensor {
std
::
type_index
type
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
"Tensor not initialized yet when Tensor::type() is called."
);
return
holder_
->
type
()
;
return
type_
;
}
// memory size returns the holding memory size in byte.
...
...
@@ -153,56 +155,13 @@ class Tensor {
void
clear
()
{
holder_
=
nullptr
;
}
private:
/**
* @note Placeholder hides type T, so it doesn't appear as a template
* parameter of Variable.
*/
struct
Placeholder
{
virtual
~
Placeholder
()
=
default
;
virtual
void
*
ptr
()
const
=
0
;
virtual
size_t
size
()
const
=
0
;
virtual
std
::
type_index
type
()
const
=
0
;
virtual
platform
::
Place
place
()
const
=
0
;
virtual
void
set_type
(
std
::
type_index
type
)
=
0
;
virtual
void
set_place
(
platform
::
Place
place
)
=
0
;
};
template
<
typename
Place
>
struct
PlaceholderImpl
:
public
Placeholder
{
PlaceholderImpl
(
Place
place
,
size_t
size
,
std
::
type_index
type
)
:
ptr_
(
static_cast
<
uint8_t
*>
(
memory
::
Alloc
(
place
,
size
)),
memory
::
PODDeleter
<
uint8_t
,
Place
>
(
place
)),
place_
(
place
),
size_
(
size
),
type_
(
type
)
{
PADDLE_ENFORCE_NOT_NULL
(
ptr_
,
"Insufficient %s memory to allocation."
,
(
is_cpu_place
(
place_
)
?
"CPU"
:
"GPU"
));
}
virtual
size_t
size
()
const
{
return
size_
;
}
virtual
platform
::
Place
place
()
const
{
return
place_
;
}
virtual
void
*
ptr
()
const
{
return
static_cast
<
void
*>
(
ptr_
.
get
());
}
virtual
std
::
type_index
type
()
const
{
return
type_
;
}
virtual
void
set_type
(
std
::
type_index
type
)
{
type_
=
type
;
}
virtual
void
set_place
(
platform
::
Place
place
)
{
place_
=
place
;
}
/*! the pointer of memory block. */
std
::
unique_ptr
<
uint8_t
,
memory
::
PODDeleter
<
uint8_t
,
Place
>>
ptr_
;
/*! the place of memory block. */
platform
::
Place
place_
;
/*! the size of memory block. */
size_t
size_
;
/* the current type of memory */
std
::
type_index
type_
;
};
const
std
::
shared_ptr
<
memory
::
Allocation
>&
Holder
()
const
{
return
holder_
;
}
size_t
offset
()
const
{
return
offset_
;
}
private:
/*! holds the memory block if allocated. */
std
::
shared_ptr
<
Placeholder
>
holder_
;
std
::
shared_ptr
<
memory
::
Allocation
>
holder_
;
std
::
type_index
type_
;
/**
* @brief points to elements dimensions.
*
...
...
paddle/fluid/framework/tensor_impl.h
浏览文件 @
3a72a634
...
...
@@ -23,10 +23,10 @@ namespace framework {
template
<
typename
T
>
inline
const
T
*
Tensor
::
data
()
const
{
check_memory_size
();
bool
valid
=
std
::
is_same
<
T
,
void
>::
value
||
holder_
->
type
()
==
std
::
type_index
(
typeid
(
T
));
bool
valid
=
std
::
is_same
<
T
,
void
>::
value
||
type_
==
std
::
type_index
(
typeid
(
T
));
PADDLE_ENFORCE
(
valid
,
"Tensor holds the wrong type, it holds %s"
,
t
his
->
holder_
->
type
()
.
name
());
t
ype_
.
name
());
return
reinterpret_cast
<
const
T
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
...
...
@@ -37,26 +37,30 @@ inline bool Tensor::IsInitialized() const { return holder_ != nullptr; }
template
<
typename
T
>
inline
T
*
Tensor
::
data
()
{
check_memory_size
();
bool
valid
=
std
::
is_same
<
T
,
void
>::
value
||
holder_
->
type
()
==
std
::
type_index
(
typeid
(
T
));
bool
valid
=
std
::
is_same
<
T
,
void
>::
value
||
type_
==
std
::
type_index
(
typeid
(
T
));
PADDLE_ENFORCE
(
valid
,
"Tensor holds the wrong type, it holds %s"
,
t
his
->
holder_
->
type
()
.
name
());
t
ype_
.
name
());
return
reinterpret_cast
<
T
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
offset_
);
}
template
<
typename
T
>
inline
T
*
Tensor
::
mutable_data
(
DDim
dims
,
platform
::
Place
place
,
memory
::
Allocator
::
Attr
attr
,
size_t
requested_size
)
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
Resize
(
dims
);
return
mutable_data
<
T
>
(
place
,
requested_size
);
return
mutable_data
<
T
>
(
place
,
attr
,
requested_size
);
}
template
<
typename
T
>
inline
T
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
size_t
requested_size
)
{
inline
T
*
Tensor
::
mutable_data
(
platform
::
Place
place
,
memory
::
Allocator
::
Attr
attr
,
size_t
requested_size
)
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
return
reinterpret_cast
<
T
*>
(
mutable_data
(
place
,
typeid
(
T
),
requested_size
));
return
reinterpret_cast
<
T
*>
(
mutable_data
(
place
,
typeid
(
T
),
attr
,
requested_size
));
}
inline
Tensor
ReshapeToMatrix
(
const
Tensor
&
src
,
int
num_col_dims
)
{
...
...
paddle/fluid/framework/tensor_util_test.cc
浏览文件 @
3a72a634
...
...
@@ -379,7 +379,9 @@ TEST(Tensor, FromAndToStream) {
TensorToStream
(
oss
,
gpu_tensor
,
gpu_ctx
);
std
::
istringstream
iss
(
oss
.
str
());
TensorFromStream
(
iss
,
&
dst_tensor
,
gpu_ctx
);
TensorFromStream
(
iss
,
&
dst_tensor
,
*
platform
::
DeviceContextPool
::
Instance
().
Get
(
platform
::
CPUPlace
()));
int
*
dst_ptr
=
dst_tensor
.
mutable_data
<
int
>
(
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
6
;
++
i
)
{
...
...
paddle/fluid/memory/CMakeLists.txt
浏览文件 @
3a72a634
add_subdirectory
(
detail
)
cc_library
(
malloc SRCS malloc.cc DEPS
buddy_allocator place enforc
e
)
add_subdirectory
(
allocation
)
cc_library
(
malloc SRCS malloc.cc DEPS
place enforce allocator_facad
e
)
cc_library
(
memcpy SRCS memcpy.cc DEPS place
)
cc_library
(
memory
DEPS
malloc
memcpy
)
cc_test
(
malloc_test SRCS malloc_test.cc DEPS malloc
)
#if (WITH_GPU)
# nv_test(pinned_memory_test SRCS pinned_memory_test.cu DEPS place memory)
#endif()
paddle/fluid/memory/allocation/CMakeLists.txt
0 → 100644
浏览文件 @
3a72a634
cc_library
(
allocator SRCS allocator.cc DEPS place
)
cc_library
(
cpu_allocator SRCS cpu_allocator.cc DEPS allocator
)
cc_library
(
best_fit_allocator SRCS best_fit_allocator.cc DEPS allocator
)
cc_library
(
locked_allocator SRCS locked_allocator.cc DEPS allocator
)
cc_library
(
buffered_allocator SRCS buffered_allocator.cc DEPS allocator
)
cc_library
(
legacy_allocator SRCS legacy_allocator.cc DEPS allocator buddy_allocator
)
cc_test
(
buffered_allocator_test SRCS buffered_allocator_test.cc DEPS best_fit_allocator locked_allocator buffered_allocator cpu_allocator
)
if
(
WITH_GPU
)
nv_library
(
cuda_allocator SRCS cuda_allocator.cc DEPS allocator cuda_device_guard
)
endif
()
cc_library
(
retry_allocator SRCS retry_allocator.cc DEPS allocator
)
if
(
WITH_GPU
)
nv_test
(
best_fit_allocator_test
SRCS best_fit_allocator_test.cc
best_fit_allocator_test.cu
DEPS best_fit_allocator
locked_allocator
cpu_allocator
cuda_allocator
device_context
memcpy
)
else
()
cc_test
(
best_fit_allocator_test
SRCS best_fit_allocator_test.cc
DEPS best_fit_allocator
locked_allocator
cpu_allocator
)
endif
()
nv_library
(
pinned_allocator SRCS pinned_allocator.cc DEPS allocator
)
if
(
WITH_GPU
)
set
(
AllocatorFacadeDeps gpu_info cuda_allocator pinned_allocator cuda_device_guard
)
else
()
set
(
AllocatorFacadeDeps
)
endif
()
cc_library
(
aligned_allocator SRCS aligned_allocator.cc DEPS allocator
)
cc_library
(
auto_increment_allocator SRCS auto_increment_allocator.cc DEPS allocator
)
cc_library
(
zero_size_allocator SRCS zero_size_allocator.cc DEPS allocator
)
cc_library
(
conditional_allocator SRCS conditional_allocator.cc DEPS allocator
)
cc_library
(
allocator_strategy SRCS allocator_strategy.cc DEPS gflags
)
cc_library
(
allocator_facade SRCS allocator_facade.cc DEPS
${
AllocatorFacadeDeps
}
cpu_allocator
locked_allocator
best_fit_allocator
aligned_allocator
auto_increment_allocator
zero_size_allocator
conditional_allocator
retry_allocator
buffered_allocator
allocator_strategy
legacy_allocator
)
nv_test
(
allocation_and_eigen_test SRCS allocation_and_eigen_test.cu DEPS allocator_facade
)
cc_test
(
retry_allocator_test SRCS retry_allocator_test.cc DEPS retry_allocator best_fit_allocator locked_allocator cpu_allocator
)
cc_test
(
allocator_facade_test SRCS allocator_facade_test.cc DEPS allocator_facade
)
paddle/fluid/memory/allocation/aligned_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
ThinAlignedAllocator
::
ThinAlignedAllocator
(
std
::
shared_ptr
<
Allocator
>
underlyning_allocator
)
:
underlying_allocator_
(
std
::
move
(
underlyning_allocator
))
{}
bool
ThinAlignedAllocator
::
IsAllocThreadSafe
()
const
{
return
underlying_allocator_
->
IsAllocThreadSafe
();
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/aligned_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "paddle/fluid/memory/allocation/allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// The aligned allocation and allocator will wrap a managed allocator,
// and returns the aligned pointer.
//
// NOTE(yy): For speed reason, I just use a template parameter to get
// alignment, however, it can be an private member if necessary.
//
// NOTE(yy): kAlignment must be 2^N. a `static_assert` should be added.
template
<
size_t
kAlignment
>
class
AlignedAllocation
:
public
Allocation
{
static_assert
(
kAlignment
>
0
&&
(
kAlignment
&
(
kAlignment
-
1
))
==
0
,
"kAlignment must be 2^N"
);
public:
AlignedAllocation
(
AllocationPtr
&&
underlying_allocation
,
size_t
size
)
:
Allocation
(
AlignedPtr
(
underlying_allocation
->
ptr
()),
size
+
kAlignment
-
Offset
(
underlying_allocation
->
ptr
()),
underlying_allocation
->
place
()),
underlying_allocation_
(
std
::
move
(
underlying_allocation
))
{}
private:
static
void
*
AlignedPtr
(
void
*
ptr
)
{
return
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
ptr
)
+
Offset
(
ptr
));
}
// Offset to aligned pointer.
// if ptr is already aligned, returns 0.
static
size_t
Offset
(
void
*
ptr
)
{
auto
ptr_addr
=
reinterpret_cast
<
intptr_t
>
(
ptr
);
intptr_t
aligned_addr
=
(
ptr_addr
&
~
(
kAlignment
-
1
));
intptr_t
diff
=
aligned_addr
-
ptr_addr
;
if
(
diff
==
0
)
{
return
0
;
}
else
{
return
kAlignment
+
diff
;
}
}
AllocationPtr
underlying_allocation_
;
};
// Thin aligned allocator is trivial and used to generate a small size binary.
//
// NOTE(yy): This is a trick to make a template class. This class extract the
// common code into a `thin` class. So if there are multiple specification of
// the template class, the binary size will not extended too much.
//
// NOTE(yy): This could be an over design. If it harms readability of code, it
// could be removed later.
class
ThinAlignedAllocator
:
public
Allocator
{
public:
explicit
ThinAlignedAllocator
(
std
::
shared_ptr
<
Allocator
>
underlyning_allocator
);
bool
IsAllocThreadSafe
()
const
;
protected:
std
::
shared_ptr
<
Allocator
>
underlying_allocator_
;
};
// An aligned allocator will allocate `size+kAlignment` allocation and adjust
// the pointer offset.
template
<
size_t
kAlignment
>
class
AlignedAllocator
:
public
ThinAlignedAllocator
{
public:
using
ThinAlignedAllocator
::
ThinAlignedAllocator
;
protected:
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
{
auto
raw_allocation
=
underlying_allocator_
->
Allocate
(
size
+
kAlignment
,
attr
);
return
new
AlignedAllocation
<
kAlignment
>
(
std
::
move
(
raw_allocation
),
size
);
}
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/allocation_and_eigen_test.cu
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "gtest/gtest.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
#include "unsupported/Eigen/CXX11/Tensor"
// NOTE(yy): this unittest is not important. It just used for debugging.
// It can be removed later.
struct
FillZero
{
public:
float
*
ptr_
;
__device__
void
operator
()(
size_t
i
)
{
ptr_
[
i
]
=
0.0
f
;
}
};
namespace
paddle
{
TEST
(
Eigen
,
main
)
{
framework
::
Tensor
tensor
;
platform
::
CUDAPlace
gpu
(
0
);
float
*
ptr
=
tensor
.
mutable_data
<
float
>
({
10
,
10
},
gpu
);
auto
&
dev_ctx
=
*
reinterpret_cast
<
platform
::
CUDADeviceContext
*>
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
gpu
));
PADDLE_ENFORCE
(
cudaMemset
(
ptr
,
0
,
sizeof
(
float
)
*
100
));
platform
::
ForRange
<
platform
::
CUDADeviceContext
>
for_range
(
dev_ctx
,
100
);
for_range
(
FillZero
{
ptr
});
dev_ctx
.
Wait
();
auto
eigen_vec
=
framework
::
EigenVector
<
float
>::
Flatten
(
tensor
);
auto
&
eigen_dev
=
*
dev_ctx
.
eigen_device
();
eigen_vec
.
device
(
eigen_dev
)
=
eigen_vec
.
constant
(
0.0
f
);
}
}
// namespace paddle
paddle/fluid/memory/allocation/allocation_with_underlying.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/memory/allocation/allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
class
AllocationWithUnderlying
:
public
Allocation
{
public:
explicit
AllocationWithUnderlying
(
AllocationPtr
allocation
)
:
Allocation
(
allocation
->
ptr
(),
allocation
->
size
(),
allocation
->
place
()),
allocation_
(
std
::
move
(
allocation
))
{}
AllocationPtr
allocation_
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/allocator.h"
#include <functional>
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
Allocation
::~
Allocation
()
{}
Allocator
::~
Allocator
()
{}
bool
Allocator
::
IsAllocThreadSafe
()
const
{
return
false
;
}
AllocationPtr
Allocator
::
Allocate
(
size_t
size
,
Allocator
::
Attr
attr
)
{
auto
ptr
=
AllocateImpl
(
size
,
attr
);
ptr
->
set_allocator
(
this
);
return
AllocationPtr
(
ptr
);
}
void
Allocator
::
Free
(
Allocation
*
allocation
)
{
delete
allocation
;
}
const
char
*
BadAlloc
::
what
()
const
noexcept
{
return
msg_
.
c_str
();
}
void
AllocationDeleter
::
operator
()(
Allocation
*
allocation
)
const
{
auto
*
allocator
=
allocation
->
allocator
();
allocator
->
Free
(
allocation
);
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <string>
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// Exception when `Alloc`/`AllocShared` failed
class
BadAlloc
:
public
std
::
exception
{
public:
explicit
BadAlloc
(
std
::
string
msg
)
:
msg_
(
std
::
move
(
msg
))
{}
const
char
*
what
()
const
noexcept
override
;
private:
std
::
string
msg_
;
};
class
Allocation
;
class
AllocationDeleter
{
public:
void
operator
()(
Allocation
*
allocation
)
const
;
};
class
Allocator
;
// Allocation is the object holding the actually pointer. Use
// `Allocation::ptr()` will returns the pointer that allocated.
//
// NOTE: this is the base class of Allocation. Each allocator can use its own
// allocation object.
// NOTE: the `Allocation::ptr()` could be nullptr, if the allocation size is 0
class
Allocation
{
public:
Allocation
(
void
*
ptr
,
size_t
size
,
platform
::
Place
place
)
:
allocator_
(
nullptr
),
ptr_
(
ptr
),
size_
(
size
),
place_
(
place
)
{}
Allocation
(
const
Allocation
&
o
)
=
delete
;
Allocation
&
operator
=
(
const
Allocation
&
o
)
=
delete
;
// Returns the holding pointer.
// NOTE: For performance consideration, it is better not to make this method
// as a virtual method. If we want to implement a `defragmentation` later,
// we might need to make `ptr_` field as a protected field, and add a virtual
// method like `defragmentation` to change `ptr_`.
void
*
ptr
()
const
{
return
ptr_
;
}
// Returns the size of this memory buffer, i.e., ptr() + size() - 1 is the
// last valid element.
//
// NOTE: Some allocator might alloc more memory than request. The size
// could larger than its request. For example,
// the AlignedAllocator will always allocate memory as size + kAlignment.
// The raw pointer might not aligned, so an offset might be added to raw
// the pointer. The size of this allocation will be
// `size + kAlignemnt - offset`.
size_t
size
()
const
{
return
size_
;
}
const
platform
::
Place
&
place
()
const
{
return
place_
;
}
Allocator
*
allocator
()
{
return
allocator_
;
}
void
set_allocator
(
Allocator
*
allocator
)
{
allocator_
=
allocator
;
}
virtual
~
Allocation
();
private:
Allocator
*
allocator_
;
void
*
ptr_
;
size_t
size_
;
platform
::
Place
place_
;
};
using
AllocationPtr
=
std
::
unique_ptr
<
Allocation
,
AllocationDeleter
>
;
// Base interface class of memory Allocator.
// To allocate a memory, allocator needs two parameters:
// 1. size of bytes.
// 2. Attribute of memory.
// NOTE: the attribute of memory might be ignored if the allocator does not
// care it.
class
Allocator
{
public:
enum
Attr
{
kDefault
=
0
,
// Default attribute. Uses the fast or stablest allocation
// algorithm.
kFixedHuge
=
1
,
// The allocation may not be freed until the program
// ends. e.g., `Parameters` and `Momentum`.
kFluxHuge
=
2
,
// The allocation may create and freed frequently and the
// allocation is considerable huge. Like `activations`
// and gradients.
kScratchpad
=
3
,
// The `Scratchpad` memory is allocated and freed very soon,
// usually within an operator or aux memory.
// Like CUDNN workspace, AUX memory in batch norm, etc.
//
// https://en.wikipedia.org/wiki/Scratchpad_memory
kCrossDevice
=
4
,
// The memory used cross-device memory copy/communication.
// For example:
// 1. it can use an `pinned` memory for CPU-GPU
// communication.
// 2. it can use an `registered` memory for RDMA
// communication.
NumOfAttrs
=
5
// The number of all attributes. It is used internally.
};
virtual
~
Allocator
();
// Allocate an allocation.
AllocationPtr
Allocate
(
size_t
size
,
Allocator
::
Attr
attr
=
kDefault
);
// True if the `Allocate` is thread safe.
virtual
bool
IsAllocThreadSafe
()
const
;
protected:
virtual
void
Free
(
Allocation
*
allocation
);
virtual
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
=
0
;
private:
friend
class
AllocationDeleter
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/allocator_facade.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/allocator.h"
#include <gflags/gflags.h>
#include <map>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/memory/allocation/auto_increment_allocator.h"
#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include "paddle/fluid/memory/allocation/conditional_allocator.h"
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include "paddle/fluid/memory/allocation/locked_allocator.h"
#include "paddle/fluid/memory/allocation/retry_allocator.h"
#include "paddle/fluid/memory/allocation/zero_size_allocator.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/place.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
#include "paddle/fluid/platform/cuda_device_guard.h"
#include "paddle/fluid/platform/gpu_info.h"
#endif
DEFINE_int64
(
gpu_allocator_retry_time
,
0
,
"The retry time (milliseconds) when allocator fails "
"to allocate memory. No retry if this value is not greater than 0"
);
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// TODO(yy): Dirty code here. This class should be configurable in runtime.
class
CPUManagedAllocator
:
public
Allocator
{
public:
CPUManagedAllocator
()
:
normal_allocator_
(
new
CPUAllocator
())
{}
bool
IsAllocThreadSafe
()
const
override
{
return
true
;
}
protected:
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
{
return
normal_allocator_
->
Allocate
(
size
,
attr
).
release
();
}
private:
std
::
shared_ptr
<
Allocator
>
normal_allocator_
;
};
// TODO(yy): Dirty code here. This class should be configurable in runtime.
class
ChunkedAllocator
:
public
Allocator
{
public:
explicit
ChunkedAllocator
(
std
::
unique_ptr
<
Allocator
>
system_allocator
,
size_t
max_chunk_size
,
size_t
capacity
=
1
,
int64_t
retry_time
=
-
1
)
:
max_chunk_size_
(
max_chunk_size
),
retry_time_
(
retry_time
)
{
raw_allocator_
=
std
::
move
(
system_allocator
);
if
(
max_chunk_size_
==
0
)
{
default_allocator_
=
raw_allocator_
;
}
else
{
if
(
capacity
==
1
)
{
VLOG
(
10
)
<<
"Create BestFitAllocator with chunk_size "
<<
max_chunk_size_
;
default_allocator_
=
CreateAllocatorWithChunk
();
}
else
{
VLOG
(
10
)
<<
"Create AutoIncrementAllocator with chunk_size "
<<
max_chunk_size_
<<
" and capacity "
<<
capacity
;
default_allocator_
=
std
::
make_shared
<
AutoIncrementAllocator
>
(
[
this
]
{
return
std
::
move
(
CreateAllocatorWithChunk
());
},
capacity
);
}
}
auto
*
cond_allocator
=
new
ConditionalAllocator
();
cond_allocator
->
AddAllocator
(
[
this
](
size_t
size
,
Attr
attr
)
{
return
size
<
max_chunk_size_
;
},
default_allocator_
)
.
AddAllocator
(
[](
size_t
size
,
Attr
attr
)
{
return
true
;
// default case
},
raw_allocator_
);
default_allocator_
.
reset
(
cond_allocator
);
}
~
ChunkedAllocator
()
override
{
// Specify destruct order.
default_allocator_
.
reset
();
chunks_
.
clear
();
raw_allocator_
.
reset
();
}
std
::
shared_ptr
<
Allocator
>
CreateAllocatorWithChunk
()
{
chunks_
.
emplace_back
(
raw_allocator_
->
Allocate
(
max_chunk_size_
));
auto
*
allocation
=
chunks_
.
back
().
get
();
std
::
unique_ptr
<
Allocator
>
allocator
(
new
LockedAllocator
(
std
::
unique_ptr
<
Allocator
>
(
new
BestFitAllocator
(
allocation
))));
if
(
retry_time_
>
0
)
{
auto
*
retry_allocator
=
new
RetryAllocator
(
std
::
move
(
allocator
),
retry_time_
);
allocator
.
reset
(
retry_allocator
);
}
return
std
::
make_shared
<
AlignedAllocator
<
64u
>>
(
std
::
move
(
allocator
));
}
bool
IsAllocThreadSafe
()
const
override
{
return
true
;
}
protected:
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
{
return
default_allocator_
->
Allocate
(
size
,
attr
).
release
();
}
protected:
size_t
max_chunk_size_
;
int64_t
retry_time_
;
std
::
vector
<
AllocationPtr
>
chunks_
;
std
::
shared_ptr
<
Allocator
>
raw_allocator_
;
std
::
shared_ptr
<
Allocator
>
default_allocator_
;
};
#ifdef PADDLE_WITH_CUDA
class
CUDAChunkedAllocator
:
public
ChunkedAllocator
{
public:
explicit
CUDAChunkedAllocator
(
int
dev_id
)
:
ChunkedAllocator
(
std
::
unique_ptr
<
Allocator
>
(
new
CUDAAllocator
(
platform
::
CUDAPlace
(
dev_id
))),
GetMaxChunkSize
(
dev_id
),
GetCapcity
(
dev_id
),
GetRetryTime
())
{}
private:
static
size_t
GetMaxChunkSize
(
int
dev_id
)
{
platform
::
CUDADeviceGuard
guard
(
dev_id
);
return
platform
::
GpuMaxChunkSize
();
}
static
size_t
GetCapcity
(
int
dev_id
)
{
platform
::
CUDADeviceGuard
guard
(
dev_id
);
size_t
available
,
total
;
platform
::
GpuMemoryUsage
(
&
available
,
&
total
);
size_t
max_chunk_size
=
platform
::
GpuMaxChunkSize
();
return
max_chunk_size
==
0
?
0
:
available
/
max_chunk_size
;
}
static
int64_t
GetRetryTime
()
{
return
FLAGS_gpu_allocator_retry_time
;
}
};
class
CUDAPinnedChunkedAllocator
:
public
ChunkedAllocator
{
public:
CUDAPinnedChunkedAllocator
()
:
ChunkedAllocator
(
std
::
unique_ptr
<
Allocator
>
(
new
CPUPinnedAllocator
()),
platform
::
CUDAPinnedMaxChunkSize
(),
GetCapacity
(),
-
1
)
{}
// never retry
private:
static
size_t
GetCapacity
()
{
size_t
total
=
platform
::
CpuTotalPhysicalMemory
();
size_t
max_chunk_size
=
platform
::
CUDAPinnedMaxChunkSize
();
return
max_chunk_size
==
0
?
0
:
total
/
max_chunk_size
;
}
};
#endif
class
AllocatorFacadePrivate
{
public:
std
::
map
<
platform
::
Place
,
std
::
shared_ptr
<
Allocator
>>
allocators_
;
~
AllocatorFacadePrivate
()
=
default
;
AllocatorFacadePrivate
()
{
if
(
GetAllocatorStrategy
()
==
AllocatorStrategy
::
kLegacy
)
{
InitLegacyAllocator
();
}
else
{
InitCPUAllocator
();
InitCUDAAllocator
();
InitCUDAPinnedAllocator
();
WrapZeroSizeAllocator
();
}
}
private:
void
InitLegacyAllocator
()
{
std
::
vector
<
platform
::
Place
>
places
{
platform
::
CPUPlace
()};
#ifdef PADDLE_WITH_CUDA
for
(
int
dev_id
=
0
;
dev_id
<
platform
::
GetCUDADeviceCount
();
++
dev_id
)
{
places
.
emplace_back
(
platform
::
CUDAPlace
(
dev_id
));
}
places
.
emplace_back
(
platform
::
CUDAPinnedPlace
());
#endif
for
(
auto
&
p
:
places
)
{
allocators_
[
p
]
=
std
::
make_shared
<
LegacyAllocator
>
(
p
);
}
}
void
InitCPUAllocator
()
{
allocators_
[
platform
::
CPUPlace
()]
=
std
::
make_shared
<
CPUManagedAllocator
>
();
}
void
InitCUDAAllocator
()
{
#ifdef PADDLE_WITH_CUDA
int
device_count
=
platform
::
GetCUDADeviceCount
();
for
(
int
dev_id
=
0
;
dev_id
<
device_count
;
++
dev_id
)
{
allocators_
[
platform
::
CUDAPlace
(
dev_id
)]
=
std
::
make_shared
<
CUDAChunkedAllocator
>
(
dev_id
);
}
#endif
}
void
InitCUDAPinnedAllocator
()
{
#ifdef PADDLE_WITH_CUDA
allocators_
[
platform
::
CUDAPinnedPlace
()]
=
std
::
make_shared
<
CUDAPinnedChunkedAllocator
>
();
#endif
}
void
WrapZeroSizeAllocator
()
{
for
(
auto
&
pair
:
allocators_
)
{
pair
.
second
=
std
::
make_shared
<
ZeroSizeAllocator
>
(
pair
.
second
,
pair
.
first
);
}
}
};
// Pimpl. Make interface clean.
AllocatorFacade
::
AllocatorFacade
()
:
m_
(
new
AllocatorFacadePrivate
())
{}
AllocatorFacade
::~
AllocatorFacade
()
{
delete
m_
;
}
AllocatorFacade
&
AllocatorFacade
::
Instance
()
{
static
AllocatorFacade
instance
;
return
instance
;
}
std
::
shared_ptr
<
Allocation
>
AllocatorFacade
::
AllocShared
(
const
platform
::
Place
&
place
,
size_t
size
,
Allocator
::
Attr
attr
)
{
return
std
::
shared_ptr
<
Allocation
>
(
Alloc
(
place
,
size
,
attr
).
release
(),
AllocationDeleter
());
}
AllocationPtr
AllocatorFacade
::
Alloc
(
const
platform
::
Place
&
place
,
size_t
size
,
Allocator
::
Attr
attr
)
{
auto
it
=
m_
->
allocators_
.
find
(
place
);
if
(
it
==
m_
->
allocators_
.
end
())
{
throw
BadAlloc
(
string
::
Sprintf
(
"No such allocator for the place, %s"
,
place
));
}
return
m_
->
allocators_
.
at
(
place
)
->
Allocate
(
size
,
attr
);
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/allocator_facade.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// Allocator Facade is the interface exposed to other modules.
// All the configuration or dirty code under development should
// be hidden behind this facade.
//
// NOTE(yy): This class is a singleton class.
// NOTE(yy): To create a stable ABI and make compilation faster. Here we use
// a Pimpl trick;
class
AllocatorFacadePrivate
;
class
AllocatorFacade
{
public:
~
AllocatorFacade
();
AllocatorFacade
(
const
AllocatorFacade
&
o
)
=
delete
;
const
AllocatorFacade
&
operator
=
(
const
AllocatorFacade
&
o
)
=
delete
;
static
AllocatorFacade
&
Instance
();
// Allocate a shared allocation.
std
::
shared_ptr
<
Allocation
>
AllocShared
(
const
platform
::
Place
&
place
,
size_t
size
,
Allocator
::
Attr
attr
=
Allocator
::
kDefault
);
// Allocate a unique allocation.
AllocationPtr
Alloc
(
const
platform
::
Place
&
place
,
size_t
size
,
Allocator
::
Attr
attr
=
Allocator
::
kDefault
);
// TODO(yy): Allocate a Copy-On-Write allocation?
private:
AllocatorFacade
();
AllocatorFacadePrivate
*
m_
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/allocator_facade_test.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#ifdef PADDLE_WITH_CUDA
DECLARE_double
(
fraction_of_gpu_memory_to_use
);
DECLARE_double
(
fraction_of_cuda_pinned_memory_to_use
);
DECLARE_int64
(
gpu_allocator_retry_time
);
#endif
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
TEST
(
allocator
,
allocator
)
{
#ifdef PADDLE_WITH_CUDA
FLAGS_fraction_of_gpu_memory_to_use
=
0.01
;
FLAGS_gpu_allocator_retry_time
=
500
;
FLAGS_fraction_of_cuda_pinned_memory_to_use
=
0.5
;
#endif
auto
&
instance
=
AllocatorFacade
::
Instance
();
platform
::
Place
place
;
size_t
size
=
1024
;
{
place
=
platform
::
CPUPlace
();
size
=
1024
;
auto
cpu_allocation
=
instance
.
Alloc
(
place
,
size
);
ASSERT_NE
(
cpu_allocation
,
nullptr
);
ASSERT_NE
(
cpu_allocation
->
ptr
(),
nullptr
);
ASSERT_EQ
(
cpu_allocation
->
place
(),
place
);
ASSERT_EQ
(
cpu_allocation
->
size
(),
size
);
}
#ifdef PADDLE_WITH_CUDA
{
place
=
platform
::
CUDAPlace
(
0
);
size
=
1024
;
auto
gpu_allocation
=
instance
.
Alloc
(
place
,
size
);
ASSERT_NE
(
gpu_allocation
,
nullptr
);
ASSERT_NE
(
gpu_allocation
->
ptr
(),
nullptr
);
ASSERT_EQ
(
gpu_allocation
->
place
(),
place
);
ASSERT_GE
(
gpu_allocation
->
size
(),
size
);
}
{
// Allocate 2GB gpu memory
place
=
platform
::
CUDAPlace
(
0
);
size
=
2
*
static_cast
<
size_t
>
(
1
<<
30
);
auto
gpu_allocation
=
instance
.
Alloc
(
place
,
size
);
ASSERT_NE
(
gpu_allocation
,
nullptr
);
ASSERT_NE
(
gpu_allocation
->
ptr
(),
nullptr
);
ASSERT_EQ
(
gpu_allocation
->
place
(),
place
);
ASSERT_GE
(
gpu_allocation
->
size
(),
size
);
}
{
place
=
platform
::
CUDAPinnedPlace
();
size
=
(
1
<<
20
);
auto
cuda_pinned_allocation
=
instance
.
Alloc
(
platform
::
CUDAPinnedPlace
(),
1
<<
20
);
ASSERT_NE
(
cuda_pinned_allocation
,
nullptr
);
ASSERT_NE
(
cuda_pinned_allocation
->
ptr
(),
nullptr
);
ASSERT_EQ
(
cuda_pinned_allocation
->
place
(),
place
);
ASSERT_GE
(
cuda_pinned_allocation
->
size
(),
size
);
}
#endif
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/allocator_strategy.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "gflags/gflags.h"
DEFINE_string
(
allocator_strategy
,
"legacy"
,
"The allocation strategy. Legacy means the original allocator of Fluid."
"New means the experimental allocators of Fluid. in [legacy, new]"
);
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
static
AllocatorStrategy
GetStrategyFromFlag
()
{
return
FLAGS_allocator_strategy
==
"legacy"
?
AllocatorStrategy
::
kLegacy
:
AllocatorStrategy
::
kNaiveBestFit
;
}
AllocatorStrategy
GetAllocatorStrategy
()
{
static
AllocatorStrategy
strategy
=
GetStrategyFromFlag
();
return
strategy
;
}
void
UseAllocatorStrategyGFlag
()
{}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/allocator_strategy.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
enum
class
AllocatorStrategy
{
kLegacy
,
kNaiveBestFit
};
extern
AllocatorStrategy
GetAllocatorStrategy
();
// Do nothing, just make sure linker do not prune this file.
extern
void
UseAllocatorStrategyGFlag
();
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/auto_increment_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/auto_increment_allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
bool
AutoIncrementAllocator
::
IsAllocThreadSafe
()
const
{
return
true
;
}
std
::
shared_ptr
<
Allocator
>
AutoIncrementAllocator
::
CreateNewAllocator
()
{
std
::
lock_guard
<
std
::
mutex
>
guard
(
mtx_
);
auto
old_size
=
allocator_num_
.
load
();
PADDLE_ENFORCE_LT
(
old_size
,
underlying_allocators_
.
size
(),
"Allocator number exceeds capacity %d"
,
underlying_allocators_
.
size
());
underlying_allocators_
[
old_size
]
=
creator_
();
prev_success_allocator_
=
old_size
;
++
allocator_num_
;
PADDLE_ENFORCE
(
underlying_allocators_
[
old_size
]
->
IsAllocThreadSafe
(),
"the underlying allocator must be thread safe. This is a program "
"bug."
);
return
underlying_allocators_
[
old_size
];
}
Allocation
*
AutoIncrementAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
auto
cur
=
prev_success_allocator_
.
load
();
size_t
retry_count
=
allocator_num_
.
load
();
size_t
allocator_num
=
retry_count
;
while
(
retry_count
--
>
0
)
{
// until there retry count is zero
try
{
auto
res
=
underlying_allocators_
[
cur
]
->
Allocate
(
size
,
attr
);
prev_success_allocator_
=
cur
;
return
res
.
release
();
}
catch
(
BadAlloc
&
)
{
if
(
++
cur
>=
allocator_num
)
{
cur
=
0
;
}
}
catch
(...)
{
// if there is another type of allocation, just rethrow it.
throw
;
}
}
// This happens when the first allocator is exhausted and
// there are more than 1 allocation requests
// In this situation, the first allocation request would success
// and the second allocation request would fail if we do not use
// the newly created allocator by the first allocation request.
for
(
cur
=
allocator_num
;
cur
<
allocator_num_
;
++
cur
)
{
try
{
auto
ret
=
underlying_allocators_
[
cur
]
->
Allocate
(
size
,
attr
);
prev_success_allocator_
=
cur
;
return
ret
.
release
();
}
catch
(
BadAlloc
&
)
{
}
catch
(...)
{
throw
;
}
}
// No suitable allocator
return
CreateNewAllocator
()
->
Allocate
(
size
,
attr
).
release
();
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/auto_increment_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <atomic> // NOLINT
#include <functional>
#include <memory>
#include <mutex> // NOLINT
#include <thread> // NOLINT
#include <vector>
#include "paddle/fluid/memory/allocation/allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// The AutoIncrementAllocator manages many underlying allocators. If none of
// them can allocate the request memory, a new allocator will be created and
// invoke its `allocate` method.
//
// NOTE(yy): The AutoIncrementAllocator will prefer to allocate memory from
// the latest successful allocator.
//
// NOTE(yy): We may need to release an underlying allocator if it allocate
// nothing. However, it is generally not useful, since it will make performance
// undetermined.
//
// NOTE(yy): This allocator is only locked when creating new underlying
// allocator. The allocation requests from many threads may be dispatched
// to the same underlying allocator. So the underlying allocator must be
// thread safe.
//
// NOTE(zjl): Add capacity parameters to constructor. A high-performance
// thread-safe std::vector with varying size is hard to implement.
// Fortunately, we can get the total GPU memory and each chunk size.
// Therefore, we can get the suitable capacity of AutoIncrementAllocator.
class
AutoIncrementAllocator
:
public
Allocator
{
public:
// Creator is the method to create ManagedAllocator
using
AllocatorCreator
=
std
::
function
<
std
::
shared_ptr
<
Allocator
>
()
>
;
explicit
AutoIncrementAllocator
(
AllocatorCreator
&&
creator
,
size_t
capacity
)
:
creator_
(
std
::
move
(
creator
)),
underlying_allocators_
(
capacity
)
{}
bool
IsAllocThreadSafe
()
const
override
;
private:
std
::
shared_ptr
<
Allocator
>
CreateNewAllocator
();
protected:
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
private:
AllocatorCreator
creator_
;
std
::
vector
<
AllocatorCreator
::
result_type
>
underlying_allocators_
;
std
::
atomic
<
size_t
>
allocator_num_
{
0
};
// Use std::atomic rather than std::mutex, since std::atomic is usually
// lock-free
std
::
atomic
<
size_t
>
prev_success_allocator_
{
0
};
std
::
mutex
mtx_
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/best_fit_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include <cmath>
#include <list>
#include <map>
#include <string>
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
static
int
HighestBitPos
(
size_t
N
)
{
if
(
UNLIKELY
(
N
==
0
))
{
return
0
;
}
else
{
#ifdef __GNUCC__
return
sizeof
(
unsigned
int
)
*
8
-
__builtin_clz
(
N
);
#else
return
static_cast
<
int
>
(
std
::
log2
(
N
)
+
1
);
#endif
}
}
BestFitAllocator
::
BestFitAllocator
(
Allocation
*
allocation
)
:
allocation_
(
allocation
)
{
details
::
Chunk
chunk
;
chunk
.
size_
=
allocation_
->
size
();
chunk
.
offset_
=
0
;
chunk
.
is_free
=
true
;
chunks_
.
emplace_back
(
chunk
);
free_chunks_
[
HighestBitPos
(
chunk
.
size_
)].
insert
(
{
chunk
.
size_
,
chunks_
.
begin
()});
}
size_t
BestFitAllocator
::
FreeSize
()
const
{
size_t
acc
=
0
;
for
(
auto
&
array_item
:
free_chunks_
)
{
for
(
auto
&
pair
:
array_item
)
{
acc
+=
pair
.
second
->
size_
;
}
}
return
acc
;
}
BestFitAllocator
::
ListIt
BestFitAllocator
::
SplitChunk
(
size_t
request_size
,
size_t
free_chunk_offset
,
MapIt
bin_iterator
)
{
auto
to_split_it
=
bin_iterator
->
second
;
free_chunks_
[
free_chunk_offset
].
erase
(
bin_iterator
);
PADDLE_ENFORCE
(
to_split_it
->
is_free
);
PADDLE_ENFORCE_GE
(
to_split_it
->
size_
,
request_size
);
auto
remaining_size
=
to_split_it
->
size_
-
request_size
;
details
::
Chunk
to_use
;
details
::
Chunk
remaining
;
to_use
.
size_
=
request_size
;
to_use
.
is_free
=
false
;
remaining
.
size_
=
remaining_size
;
remaining
.
is_free
=
true
;
// calc offsets
to_use
.
offset_
=
to_split_it
->
offset_
;
remaining
.
offset_
=
to_use
.
offset_
+
to_use
.
size_
;
// insert to chunk list
auto
to_use_it
=
chunks_
.
insert
(
to_split_it
,
to_use
);
if
(
remaining
.
size_
!=
0
)
{
auto
bit_size
=
static_cast
<
size_t
>
(
HighestBitPos
(
remaining
.
size_
));
free_chunks_
[
bit_size
].
insert
(
{
remaining
.
size_
,
chunks_
.
insert
(
to_split_it
,
remaining
)});
}
chunks_
.
erase
(
to_split_it
);
return
to_use_it
;
}
void
BestFitAllocator
::
InsertFreeNode
(
const
ListIt
&
it
)
{
auto
pos
=
static_cast
<
size_t
>
(
HighestBitPos
(
it
->
size_
));
auto
&
free_map
=
free_chunks_
[
pos
];
free_map
.
insert
({
it
->
size_
,
it
});
}
void
BestFitAllocator
::
EraseFreeNode
(
const
ListIt
&
it
)
{
size_t
pos
=
static_cast
<
size_t
>
(
HighestBitPos
(
it
->
size_
));
auto
&
free_map
=
free_chunks_
[
pos
];
auto
map_it
=
free_map
.
find
(
it
->
size_
);
while
(
map_it
->
second
!=
it
&&
map_it
!=
free_map
.
end
())
{
++
map_it
;
}
PADDLE_ENFORCE
(
map_it
!=
free_map
.
end
());
free_map
.
erase
(
map_it
);
}
size_t
BestFitAllocator
::
NumFreeChunks
()
const
{
size_t
num
=
0
;
for
(
auto
&
array_item
:
free_chunks_
)
{
num
+=
array_item
.
size
();
}
return
num
;
}
void
BestFitAllocator
::
Free
(
Allocation
*
allocation
)
{
auto
*
bf_allocation
=
dynamic_cast
<
BestFitAllocation
*>
(
allocation
);
auto
chunk_it
=
bf_allocation
->
ChunkIterator
();
PADDLE_ENFORCE
(
!
chunk_it
->
is_free
);
chunk_it
->
is_free
=
true
;
if
(
chunk_it
!=
chunks_
.
begin
())
{
auto
prev_it
=
chunk_it
;
--
prev_it
;
if
(
prev_it
->
is_free
)
{
// Merge Left.
EraseFreeNode
(
prev_it
);
prev_it
->
size_
+=
chunk_it
->
size_
;
chunks_
.
erase
(
chunk_it
);
chunk_it
=
prev_it
;
}
}
auto
next_it
=
chunk_it
;
++
next_it
;
if
(
next_it
!=
chunks_
.
end
()
&&
next_it
->
is_free
)
{
EraseFreeNode
(
next_it
);
chunk_it
->
size_
+=
next_it
->
size_
;
chunks_
.
erase
(
next_it
);
}
InsertFreeNode
(
chunk_it
);
delete
allocation
;
}
Allocation
*
BestFitAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
auto
highest_set_bit
=
static_cast
<
size_t
>
(
HighestBitPos
(
size
));
MapIt
map_it
;
for
(;
highest_set_bit
<
free_chunks_
.
size
();
++
highest_set_bit
)
{
map_it
=
free_chunks_
[
highest_set_bit
].
lower_bound
(
size
);
if
(
map_it
!=
free_chunks_
[
highest_set_bit
].
end
())
{
break
;
}
}
if
(
UNLIKELY
(
highest_set_bit
==
free_chunks_
.
size
()))
{
throw
BadAlloc
(
string
::
Sprintf
(
"Cannot allocate %d, All fragments size is %d"
,
size
,
FreeSize
()));
}
auto
chunk_it
=
SplitChunk
(
size
,
highest_set_bit
,
map_it
);
return
new
BestFitAllocation
(
this
,
chunk_it
);
}
BestFitAllocation
::
BestFitAllocation
(
paddle
::
memory
::
allocation
::
BestFitAllocator
*
allocator
,
typename
details
::
ChunkList
::
iterator
chunk_it
)
:
Allocation
(
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
allocator
->
BasePtr
())
+
chunk_it
->
offset_
),
chunk_it
->
size_
,
allocator
->
Place
()),
chunk_it_
(
chunk_it
)
{}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/best_fit_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <array>
#include <list>
#include <map>
#include "paddle/fluid/memory/allocation/allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
namespace
details
{
struct
Chunk
{
bool
is_free
{
true
};
// Offset to the base allocation.
uintptr_t
offset_
;
size_t
size_
;
};
// Here we use std::list to maintain chunk list.
// NOTE(yy): The traditional implementation of ChunkList is add `prev`/`next`
// pointers in `Chunk`, and split the allocation as `ChunkHeader` and
// `Payload`. Such as
// *-------*---------------*---------------*--------------*
// | Chunk | prev_ pointer | next_ pointer | payload .... |
// *-------*---------------*---------------*--------------*
// This implementation can just return a raw pointer, and we can get the list
// structure by the raw pointer. However, we cannot use the same code on GPU
// since CPU cannot access GPU memory directly.
//
// So we choose to use `std::list` and return an allocation instance, which
// contains the list node iterator, then we can unify CPU/GPU code.
//
// To return an allocation is not a bad idea, since Tensor/Vector should holds
// an allocation instead of raw pointer directly.
using
ChunkList
=
std
::
list
<
Chunk
>
;
// Here we use a multi-level map of free chunks.
// the map is
// MSB offset --> size --> [ChunkList::iterator]
//
// The time complexities:
// find a free chunk:
// O(logN),
// where N is the number of free nodes with the same MSB offset.
// find the position of a chunk iterator:
// O(logN + K),
// where N is the number of free nodes with the same MSB offset.
// where K is the number of free nodes with the same size.
// insert a free chunk:
// O(logN),
// where N is the number of free nodes with the same MSB offset.
// erase a free chunk:
// O(1)
using
FreeChunkBin
=
std
::
array
<
std
::
multimap
<
size_t
,
ChunkList
::
iterator
>
,
sizeof
(
size_t
)
*
8
>
;
}
// namespace details
class
BestFitAllocator
;
// The BestFitAllocation maintain the List Node iterator.
class
BestFitAllocation
:
public
Allocation
{
private:
using
ListIt
=
typename
details
::
ChunkList
::
iterator
;
public:
BestFitAllocation
(
BestFitAllocator
*
allocator
,
ListIt
chunk_it
);
const
ListIt
&
ChunkIterator
()
const
{
return
chunk_it_
;
}
private:
typename
details
::
ChunkList
::
iterator
chunk_it_
;
};
// TODO(yy): Current BestFitAllocator is not thread-safe. To make it thread
// safe, we must wrap a locked_allocator. However, we can implement a thread
// safe allocator by locking each bin and chunks list independently. It will
// make BestFitAllocator faster in multi-thread situation.
//
// This allocator implements a best-fit allocator with merging the free nodes.
//
// To allocate a buffer, it will find the best-fit chunk. If the best-fit chunk
// is larger than request size, the original block will be split into two
// chunks. The first block will be used and the second block will be put into
// free chunks.
//
// To free an allocation, it will set the chunk of allocation to free and merge
// the prev-chunk and the next-chunk when possible.
class
BestFitAllocator
:
public
Allocator
{
public:
explicit
BestFitAllocator
(
Allocation
*
allocation
);
void
*
BasePtr
()
const
{
return
allocation_
->
ptr
();
}
const
platform
::
Place
&
Place
()
const
{
return
allocation_
->
place
();
}
size_t
NumFreeChunks
()
const
;
private:
size_t
FreeSize
()
const
;
using
MapIt
=
typename
details
::
FreeChunkBin
::
value_type
::
iterator
;
using
ListIt
=
typename
details
::
ChunkList
::
iterator
;
ListIt
SplitChunk
(
size_t
request_size
,
size_t
free_chunk_offset
,
MapIt
bin_iterator
);
void
EraseFreeNode
(
const
ListIt
&
it
);
void
InsertFreeNode
(
const
ListIt
&
it
);
protected:
void
Free
(
Allocation
*
allocation
)
override
;
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
private:
Allocation
*
allocation_
;
// not owned
details
::
ChunkList
chunks_
;
details
::
FreeChunkBin
free_chunks_
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/best_fit_allocator_test.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include <thread> // NOLINT
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
#include "paddle/fluid/memory/allocation/locked_allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
class
StubAllocation
:
public
Allocation
{
public:
explicit
StubAllocation
(
size_t
size
)
:
Allocation
(
0
,
size
,
platform
::
CPUPlace
())
{}
};
TEST
(
BestFitAllocator
,
test_allocation
)
{
StubAllocation
stub
(
4UL
*
1024
*
1024
*
1024
);
BestFitAllocator
allocator
(
&
stub
);
{
auto
allocation
=
allocator
.
Allocate
(
64
,
allocator
.
kDefault
);
}
{
auto
allocation
=
allocator
.
Allocate
(
80
,
allocator
.
kDefault
);
{
auto
best_fit_allocation
=
dynamic_cast
<
BestFitAllocation
*>
(
allocation
.
get
());
ASSERT_NE
(
best_fit_allocation
,
nullptr
);
ASSERT_FALSE
(
best_fit_allocation
->
ChunkIterator
()
->
is_free
);
ASSERT_EQ
(
best_fit_allocation
->
ChunkIterator
()
->
offset_
,
0
);
ASSERT_EQ
(
allocation
->
size
(),
80
);
ASSERT_EQ
(
allocation
->
ptr
(),
nullptr
);
}
auto
allocation2
=
allocator
.
Allocate
(
60
,
allocator
.
kDefault
);
auto
allocation3
=
allocator
.
Allocate
(
90
,
allocator
.
kDefault
);
allocation2
.
reset
();
allocation2
=
allocator
.
Allocate
(
30
,
allocator
.
kDefault
);
{
auto
best_fit_allocation
=
dynamic_cast
<
BestFitAllocation
*>
(
allocation2
.
get
());
ASSERT_EQ
(
best_fit_allocation
->
ChunkIterator
()
->
offset_
,
80
);
}
allocation2
.
reset
();
allocation2
=
allocator
.
Allocate
(
60
,
allocator
.
kDefault
);
{
auto
best_fit_allocation
=
dynamic_cast
<
BestFitAllocation
*>
(
allocation2
.
get
());
ASSERT_EQ
(
best_fit_allocation
->
ChunkIterator
()
->
offset_
,
80
);
}
allocation
.
reset
();
allocation2
.
reset
();
allocation
=
allocator
.
Allocate
(
80
+
60
,
allocator
.
kDefault
);
{
auto
best_fit_allocation
=
dynamic_cast
<
BestFitAllocation
*>
(
allocation
.
get
());
ASSERT_EQ
(
best_fit_allocation
->
ChunkIterator
()
->
offset_
,
0
);
}
allocation
.
reset
();
allocation
=
allocator
.
Allocate
(
80
,
allocator
.
kDefault
);
allocation2
=
allocator
.
Allocate
(
60
,
allocator
.
kDefault
);
allocation
=
nullptr
;
allocation2
=
nullptr
;
allocation3
=
nullptr
;
ASSERT_EQ
(
allocator
.
NumFreeChunks
(),
1U
);
}
}
TEST
(
BestFitAllocator
,
test_concurrent_cpu_allocation
)
{
CPUAllocator
allocator
;
auto
global_allocation
=
allocator
.
Allocate
(
256UL
*
1024
*
1024
,
allocator
.
kDefault
);
std
::
unique_ptr
<
Allocator
>
best_fit_allocator
(
new
BestFitAllocator
(
global_allocation
.
get
()));
LockedAllocator
locked_allocator
(
std
::
move
(
best_fit_allocator
));
auto
th_main
=
[
&
]
{
std
::
random_device
dev
;
std
::
default_random_engine
engine
(
dev
());
std
::
uniform_int_distribution
<
size_t
>
dist
(
1U
,
1024U
);
for
(
size_t
i
=
0
;
i
<
128
;
++
i
)
{
size_t
allocate_size
=
dist
(
engine
);
auto
allocation
=
locked_allocator
.
Allocate
(
sizeof
(
size_t
)
*
allocate_size
,
locked_allocator
.
kDefault
);
size_t
*
data
=
reinterpret_cast
<
size_t
*>
(
allocation
->
ptr
());
for
(
size_t
j
=
0
;
j
<
allocate_size
;
++
j
)
{
data
[
j
]
=
j
;
}
std
::
this_thread
::
yield
();
for
(
size_t
j
=
0
;
j
<
allocate_size
;
++
j
)
{
ASSERT_EQ
(
data
[
j
],
j
);
}
}
};
{
std
::
vector
<
std
::
thread
>
threads
;
for
(
size_t
i
=
0
;
i
<
1024
;
++
i
)
{
threads
.
emplace_back
(
th_main
);
}
for
(
auto
&
th
:
threads
)
{
th
.
join
();
}
}
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/best_fit_allocator_test.cu
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <thread> // NOLINT
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
#include "paddle/fluid/memory/allocation/locked_allocator.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/for_range.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
struct
ForEachFill
{
size_t
*
ptr_
;
explicit
ForEachFill
(
size_t
*
ptr
)
:
ptr_
(
ptr
)
{}
__device__
void
operator
()(
size_t
i
)
{
ptr_
[
i
]
=
i
;
}
};
TEST
(
BestFitAllocator
,
concurrent_cuda
)
{
CUDAAllocator
allocator
(
platform
::
CUDAPlace
(
0
));
// 256 MB
auto
cuda_allocation
=
allocator
.
Allocate
(
256U
*
1024
*
1024
,
allocator
.
kDefault
);
LockedAllocator
concurrent_allocator
(
std
::
unique_ptr
<
Allocator
>
(
new
BestFitAllocator
(
cuda_allocation
.
get
())));
auto
th_main
=
[
&
]
{
std
::
random_device
dev
;
std
::
default_random_engine
engine
(
dev
());
std
::
uniform_int_distribution
<
size_t
>
dist
(
1U
,
1024U
);
platform
::
CUDAPlace
gpu
(
0
);
platform
::
CUDADeviceContext
dev_ctx
(
gpu
);
std
::
array
<
size_t
,
1024
>
buf
;
for
(
size_t
i
=
0
;
i
<
128
;
++
i
)
{
size_t
allocate_size
=
dist
(
engine
);
auto
allocation
=
concurrent_allocator
.
Allocate
(
sizeof
(
size_t
)
*
allocate_size
,
concurrent_allocator
.
kDefault
);
size_t
*
data
=
reinterpret_cast
<
size_t
*>
(
allocation
->
ptr
());
ForEachFill
fill
(
data
);
platform
::
ForRange
<
platform
::
CUDADeviceContext
>
for_range
(
dev_ctx
,
allocate_size
);
for_range
(
fill
);
memory
::
Copy
(
platform
::
CPUPlace
(),
buf
.
data
(),
gpu
,
data
,
sizeof
(
size_t
)
*
allocate_size
,
dev_ctx
.
stream
());
dev_ctx
.
Wait
();
for
(
size_t
j
=
0
;
j
<
allocate_size
;
++
j
)
{
ASSERT_EQ
(
buf
[
j
],
j
);
}
allocation
=
nullptr
;
}
};
{
std
::
vector
<
std
::
thread
>
threads
;
for
(
size_t
i
=
0
;
i
<
1024
;
++
i
)
{
threads
.
emplace_back
(
th_main
);
}
for
(
auto
&
th
:
threads
)
{
th
.
join
();
}
}
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/buffered_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/buffered_allocator.h"
#include <algorithm>
#include <limits>
#include <utility>
#include "paddle/fluid/memory/allocation/allocation_with_underlying.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
BufferedAllocator
::
BufferedAllocator
(
std
::
unique_ptr
<
Allocator
>
&&
allocator
)
:
underlying_allocator_
(
std
::
move
(
allocator
))
{
PADDLE_ENFORCE_NOT_NULL
(
underlying_allocator_
,
"Underlying allocator of BufferedAllocator must be unmanaged"
);
if
(
underlying_allocator_
->
IsAllocThreadSafe
())
{
mtx_
.
reset
(
new
std
::
mutex
());
}
}
BufferedAllocator
::~
BufferedAllocator
()
{
FreeCache
(
-
1UL
);
}
void
BufferedAllocator
::
FreeCache
(
size_t
size
)
{
platform
::
LockGuardPtr
<
std
::
mutex
>
guard
(
mtx_
);
if
(
UNLIKELY
(
size
==
0
))
return
;
size_t
cur
=
0
;
while
(
!
allocations_
.
empty
())
{
// free the largest
auto
it
=
--
allocations_
.
end
();
cur
+=
it
->
second
->
size
();
delete
it
->
second
.
release
();
allocations_
.
erase
(
it
);
if
(
cur
>=
size
)
return
;
}
}
bool
BufferedAllocator
::
IsAllocThreadSafe
()
const
{
return
this
->
underlying_allocator_
->
IsAllocThreadSafe
();
}
void
BufferedAllocator
::
Free
(
Allocation
*
allocation
)
{
platform
::
LockGuardPtr
<
std
::
mutex
>
guard
(
mtx_
);
allocations_
.
emplace
(
allocation
->
size
(),
AllocationPtr
(
allocation
));
}
Allocation
*
BufferedAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
{
platform
::
LockGuardPtr
<
std
::
mutex
>
guard
(
mtx_
);
auto
it
=
allocations_
.
lower_bound
(
size
);
if
(
it
!=
allocations_
.
end
()
&&
it
->
first
<
size
*
2
)
{
AllocationPtr
result
(
std
::
move
(
it
->
second
));
allocations_
.
erase
(
it
);
return
new
AllocationWithUnderlying
(
std
::
move
(
result
));
}
}
try
{
return
new
AllocationWithUnderlying
(
underlying_allocator_
->
Allocate
(
size
,
attr
));
}
catch
(
BadAlloc
&
)
{
FreeCache
(
size
);
return
new
AllocationWithUnderlying
(
underlying_allocator_
->
Allocate
(
size
,
attr
));
}
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/buffered_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <cstdint>
#include <map>
#include <memory>
#include <vector>
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/platform/lock_guard_ptr.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// NOTE(zjl): BufferedAllocator maintains a memory pool to accelerate
// memory allocation and reuse memory.
// BufferedAllocator provides the same thread-safety level as
// underlying_allocator_
class
BufferedAllocator
:
public
Allocator
{
public:
explicit
BufferedAllocator
(
std
::
unique_ptr
<
Allocator
>
&&
allocator
);
~
BufferedAllocator
();
bool
IsAllocThreadSafe
()
const
override
;
// only used in unittest
inline
void
ClearCache
()
{
FreeCache
(
-
1UL
);
}
private:
void
FreeCache
(
size_t
size
);
protected:
void
Free
(
Allocation
*
allocation
)
override
;
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
private:
std
::
unique_ptr
<
Allocator
>
underlying_allocator_
;
std
::
multimap
<
size_t
,
AllocationPtr
>
allocations_
;
std
::
unique_ptr
<
std
::
mutex
>
mtx_
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/buffered_allocator_test.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/buffered_allocator.h"
#include <gtest/gtest.h>
#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
#include "paddle/fluid/memory/allocation/locked_allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
inline
std
::
unique_ptr
<
BufferedAllocator
>
GetBufferedAllocator
(
Allocation
*
allocation
,
bool
thread_safe
)
{
std
::
unique_ptr
<
Allocator
>
allocator
(
new
BestFitAllocator
(
allocation
));
if
(
thread_safe
)
{
allocator
.
reset
(
new
LockedAllocator
(
std
::
move
(
allocator
)));
}
return
std
::
unique_ptr
<
BufferedAllocator
>
(
new
BufferedAllocator
(
std
::
move
(
allocator
)));
}
TEST
(
buffered_allocator
,
thread_safety
)
{
std
::
unique_ptr
<
CPUAllocator
>
allocator
(
new
CPUAllocator
());
auto
chunk
=
allocator
->
Allocate
(
1
<<
20
,
allocator
->
kDefault
);
{
auto
buf_allocator
=
GetBufferedAllocator
(
chunk
.
get
(),
true
);
ASSERT_EQ
(
buf_allocator
->
IsAllocThreadSafe
(),
true
);
}
{
auto
buf_allocator
=
GetBufferedAllocator
(
chunk
.
get
(),
false
);
ASSERT_EQ
(
buf_allocator
->
IsAllocThreadSafe
(),
false
);
}
}
class
StubAllocation
:
public
Allocation
{
public:
using
Allocation
::
Allocation
;
};
class
StubAllocator
:
public
Allocator
{
public:
void
ResetCounter
()
{
construct_count_
=
0
;
destruct_count_
=
0
;
}
size_t
GetAllocCount
()
const
{
return
construct_count_
;
}
size_t
GetFreeCount
()
const
{
return
destruct_count_
;
}
protected:
void
Free
(
Allocation
*
allocation
)
override
{
auto
*
alloc
=
dynamic_cast
<
StubAllocation
*>
(
allocation
);
PADDLE_ENFORCE_NOT_NULL
(
alloc
);
if
(
alloc
->
ptr
())
delete
[]
static_cast
<
uint8_t
*>
(
alloc
->
ptr
());
++
destruct_count_
;
delete
allocation
;
}
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
{
++
construct_count_
;
if
(
size
==
0
)
{
return
new
StubAllocation
(
nullptr
,
0
,
platform
::
CPUPlace
());
}
else
{
return
new
StubAllocation
(
new
uint8_t
[
size
],
size
,
platform
::
CPUPlace
());
}
}
private:
size_t
construct_count_
=
0
;
size_t
destruct_count_
=
0
;
};
constexpr
size_t
kZero
=
0
;
constexpr
size_t
kOne
=
1
;
constexpr
size_t
kTwo
=
2
;
TEST
(
buffered_allocator
,
lazy_free
)
{
std
::
unique_ptr
<
StubAllocator
>
stub_allocator
(
new
StubAllocator
());
auto
*
underlying_allocator
=
stub_allocator
.
get
();
std
::
unique_ptr
<
BufferedAllocator
>
allocator
(
new
BufferedAllocator
(
std
::
move
(
stub_allocator
)));
{
underlying_allocator
->
ResetCounter
();
auto
x
=
allocator
->
Allocate
(
1025
,
allocator
->
kDefault
);
ASSERT_EQ
(
underlying_allocator
->
GetAllocCount
(),
kOne
);
ASSERT_EQ
(
underlying_allocator
->
GetFreeCount
(),
kZero
);
x
=
nullptr
;
ASSERT_EQ
(
underlying_allocator
->
GetFreeCount
(),
kZero
);
}
{
underlying_allocator
->
ResetCounter
();
auto
x
=
allocator
->
Allocate
(
900
,
allocator
->
kDefault
);
ASSERT_EQ
(
underlying_allocator
->
GetAllocCount
(),
kZero
);
ASSERT_EQ
(
underlying_allocator
->
GetFreeCount
(),
kZero
);
auto
y
=
allocator
->
Allocate
(
2048
,
allocator
->
kDefault
);
ASSERT_EQ
(
underlying_allocator
->
GetAllocCount
(),
kOne
);
ASSERT_EQ
(
underlying_allocator
->
GetFreeCount
(),
kZero
);
x
=
nullptr
;
ASSERT_EQ
(
underlying_allocator
->
GetFreeCount
(),
kZero
);
y
=
nullptr
;
ASSERT_EQ
(
underlying_allocator
->
GetFreeCount
(),
kZero
);
}
{
underlying_allocator
->
ResetCounter
();
allocator
->
ClearCache
();
ASSERT_EQ
(
underlying_allocator
->
GetAllocCount
(),
kZero
);
ASSERT_EQ
(
underlying_allocator
->
GetFreeCount
(),
kTwo
);
}
}
TEST
(
buffered_allocator
,
garbage_collection
)
{
std
::
unique_ptr
<
CPUAllocator
>
cpu_allocator
(
new
CPUAllocator
());
auto
chunk
=
cpu_allocator
->
Allocate
(
2048
,
cpu_allocator
->
kDefault
);
auto
allocator
=
GetBufferedAllocator
(
chunk
.
get
(),
false
);
auto
x1
=
allocator
->
Allocate
(
1600
,
allocator
->
kDefault
);
auto
x2
=
allocator
->
Allocate
(
400
,
allocator
->
kDefault
);
x1
=
nullptr
;
x2
=
nullptr
;
auto
x3
=
allocator
->
Allocate
(
1600
,
allocator
->
kDefault
);
ASSERT_NE
(
x3
,
nullptr
);
ASSERT_NE
(
x3
->
ptr
(),
nullptr
);
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/conditional_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/conditional_allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
ConditionalAllocator
&
ConditionalAllocator
::
AddAllocator
(
std
::
function
<
bool
(
size_t
,
Allocator
::
Attr
)
>
func
,
std
::
shared_ptr
<
Allocator
>
allocator
)
{
underlying_allocators_
.
emplace_back
(
std
::
move
(
func
),
std
::
move
(
allocator
));
return
*
this
;
}
bool
ConditionalAllocator
::
IsAllocThreadSafe
()
const
{
return
std
::
all_of
(
underlying_allocators_
.
begin
(),
underlying_allocators_
.
end
(),
[](
const
AllocatorWithCond
&
allocatorWithCond
)
{
return
allocatorWithCond
.
second
->
IsAllocThreadSafe
();
});
}
Allocation
*
ConditionalAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
for
(
auto
&
pair
:
underlying_allocators_
)
{
if
(
pair
.
first
(
size
,
attr
))
{
return
pair
.
second
->
Allocate
(
size
,
attr
).
release
();
}
}
throw
BadAlloc
(
"No suitable allocator"
);
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/conditional_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <functional>
#include <utility>
#include <vector>
#include "paddle/fluid/memory/allocation/allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// A composite allocator who will dispatch the allocation request by registered
// condition.
//
// For example:
//
// auto* cond_allocator = new ConditionalAllocator();
// cond_allocator->AddAllocator([](size_t size, Attr attr){
// // if size > 10
// return size > 10;
// }, allocator_a).AddAllocator([](size_t size, Attr attr){
// // elif attr is kDefault
// return attr == kDefault;
// }, allocator_b).AddAllocator([](size_t size, Attr attr){
// // else
// return true;
// }, allocator_c);
class
ConditionalAllocator
:
public
Allocator
{
public:
ConditionalAllocator
()
=
default
;
ConditionalAllocator
&
AddAllocator
(
std
::
function
<
bool
(
size_t
,
Attr
)
>
func
,
std
::
shared_ptr
<
Allocator
>
allocator
);
bool
IsAllocThreadSafe
()
const
override
;
protected:
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
private:
using
AllocatorWithCond
=
std
::
pair
<
std
::
function
<
bool
(
size_t
,
Attr
)
>
,
std
::
shared_ptr
<
Allocator
>>
;
std
::
vector
<
AllocatorWithCond
>
underlying_allocators_
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/cpu_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
#include <stdlib.h>
#include <string>
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
CPUAllocation
::
CPUAllocation
(
void
*
ptr
,
size_t
size
)
:
Allocation
(
ptr
,
size
,
platform
::
CPUPlace
())
{}
bool
CPUAllocator
::
IsAllocThreadSafe
()
const
{
return
true
;
}
void
CPUAllocator
::
Free
(
Allocation
*
allocation
)
{
PADDLE_ENFORCE_NOT_NULL
(
dynamic_cast
<
CPUAllocation
*>
(
allocation
));
free
(
allocation
->
ptr
());
delete
allocation
;
}
Allocation
*
CPUAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
void
*
ptr
;
auto
status
=
posix_memalign
(
&
ptr
,
kAlignment
,
size
);
if
(
UNLIKELY
(
status
)
!=
0
)
{
throw
BadAlloc
(
string
::
Sprintf
(
"Cannot allocate cpu memory %d. Errno is %d"
,
size
,
status
));
}
return
new
CPUAllocation
(
ptr
,
size
);
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/cpu_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/memory/allocation/allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// CPU system allocator and allocation.
//
// NOTE(yy): Should we just use `malloc` here since there is an
// aligned_allocator.
//
// NOTE(yy): It is no need to use `BestFitAllocator` in CPU. We can import
// an open-sourced allocator into Paddle.
class
CPUAllocator
;
class
CPUAllocation
:
public
Allocation
{
public:
CPUAllocation
(
void
*
ptr
,
size_t
size
);
};
class
CPUAllocator
:
public
Allocator
{
public:
constexpr
static
size_t
kAlignment
=
64u
;
bool
IsAllocThreadSafe
()
const
override
;
protected:
void
Free
(
Allocation
*
allocation
)
override
;
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/cuda_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
#include <cuda.h>
#include <cuda_runtime.h>
#include <string>
#include "paddle/fluid/platform/cuda_device_guard.h"
#include "paddle/fluid/platform/gpu_info.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
bool
CUDAAllocator
::
IsAllocThreadSafe
()
const
{
return
true
;
}
void
CUDAAllocator
::
Free
(
Allocation
*
allocation
)
{
platform
::
CUDADeviceGuard
guard
(
place_
.
device
);
auto
*
cuda_allocation
=
dynamic_cast
<
CUDAAllocation
*>
(
allocation
);
PADDLE_ENFORCE_NOT_NULL
(
cuda_allocation
);
PADDLE_ENFORCE_EQ
(
boost
::
get
<
platform
::
CUDAPlace
>
(
cuda_allocation
->
place
()),
place_
);
PADDLE_ENFORCE
(
cudaFree
(
allocation
->
ptr
()));
delete
allocation
;
}
Allocation
*
CUDAAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
platform
::
CUDADeviceGuard
guard
(
place_
.
device
);
void
*
ptr
;
auto
status
=
cudaMalloc
(
&
ptr
,
size
);
if
(
UNLIKELY
(
status
!=
cudaSuccess
))
{
throw
BadAlloc
(
string
::
Sprintf
(
"Cannot allocate %d on GPU %d, cuda status %d, %s"
,
size
,
place_
.
device
,
status
,
cudaGetErrorString
(
status
)));
}
return
new
CUDAAllocation
(
ptr
,
size
,
platform
::
Place
(
place_
));
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/cuda_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// CUDA System allocator and allocation.
// Just a flag type.
class
CUDAAllocation
:
public
Allocation
{
public:
using
Allocation
::
Allocation
;
};
class
CUDAAllocator
:
public
Allocator
{
public:
explicit
CUDAAllocator
(
const
platform
::
CUDAPlace
&
place
)
:
place_
(
place
)
{}
explicit
CUDAAllocator
(
const
platform
::
Place
&
place
)
:
place_
(
boost
::
get
<
platform
::
CUDAPlace
>
(
place
))
{}
bool
IsAllocThreadSafe
()
const
override
;
protected:
void
Free
(
Allocation
*
allocation
)
override
;
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
private:
platform
::
CUDAPlace
place_
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/legacy_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include <string>
#include "glog/logging.h"
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "paddle/fluid/memory/detail/system_allocator.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/string/printf.h"
DEFINE_bool
(
init_allocated_mem
,
false
,
"It is a mistake that the values of the memory allocated by "
"BuddyAllocator are always zeroed in some op's implementation. "
"To find this error in time, we use init_allocated_mem to indicate "
"that initializing the allocated memory with a small value "
"during unit testing."
);
DECLARE_double
(
fraction_of_gpu_memory_to_use
);
namespace
paddle
{
namespace
memory
{
namespace
legacy
{
template
<
typename
Place
>
void
*
Alloc
(
const
Place
&
place
,
size_t
size
);
template
<
typename
Place
>
void
Free
(
const
Place
&
place
,
void
*
p
);
template
<
typename
Place
>
size_t
Used
(
const
Place
&
place
);
struct
Usage
:
public
boost
::
static_visitor
<
size_t
>
{
size_t
operator
()(
const
platform
::
CPUPlace
&
cpu
)
const
;
size_t
operator
()(
const
platform
::
CUDAPlace
&
gpu
)
const
;
size_t
operator
()(
const
platform
::
CUDAPinnedPlace
&
cuda_pinned
)
const
;
};
size_t
memory_usage
(
const
platform
::
Place
&
p
);
using
BuddyAllocator
=
detail
::
BuddyAllocator
;
BuddyAllocator
*
GetCPUBuddyAllocator
()
{
// We tried thread_local for inference::RNN1 model, but that not works much
// for multi-thread test.
static
std
::
once_flag
init_flag
;
static
detail
::
BuddyAllocator
*
a
=
nullptr
;
std
::
call_once
(
init_flag
,
[]()
{
a
=
new
detail
::
BuddyAllocator
(
std
::
unique_ptr
<
detail
::
SystemAllocator
>
(
new
detail
::
CPUAllocator
),
platform
::
CpuMinChunkSize
(),
platform
::
CpuMaxChunkSize
());
});
return
a
;
}
// We compared the NaiveAllocator with BuddyAllocator in CPU memory allocation,
// seems they are almost the same overhead.
struct
NaiveAllocator
{
void
*
Alloc
(
size_t
size
)
{
return
malloc
(
size
);
}
void
Free
(
void
*
p
)
{
PADDLE_ENFORCE
(
p
);
free
(
p
);
}
static
NaiveAllocator
*
Instance
()
{
static
NaiveAllocator
x
;
return
&
x
;
}
private:
std
::
mutex
lock_
;
};
template
<
>
void
*
Alloc
<
platform
::
CPUPlace
>
(
const
platform
::
CPUPlace
&
place
,
size_t
size
)
{
VLOG
(
10
)
<<
"Allocate "
<<
size
<<
" bytes on "
<<
platform
::
Place
(
place
);
void
*
p
=
GetCPUBuddyAllocator
()
->
Alloc
(
size
);
if
(
FLAGS_init_allocated_mem
)
{
memset
(
p
,
0xEF
,
size
);
}
VLOG
(
100
)
<<
" pointer="
<<
p
;
return
p
;
}
template
<
>
void
Free
<
platform
::
CPUPlace
>
(
const
platform
::
CPUPlace
&
place
,
void
*
p
)
{
VLOG
(
10
)
<<
"Free pointer="
<<
p
<<
" on "
<<
platform
::
Place
(
place
);
GetCPUBuddyAllocator
()
->
Free
(
p
);
}
template
<
>
size_t
Used
<
platform
::
CPUPlace
>
(
const
platform
::
CPUPlace
&
place
)
{
return
GetCPUBuddyAllocator
()
->
Used
();
}
#ifdef PADDLE_WITH_CUDA
BuddyAllocator
*
GetGPUBuddyAllocator
(
int
gpu_id
)
{
static
std
::
once_flag
init_flag
;
static
detail
::
BuddyAllocator
**
a_arr
=
nullptr
;
std
::
call_once
(
init_flag
,
[
gpu_id
]()
{
int
gpu_num
=
platform
::
GetCUDADeviceCount
();
PADDLE_ENFORCE
(
gpu_id
<
gpu_num
,
"gpu_id:%d should < gpu_num:%d"
,
gpu_id
,
gpu_num
);
a_arr
=
new
BuddyAllocator
*
[
gpu_num
];
for
(
int
i
=
0
;
i
<
gpu_num
;
i
++
)
{
a_arr
[
i
]
=
nullptr
;
platform
::
SetDeviceId
(
i
);
a_arr
[
i
]
=
new
BuddyAllocator
(
std
::
unique_ptr
<
detail
::
SystemAllocator
>
(
new
detail
::
GPUAllocator
(
i
)),
platform
::
GpuMinChunkSize
(),
platform
::
GpuMaxChunkSize
());
VLOG
(
100
)
<<
"
\n\n
NOTE: each GPU device use "
<<
FLAGS_fraction_of_gpu_memory_to_use
*
100
<<
"% of GPU memory.
\n
"
<<
"You can set GFlags environment variable '"
<<
"FLAGS_fraction_of_gpu_memory_to_use"
<<
"' to change the fraction of GPU usage.
\n\n
"
;
}
});
platform
::
SetDeviceId
(
gpu_id
);
return
a_arr
[
gpu_id
];
}
#endif
template
<
>
size_t
Used
<
platform
::
CUDAPlace
>
(
const
platform
::
CUDAPlace
&
place
)
{
#ifdef PADDLE_WITH_CUDA
return
GetGPUBuddyAllocator
(
place
.
device
)
->
Used
();
#else
PADDLE_THROW
(
"'CUDAPlace' is not supported in CPU only device."
);
#endif
}
template
<
>
void
*
Alloc
<
platform
::
CUDAPlace
>
(
const
platform
::
CUDAPlace
&
place
,
size_t
size
)
{
#ifdef PADDLE_WITH_CUDA
auto
*
buddy_allocator
=
GetGPUBuddyAllocator
(
place
.
device
);
auto
*
ptr
=
buddy_allocator
->
Alloc
(
size
);
if
(
ptr
==
nullptr
)
{
int
cur_dev
=
platform
::
GetCurrentDeviceId
();
platform
::
SetDeviceId
(
place
.
device
);
size_t
avail
,
total
;
platform
::
GpuMemoryUsage
(
&
avail
,
&
total
);
LOG
(
WARNING
)
<<
"Cannot allocate "
<<
string
::
HumanReadableSize
(
size
)
<<
" in GPU "
<<
place
.
device
<<
", available "
<<
string
::
HumanReadableSize
(
avail
);
LOG
(
WARNING
)
<<
"total "
<<
total
;
LOG
(
WARNING
)
<<
"GpuMinChunkSize "
<<
string
::
HumanReadableSize
(
buddy_allocator
->
GetMinChunkSize
());
LOG
(
WARNING
)
<<
"GpuMaxChunkSize "
<<
string
::
HumanReadableSize
(
buddy_allocator
->
GetMaxChunkSize
());
LOG
(
WARNING
)
<<
"GPU memory used: "
<<
string
::
HumanReadableSize
(
Used
<
platform
::
CUDAPlace
>
(
place
));
platform
::
SetDeviceId
(
cur_dev
);
}
if
(
FLAGS_init_allocated_mem
)
{
cudaMemset
(
ptr
,
0xEF
,
size
);
}
return
ptr
;
#else
PADDLE_THROW
(
"'CUDAPlace' is not supported in CPU only device."
);
#endif
}
template
<
>
void
Free
<
platform
::
CUDAPlace
>
(
const
platform
::
CUDAPlace
&
place
,
void
*
p
)
{
#ifdef PADDLE_WITH_CUDA
GetGPUBuddyAllocator
(
place
.
device
)
->
Free
(
p
);
#else
PADDLE_THROW
(
"'CUDAPlace' is not supported in CPU only device."
);
#endif
}
#ifdef PADDLE_WITH_CUDA
BuddyAllocator
*
GetCUDAPinnedBuddyAllocator
()
{
static
std
::
once_flag
init_flag
;
static
BuddyAllocator
*
ba
=
nullptr
;
std
::
call_once
(
init_flag
,
[]()
{
ba
=
new
BuddyAllocator
(
std
::
unique_ptr
<
detail
::
SystemAllocator
>
(
new
detail
::
CUDAPinnedAllocator
),
platform
::
CUDAPinnedMinChunkSize
(),
platform
::
CUDAPinnedMaxChunkSize
());
});
return
ba
;
}
#endif
template
<
>
size_t
Used
<
platform
::
CUDAPinnedPlace
>
(
const
platform
::
CUDAPinnedPlace
&
place
)
{
#ifdef PADDLE_WITH_CUDA
return
GetCUDAPinnedBuddyAllocator
()
->
Used
();
#else
PADDLE_THROW
(
"'CUDAPinnedPlace' is not supported in CPU only device."
);
#endif
}
template
<
>
void
*
Alloc
<
platform
::
CUDAPinnedPlace
>
(
const
platform
::
CUDAPinnedPlace
&
place
,
size_t
size
)
{
#ifdef PADDLE_WITH_CUDA
auto
*
buddy_allocator
=
GetCUDAPinnedBuddyAllocator
();
void
*
ptr
=
buddy_allocator
->
Alloc
(
size
);
if
(
ptr
==
nullptr
)
{
LOG
(
WARNING
)
<<
"cudaMallocHost Cannot allocate "
<<
size
<<
" bytes in CUDAPinnedPlace"
;
}
if
(
FLAGS_init_allocated_mem
)
{
memset
(
ptr
,
0xEF
,
size
);
}
return
ptr
;
#else
PADDLE_THROW
(
"'CUDAPinnedPlace' is not supported in CPU only device."
);
#endif
}
template
<
>
void
Free
<
platform
::
CUDAPinnedPlace
>
(
const
platform
::
CUDAPinnedPlace
&
place
,
void
*
p
)
{
#ifdef PADDLE_WITH_CUDA
GetCUDAPinnedBuddyAllocator
()
->
Free
(
p
);
#else
PADDLE_THROW
(
"'CUDAPinnedPlace' is not supported in CPU only device."
);
#endif
}
struct
AllocVisitor
:
public
boost
::
static_visitor
<
void
*>
{
inline
explicit
AllocVisitor
(
size_t
size
)
:
size_
(
size
)
{}
template
<
typename
Place
>
inline
void
*
operator
()(
const
Place
&
place
)
const
{
return
Alloc
<
Place
>
(
place
,
size_
);
}
private:
size_t
size_
;
};
struct
FreeVisitor
:
public
boost
::
static_visitor
<
void
>
{
inline
explicit
FreeVisitor
(
void
*
ptr
)
:
ptr_
(
ptr
)
{}
template
<
typename
Place
>
inline
void
operator
()(
const
Place
&
place
)
const
{
Free
<
Place
>
(
place
,
ptr_
);
}
private:
void
*
ptr_
;
};
size_t
Usage
::
operator
()(
const
platform
::
CPUPlace
&
cpu
)
const
{
return
Used
(
cpu
);
}
size_t
Usage
::
operator
()(
const
platform
::
CUDAPlace
&
gpu
)
const
{
#ifdef PADDLE_WITH_CUDA
return
Used
(
gpu
);
#else
PADDLE_THROW
(
"'CUDAPlace' is not supported in CPU only device."
);
#endif
}
size_t
Usage
::
operator
()(
const
platform
::
CUDAPinnedPlace
&
cuda_pinned
)
const
{
#ifdef PADDLE_WITH_CUDA
return
Used
(
cuda_pinned
);
#else
PADDLE_THROW
(
"'CUDAPinnedPlace' is not supported in CPU only device."
);
#endif
}
}
// namespace legacy
namespace
allocation
{
Allocation
*
LegacyAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
void
*
ptr
=
boost
::
apply_visitor
(
legacy
::
AllocVisitor
(
size
),
place_
);
return
new
Allocation
(
ptr
,
size
,
place_
);
}
void
LegacyAllocator
::
Free
(
Allocation
*
allocation
)
{
boost
::
apply_visitor
(
legacy
::
FreeVisitor
(
allocation
->
ptr
()),
allocation
->
place
());
delete
allocation
;
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/legacy_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
class
LegacyAllocatorPrivate
;
class
LegacyAllocator
:
public
Allocator
{
public:
explicit
LegacyAllocator
(
const
platform
::
Place
&
p
)
:
place_
(
p
)
{}
protected:
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
void
Free
(
Allocation
*
allocation
)
override
;
private:
platform
::
Place
place_
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/locked_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/locked_allocator.h"
#include <mutex> // NOLINT
#include "paddle/fluid/memory/allocation/allocation_with_underlying.h"
#include "paddle/fluid/platform/lock_guard_ptr.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
bool
LockedAllocator
::
IsAllocThreadSafe
()
const
{
return
true
;
}
LockedAllocator
::
LockedAllocator
(
std
::
unique_ptr
<
Allocator
>
&&
underlying_allocator
)
:
underlying_allocator_
(
std
::
move
(
underlying_allocator
))
{
PADDLE_ENFORCE_NOT_NULL
(
underlying_allocator_
);
if
(
!
underlying_allocator_
->
IsAllocThreadSafe
())
{
mtx_
.
reset
(
new
std
::
mutex
());
}
}
void
LockedAllocator
::
Free
(
Allocation
*
allocation
)
{
{
platform
::
LockGuardPtr
<
std
::
mutex
>
guard
(
mtx_
);
reinterpret_cast
<
AllocationWithUnderlying
*>
(
allocation
)
->
allocation_
.
reset
();
// Destroy inner allocation
}
delete
allocation
;
}
Allocation
*
LockedAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
platform
::
LockGuardPtr
<
std
::
mutex
>
guard
(
mtx_
);
return
new
AllocationWithUnderlying
(
underlying_allocator_
->
Allocate
(
size
,
attr
));
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/locked_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include <mutex> // NOLINT
#include <thread> // NOLINT
#include "paddle/fluid/memory/allocation/allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// A allocator to make underlying allocator thread safe.
class
LockedAllocator
:
public
Allocator
{
public:
explicit
LockedAllocator
(
std
::
unique_ptr
<
Allocator
>
&&
underlying_allocator
);
bool
IsAllocThreadSafe
()
const
override
;
protected:
void
Free
(
Allocation
*
allocation
)
override
;
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
private:
std
::
unique_ptr
<
Allocator
>
underlying_allocator_
;
std
::
unique_ptr
<
std
::
mutex
>
mtx_
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/pinned_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
#include <cuda.h>
#include <cuda_runtime.h>
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
bool
CPUPinnedAllocator
::
IsAllocThreadSafe
()
const
{
return
true
;
}
void
CPUPinnedAllocator
::
Free
(
Allocation
*
allocation
)
{
PADDLE_ENFORCE_NOT_NULL
(
dynamic_cast
<
CPUPinnedAllocation
*>
(
allocation
));
PADDLE_ENFORCE
(
cudaFreeHost
(
allocation
->
ptr
()));
delete
allocation
;
}
Allocation
*
CPUPinnedAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
// PADDLE_ENFORCE_EQ(
// attr, kCrossDevice,
// "CPUPinnedAllocator should be used for Cross-Device Communication");
void
*
ptr
;
PADDLE_ENFORCE
(
cudaMallocHost
(
&
ptr
,
size
));
return
new
CPUPinnedAllocation
(
ptr
,
size
);
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/pinned_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/memory/allocation/allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// Allocator uses `cudaMallocHost`
class
CPUPinnedAllocation
:
public
Allocation
{
public:
CPUPinnedAllocation
(
void
*
ptr
,
size_t
size
)
:
Allocation
(
ptr
,
size
,
platform
::
CUDAPinnedPlace
())
{}
};
class
CPUPinnedAllocator
:
public
Allocator
{
public:
bool
IsAllocThreadSafe
()
const
override
;
protected:
void
Free
(
Allocation
*
allocation
)
override
;
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/retry_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/retry_allocator.h"
#include "paddle/fluid/memory/allocation/allocation_with_underlying.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
bool
RetryAllocator
::
IsAllocThreadSafe
()
const
{
return
underlying_allocator_
->
IsAllocThreadSafe
();
}
void
RetryAllocator
::
Free
(
Allocation
*
allocation
)
{
// Delete underlying allocation first.
reinterpret_cast
<
AllocationWithUnderlying
*>
(
allocation
)
->
allocation_
.
reset
();
{
// notify all waited allocators, they can try to allocate memory after free.
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex_
);
cv_
.
notify_all
();
}
delete
allocation
;
}
Allocation
*
RetryAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
auto
alloc_func
=
[
&
,
this
]()
{
return
new
AllocationWithUnderlying
(
underlying_allocator_
->
Allocate
(
size
,
attr
));
};
// In fact, we can unify the code of allocation success and failure
// But it would add lock even when allocation success at the first time
try
{
return
alloc_func
();
}
catch
(
BadAlloc
&
bad_alloc
)
{
{
// We can just write allocation retry inside the predicate function of
// wait_until
// But it needs to acquire the lock when executing predicate function
// For better performance, we use loop here
auto
end_time
=
std
::
chrono
::
high_resolution_clock
::
now
()
+
retry_time_
;
auto
wait_until
=
[
&
,
this
]
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex_
);
return
cv_
.
wait_until
(
lock
,
end_time
);
};
while
(
wait_until
()
!=
std
::
cv_status
::
timeout
)
{
try
{
return
alloc_func
();
}
catch
(
BadAlloc
&
ex
)
{
bad_alloc
=
ex
;
}
catch
(...)
{
throw
;
}
}
throw
;
// rethrow the original exception or throw the internal bad_alloc
}
}
catch
(...)
{
throw
;
}
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/retry_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <chrono> // NOLINT
#include <condition_variable> // NOLINT
#include <memory>
#include <mutex> // NOLINT
#include "paddle/fluid/memory/allocation/allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
class
RetryAllocator
;
class
RetryAllocator
:
public
Allocator
{
public:
RetryAllocator
(
std
::
unique_ptr
<
Allocator
>&&
allocator
,
size_t
retry_ms
)
:
underlying_allocator_
(
std
::
move
(
allocator
)),
retry_time_
(
retry_ms
)
{
EnforceCheck
();
}
bool
IsAllocThreadSafe
()
const
override
;
private:
void
EnforceCheck
()
{
PADDLE_ENFORCE_NOT_NULL
(
underlying_allocator_
.
get
(),
"UnderlyingAllocator of RetryAllocator must be UnmanagedAllocator"
);
PADDLE_ENFORCE
(
underlying_allocator_
->
IsAllocThreadSafe
(),
"UnderlyingAllocator of RetryAllocator must be thread-safe"
);
}
protected:
void
Free
(
Allocation
*
allocation
)
override
;
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
private:
std
::
unique_ptr
<
Allocator
>
underlying_allocator_
;
std
::
chrono
::
milliseconds
retry_time_
;
std
::
mutex
mutex_
;
std
::
condition_variable
cv_
;
// For debug, We can add an atomic integer to record how many memory sizes are
// waited to allocate
// std::atomic<size_t> waited_allocate_size_{0};
friend
class
RetryAllocation
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/retry_allocator_test.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/retry_allocator.h"
#include <algorithm>
#include <chrono> // NOLINT
#include <condition_variable> // NOLINT
#include <mutex> // NOLINT
#include <thread> // NOLINT
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
#include "paddle/fluid/memory/allocation/locked_allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
TEST
(
RetryAllocator
,
RetryAllocator
)
{
CPUAllocator
cpu_allocator
;
size_t
size
=
(
1
<<
20
);
auto
cpu_allocation
=
cpu_allocator
.
Allocate
(
size
,
cpu_allocator
.
kDefault
);
std
::
unique_ptr
<
BestFitAllocator
>
best_fit_allocator
(
new
BestFitAllocator
(
cpu_allocation
.
get
()));
std
::
unique_ptr
<
LockedAllocator
>
locked_allocator
(
new
LockedAllocator
(
std
::
move
(
best_fit_allocator
)));
size_t
thread_num
=
32
;
size_t
sleep_time
=
40
;
size_t
extra_time
=
2
;
// Reserve to perform more tests in the future
std
::
vector
<
std
::
shared_ptr
<
Allocator
>>
allocators
;
{
std
::
unique_ptr
<
BestFitAllocator
>
best_fit_allocator
(
new
BestFitAllocator
(
cpu_allocation
.
get
()));
std
::
unique_ptr
<
LockedAllocator
>
locked_allocator
(
new
LockedAllocator
(
std
::
move
(
best_fit_allocator
)));
allocators
.
push_back
(
std
::
make_shared
<
RetryAllocator
>
(
std
::
move
(
locked_allocator
),
(
thread_num
-
1
)
*
(
sleep_time
+
extra_time
)));
}
for
(
auto
&
allocator
:
allocators
)
{
std
::
vector
<
std
::
thread
>
threads
(
thread_num
);
std
::
vector
<
void
*>
addresses
(
threads
.
size
(),
nullptr
);
std
::
mutex
mutex
;
std
::
condition_variable
cv
;
bool
flag
=
false
;
for
(
size_t
i
=
0
;
i
<
threads
.
size
();
++
i
)
{
threads
[
i
]
=
std
::
thread
([
&
,
i
]()
{
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mutex
);
cv
.
wait
(
lock
,
[
&
]
{
return
flag
;
});
}
auto
ret
=
allocator
->
Allocate
(
size
-
1
);
addresses
[
i
]
=
ret
->
ptr
();
std
::
this_thread
::
sleep_for
(
std
::
chrono
::
milliseconds
(
sleep_time
));
});
}
{
std
::
lock_guard
<
std
::
mutex
>
lock
(
mutex
);
flag
=
true
;
cv
.
notify_all
();
}
for
(
auto
&
th
:
threads
)
{
th
.
join
();
}
void
*
val
=
cpu_allocation
->
ptr
();
bool
is_all_equal
=
std
::
all_of
(
addresses
.
begin
(),
addresses
.
end
(),
[
val
](
void
*
p
)
{
return
p
==
val
;
});
ASSERT_TRUE
(
is_all_equal
);
}
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/zero_size_allocator.cc
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/memory/allocation/zero_size_allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
bool
ZeroSizeAllocator
::
IsAllocThreadSafe
()
const
{
return
underlying_allocator_
->
IsAllocThreadSafe
();
}
Allocation
*
ZeroSizeAllocator
::
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
{
if
(
size
==
0
)
{
return
new
ZeroSizeAllocation
(
place_
);
}
else
{
return
underlying_allocator_
->
Allocate
(
size
,
attr
).
release
();
}
}
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/allocation/zero_size_allocator.h
0 → 100644
浏览文件 @
3a72a634
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <utility>
#include "paddle/fluid/memory/allocation/allocator.h"
namespace
paddle
{
namespace
memory
{
namespace
allocation
{
// The allocator handles the request's size is zero. Allocator will always
// return an allocation even the request size is zero. However, the
// allocation.ptr() is nullptr
class
ZeroSizeAllocation
:
public
Allocation
{
public:
explicit
ZeroSizeAllocation
(
const
platform
::
Place
&
p
)
:
Allocation
(
nullptr
,
0
,
p
)
{}
};
class
ZeroSizeAllocator
:
public
Allocator
{
public:
ZeroSizeAllocator
(
std
::
shared_ptr
<
Allocator
>
underlying_allocator
,
const
platform
::
Place
&
p
)
:
underlying_allocator_
(
std
::
move
(
underlying_allocator
)),
place_
(
p
)
{}
bool
IsAllocThreadSafe
()
const
override
;
protected:
Allocation
*
AllocateImpl
(
size_t
size
,
Allocator
::
Attr
attr
)
override
;
private:
std
::
shared_ptr
<
Allocator
>
underlying_allocator_
;
const
platform
::
Place
&
place_
;
};
}
// namespace allocation
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/detail/system_allocator.cc
浏览文件 @
3a72a634
...
...
@@ -30,12 +30,7 @@ limitations under the License. */
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/gpu_info.h"
// If use_pinned_memory is true, CPUAllocator calls mlock, which
// returns pinned and locked memory as staging areas for data exchange
// between host and device. Allocates too much would reduce the amount
// of memory available to the system for paging. So, by default, we
// should set false to use_pinned_memory.
DEFINE_bool
(
use_pinned_memory
,
true
,
"If set, allocate cpu pinned memory."
);
DECLARE_bool
(
use_pinned_memory
);
DECLARE_double
(
fraction_of_gpu_memory_to_use
);
namespace
paddle
{
namespace
memory
{
...
...
paddle/fluid/memory/malloc.cc
浏览文件 @
3a72a634
...
...
@@ -12,221 +12,22 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/memory/malloc.h"
#include <string>
#include <vector>
#include "paddle/fluid/memory/malloc.h"
#include "glog/logging.h"
#include "paddle/fluid/memory/detail/buddy_allocator.h"
#include "paddle/fluid/memory/detail/system_allocator.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/string/printf.h"
DEFINE_bool
(
init_allocated_mem
,
false
,
"It is a mistake that the values of the memory allocated by "
"BuddyAllocator are always zeroed in some op's implementation. "
"To find this error in time, we use init_allocated_mem to indicate "
"that initializing the allocated memory with a small value "
"during unit testing."
);
DECLARE_double
(
fraction_of_gpu_memory_to_use
);
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
memory
{
using
BuddyAllocator
=
detail
::
BuddyAllocator
;
BuddyAllocator
*
GetCPUBuddyAllocator
()
{
// We tried thread_local for inference::RNN1 model, but that not works much
// for multi-thread test.
static
std
::
once_flag
init_flag
;
static
detail
::
BuddyAllocator
*
a
=
nullptr
;
std
::
call_once
(
init_flag
,
[]()
{
a
=
new
detail
::
BuddyAllocator
(
std
::
unique_ptr
<
detail
::
SystemAllocator
>
(
new
detail
::
CPUAllocator
),
platform
::
CpuMinChunkSize
(),
platform
::
CpuMaxChunkSize
());
});
return
a
;
}
// We compared the NaiveAllocator with BuddyAllocator in CPU memory allocation,
// seems they are almost the same overhead.
struct
NaiveAllocator
{
void
*
Alloc
(
size_t
size
)
{
return
malloc
(
size
);
}
void
Free
(
void
*
p
)
{
PADDLE_ENFORCE
(
p
);
free
(
p
);
}
static
NaiveAllocator
*
Instance
()
{
static
NaiveAllocator
x
;
return
&
x
;
}
private:
std
::
mutex
lock_
;
};
template
<
>
void
*
Alloc
<
platform
::
CPUPlace
>
(
platform
::
CPUPlace
place
,
size_t
size
)
{
VLOG
(
100
)
<<
"Allocate "
<<
size
<<
" bytes on "
<<
platform
::
Place
(
place
);
void
*
p
=
GetCPUBuddyAllocator
()
->
Alloc
(
size
);
if
(
FLAGS_init_allocated_mem
)
{
memset
(
p
,
0xEF
,
size
);
}
VLOG
(
100
)
<<
" pointer="
<<
p
;
return
p
;
}
template
<
>
void
Free
<
platform
::
CPUPlace
>
(
platform
::
CPUPlace
place
,
void
*
p
)
{
VLOG
(
100
)
<<
"Free pointer="
<<
p
<<
" on "
<<
platform
::
Place
(
place
);
GetCPUBuddyAllocator
()
->
Free
(
p
);
}
template
<
>
size_t
Used
<
platform
::
CPUPlace
>
(
platform
::
CPUPlace
place
)
{
return
GetCPUBuddyAllocator
()
->
Used
();
}
#ifdef PADDLE_WITH_CUDA
BuddyAllocator
*
GetGPUBuddyAllocator
(
int
gpu_id
)
{
static
std
::
once_flag
init_flag
;
static
detail
::
BuddyAllocator
**
a_arr
=
nullptr
;
std
::
call_once
(
init_flag
,
[
gpu_id
]()
{
int
gpu_num
=
platform
::
GetCUDADeviceCount
();
PADDLE_ENFORCE
(
gpu_id
<
gpu_num
,
"gpu_id:%d should < gpu_num:%d"
,
gpu_id
,
gpu_num
);
a_arr
=
new
BuddyAllocator
*
[
gpu_num
];
for
(
int
i
=
0
;
i
<
gpu_num
;
i
++
)
{
a_arr
[
i
]
=
nullptr
;
platform
::
SetDeviceId
(
i
);
a_arr
[
i
]
=
new
BuddyAllocator
(
std
::
unique_ptr
<
detail
::
SystemAllocator
>
(
new
detail
::
GPUAllocator
(
i
)),
platform
::
GpuMinChunkSize
(),
platform
::
GpuMaxChunkSize
());
VLOG
(
100
)
<<
"
\n\n
NOTE: each GPU device use "
<<
FLAGS_fraction_of_gpu_memory_to_use
*
100
<<
"% of GPU memory.
\n
"
<<
"You can set GFlags environment variable '"
<<
"FLAGS_fraction_of_gpu_memory_to_use"
<<
"' to change the fraction of GPU usage.
\n\n
"
;
}
});
platform
::
SetDeviceId
(
gpu_id
);
return
a_arr
[
gpu_id
];
}
template
<
>
size_t
Used
<
platform
::
CUDAPlace
>
(
platform
::
CUDAPlace
place
)
{
return
GetGPUBuddyAllocator
(
place
.
device
)
->
Used
();
}
template
<
>
void
*
Alloc
<
platform
::
CUDAPlace
>
(
platform
::
CUDAPlace
place
,
size_t
size
)
{
auto
*
buddy_allocator
=
GetGPUBuddyAllocator
(
place
.
device
);
auto
*
ptr
=
buddy_allocator
->
Alloc
(
size
);
if
(
ptr
==
nullptr
)
{
int
cur_dev
=
platform
::
GetCurrentDeviceId
();
platform
::
SetDeviceId
(
place
.
device
);
size_t
avail
,
total
;
platform
::
GpuMemoryUsage
(
&
avail
,
&
total
);
LOG
(
WARNING
)
<<
"Cannot allocate "
<<
string
::
HumanReadableSize
(
size
)
<<
" in GPU "
<<
place
.
device
<<
", available "
<<
string
::
HumanReadableSize
(
avail
);
LOG
(
WARNING
)
<<
"total "
<<
total
;
LOG
(
WARNING
)
<<
"GpuMinChunkSize "
<<
string
::
HumanReadableSize
(
buddy_allocator
->
GetMinChunkSize
());
LOG
(
WARNING
)
<<
"GpuMaxChunkSize "
<<
string
::
HumanReadableSize
(
buddy_allocator
->
GetMaxChunkSize
());
LOG
(
WARNING
)
<<
"GPU memory used: "
<<
string
::
HumanReadableSize
(
Used
<
platform
::
CUDAPlace
>
(
place
));
platform
::
SetDeviceId
(
cur_dev
);
}
if
(
FLAGS_init_allocated_mem
)
{
cudaMemset
(
ptr
,
0xEF
,
size
);
}
return
ptr
;
}
template
<
>
void
Free
<
platform
::
CUDAPlace
>
(
platform
::
CUDAPlace
place
,
void
*
p
)
{
GetGPUBuddyAllocator
(
place
.
device
)
->
Free
(
p
);
}
BuddyAllocator
*
GetCUDAPinnedBuddyAllocator
()
{
static
std
::
once_flag
init_flag
;
static
BuddyAllocator
*
ba
=
nullptr
;
std
::
call_once
(
init_flag
,
[]()
{
ba
=
new
BuddyAllocator
(
std
::
unique_ptr
<
detail
::
SystemAllocator
>
(
new
detail
::
CUDAPinnedAllocator
),
platform
::
CUDAPinnedMinChunkSize
(),
platform
::
CUDAPinnedMaxChunkSize
());
});
return
ba
;
}
template
<
>
size_t
Used
<
platform
::
CUDAPinnedPlace
>
(
platform
::
CUDAPinnedPlace
place
)
{
return
GetCUDAPinnedBuddyAllocator
()
->
Used
();
}
template
<
>
void
*
Alloc
<
platform
::
CUDAPinnedPlace
>
(
platform
::
CUDAPinnedPlace
place
,
size_t
size
)
{
auto
*
buddy_allocator
=
GetCUDAPinnedBuddyAllocator
();
void
*
ptr
=
buddy_allocator
->
Alloc
(
size
);
if
(
ptr
==
nullptr
)
{
LOG
(
WARNING
)
<<
"cudaMallocHost Cannot allocate "
<<
size
<<
" bytes in CUDAPinnedPlace"
;
}
if
(
FLAGS_init_allocated_mem
)
{
memset
(
ptr
,
0xEF
,
size
);
}
return
ptr
;
}
template
<
>
void
Free
<
platform
::
CUDAPinnedPlace
>
(
platform
::
CUDAPinnedPlace
place
,
void
*
p
)
{
GetCUDAPinnedBuddyAllocator
()
->
Free
(
p
);
}
#endif
size_t
Usage
::
operator
()(
const
platform
::
CPUPlace
&
cpu
)
const
{
return
Used
(
cpu
);
}
size_t
Usage
::
operator
()(
const
platform
::
CUDAPlace
&
gpu
)
const
{
#ifdef PADDLE_WITH_CUDA
return
Used
(
gpu
);
#else
PADDLE_THROW
(
"'CUDAPlace' is not supported in CPU only device."
);
#endif
}
size_t
Usage
::
operator
()(
const
platform
::
CUDAPinnedPlace
&
cuda_pinned
)
const
{
#ifdef PADDLE_WITH_CUDA
return
Used
(
cuda_pinned
);
#else
PADDLE_THROW
(
"'CUDAPinnedPlace' is not supported in CPU only device."
);
#endif
std
::
shared_ptr
<
Allocation
>
AllocShared
(
const
platform
::
Place
&
place
,
size_t
size
,
Allocator
::
Attr
attr
)
{
return
allocation
::
AllocatorFacade
::
Instance
().
AllocShared
(
place
,
size
,
attr
);
}
size_t
memory_usage
(
const
platform
::
Place
&
p
)
{
return
boost
::
apply_visitor
(
Usage
(),
p
);
AllocationPtr
Alloc
(
const
platform
::
Place
&
place
,
size_t
size
,
Allocator
::
Attr
attr
)
{
return
allocation
::
AllocatorFacade
::
Instance
().
Alloc
(
place
,
size
,
attr
);
}
}
// namespace memory
...
...
paddle/fluid/memory/malloc.h
浏览文件 @
3a72a634
...
...
@@ -14,91 +14,21 @@ limitations under the License. */
#pragma once
#include <memory>
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
memory
{
using
allocation
::
Allocation
;
using
allocation
::
Allocator
;
using
allocation
::
AllocationPtr
;
/**
* \brief Allocate memory block in one place.
*
* \param[in] place Allocation place (CPU or GPU).
* \param[in] size Allocation size.
*
* \return Allocated memory block address.
*
* \note If return nullptr, it indicates memory allocation failed
* because insufficient memory in current system. When Alloc
* function is invoked, you must check the returned memory
* address is valid or not.
*/
template
<
typename
Place
>
void
*
Alloc
(
Place
place
,
size_t
size
);
/**
* \brief Free memory block in one place.
*
* \param[in] place Allocation place (CPU or GPU).
* \param[in] ptr Memory block address to free.
*
*/
template
<
typename
Place
>
void
Free
(
Place
place
,
void
*
ptr
);
/**
* \brief Total size of used memory in one place.
*
* \param[in] place Allocation place (CPU or GPU).
*
*/
template
<
typename
Place
>
size_t
Used
(
Place
place
);
struct
Usage
:
public
boost
::
static_visitor
<
size_t
>
{
size_t
operator
()(
const
platform
::
CPUPlace
&
cpu
)
const
;
size_t
operator
()(
const
platform
::
CUDAPlace
&
gpu
)
const
;
size_t
operator
()(
const
platform
::
CUDAPinnedPlace
&
cuda_pinned
)
const
;
};
size_t
memory_usage
(
const
platform
::
Place
&
p
);
/**
* \brief Free memory block in one place.
*
* \note In some cases, custom deleter is used to
* deallocate the memory automatically for
* std::unique_ptr<T> in tensor.h.
*
*/
template
<
typename
T
,
typename
Place
>
class
PODDeleter
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
public:
explicit
PODDeleter
(
Place
place
)
:
place_
(
place
)
{}
void
operator
()(
T
*
ptr
)
{
Free
(
place_
,
static_cast
<
void
*>
(
ptr
));
}
private:
Place
place_
;
};
/**
* \brief Free memory block in one place does not meet POD
*
* \note In some cases, custom deleter is used to
* deallocate the memory automatically for
* std::unique_ptr<T> in tensor.h.
*
*/
template
<
typename
T
,
typename
Place
>
class
PlainDeleter
{
public:
explicit
PlainDeleter
(
Place
place
)
:
place_
(
place
)
{}
void
operator
()(
T
*
ptr
)
{
Free
(
place_
,
reinterpret_cast
<
void
*>
(
ptr
));
}
extern
std
::
shared_ptr
<
Allocation
>
AllocShared
(
const
platform
::
Place
&
place
,
size_t
size
,
Allocator
::
Attr
attr
=
Allocator
::
kDefault
);
private:
Place
place_
;
};
extern
AllocationPtr
Alloc
(
const
platform
::
Place
&
place
,
size_t
size
,
Allocator
::
Attr
attr
=
Allocator
::
kDefault
);
}
// namespace memory
}
// namespace paddle
paddle/fluid/memory/malloc_test.cc
已删除
100644 → 0
浏览文件 @
81f750a8
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/memory/malloc.h"
#include <unordered_map>
#include "gtest/gtest.h"
#include "paddle/fluid/memory/detail/memory_block.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/place.h"
inline
bool
is_aligned
(
void
const
*
p
)
{
return
0
==
(
reinterpret_cast
<
uintptr_t
>
(
p
)
&
0x3
);
}
size_t
align
(
size_t
size
,
paddle
::
platform
::
CPUPlace
place
)
{
size
+=
sizeof
(
paddle
::
memory
::
detail
::
MemoryBlock
::
Desc
);
size_t
alignment
=
paddle
::
platform
::
CpuMinChunkSize
();
size_t
remaining
=
size
%
alignment
;
return
remaining
==
0
?
size
:
size
+
(
alignment
-
remaining
);
}
TEST
(
BuddyAllocator
,
CPUAllocation
)
{
void
*
p
=
nullptr
;
EXPECT_EQ
(
p
,
nullptr
);
paddle
::
platform
::
CPUPlace
cpu
;
p
=
paddle
::
memory
::
Alloc
(
cpu
,
4096
);
EXPECT_NE
(
p
,
nullptr
);
paddle
::
platform
::
Place
place
=
cpu
;
EXPECT_EQ
(
paddle
::
memory
::
Used
(
cpu
),
paddle
::
memory
::
memory_usage
(
place
));
paddle
::
memory
::
Free
(
cpu
,
p
);
}
TEST
(
BuddyAllocator
,
CPUMultAlloc
)
{
paddle
::
platform
::
CPUPlace
cpu
;
std
::
unordered_map
<
void
*
,
size_t
>
ps
;
size_t
total_size
=
paddle
::
memory
::
Used
(
cpu
);
EXPECT_EQ
(
total_size
,
0UL
);
for
(
auto
size
:
{
0
,
128
,
256
,
1024
,
4096
,
16384
,
65536
,
262144
,
1048576
,
4194304
})
{
ps
[
paddle
::
memory
::
Alloc
(
cpu
,
size
)]
=
size
;
// Buddy Allocator doesn't manage too large memory chunk
if
(
paddle
::
memory
::
Used
(
cpu
)
==
total_size
)
continue
;
size_t
aligned_size
=
align
(
size
,
cpu
);
total_size
+=
aligned_size
;
EXPECT_EQ
(
total_size
,
paddle
::
memory
::
Used
(
cpu
));
}
for
(
auto
p
:
ps
)
{
EXPECT_EQ
(
is_aligned
(
p
.
first
),
true
);
paddle
::
memory
::
Free
(
cpu
,
p
.
first
);
// Buddy Allocator doesn't manage too large memory chunk
if
(
paddle
::
memory
::
Used
(
cpu
)
==
total_size
)
continue
;
size_t
aligned_size
=
align
(
p
.
second
,
cpu
);
total_size
-=
aligned_size
;
EXPECT_EQ
(
total_size
,
paddle
::
memory
::
Used
(
cpu
));
}
}
#ifdef PADDLE_WITH_CUDA
size_t
align
(
size_t
size
,
paddle
::
platform
::
CUDAPlace
place
)
{
size
+=
sizeof
(
paddle
::
memory
::
detail
::
MemoryBlock
::
Desc
);
size_t
alignment
=
paddle
::
platform
::
GpuMinChunkSize
();
size_t
remaining
=
size
%
alignment
;
return
remaining
==
0
?
size
:
size
+
(
alignment
-
remaining
);
}
TEST
(
BuddyAllocator
,
GPUAllocation
)
{
void
*
p
=
nullptr
;
EXPECT_EQ
(
p
,
nullptr
);
paddle
::
platform
::
CUDAPlace
gpu
(
0
);
p
=
paddle
::
memory
::
Alloc
(
gpu
,
4096
);
EXPECT_NE
(
p
,
nullptr
);
paddle
::
platform
::
Place
place
=
gpu
;
EXPECT_EQ
(
paddle
::
memory
::
Used
(
gpu
),
paddle
::
memory
::
memory_usage
(
place
));
paddle
::
memory
::
Free
(
gpu
,
p
);
}
TEST
(
BuddyAllocator
,
GPUMultAlloc
)
{
paddle
::
platform
::
CUDAPlace
gpu
;
std
::
unordered_map
<
void
*
,
size_t
>
ps
;
size_t
total_size
=
paddle
::
memory
::
Used
(
gpu
);
EXPECT_EQ
(
total_size
,
0UL
);
for
(
auto
size
:
{
0
,
128
,
256
,
1024
,
4096
,
16384
,
65536
,
262144
,
1048576
,
4194304
})
{
ps
[
paddle
::
memory
::
Alloc
(
gpu
,
size
)]
=
size
;
// Buddy Allocator doesn't manage too large memory chunk
if
(
paddle
::
memory
::
Used
(
gpu
)
==
total_size
)
continue
;
size_t
aligned_size
=
align
(
size
,
gpu
);
total_size
+=
aligned_size
;
EXPECT_EQ
(
total_size
,
paddle
::
memory
::
Used
(
gpu
));
}
for
(
auto
p
:
ps
)
{
EXPECT_EQ
(
is_aligned
(
p
.
first
),
true
);
paddle
::
memory
::
Free
(
gpu
,
p
.
first
);
// Buddy Allocator doesn't manage too large memory chunk
if
(
paddle
::
memory
::
Used
(
gpu
)
==
total_size
)
continue
;
size_t
aligned_size
=
align
(
p
.
second
,
gpu
);
total_size
-=
aligned_size
;
EXPECT_EQ
(
total_size
,
paddle
::
memory
::
Used
(
gpu
));
}
}
size_t
align
(
size_t
size
,
paddle
::
platform
::
CUDAPinnedPlace
place
)
{
size
+=
sizeof
(
paddle
::
memory
::
detail
::
MemoryBlock
::
Desc
);
size_t
alignment
=
paddle
::
platform
::
CUDAPinnedMinChunkSize
();
size_t
remaining
=
size
%
alignment
;
return
remaining
==
0
?
size
:
size
+
(
alignment
-
remaining
);
}
TEST
(
BuddyAllocator
,
CUDAPinnedAllocator
)
{
void
*
p
=
nullptr
;
EXPECT_EQ
(
p
,
nullptr
);
paddle
::
platform
::
CUDAPinnedPlace
cpu
;
p
=
paddle
::
memory
::
Alloc
(
cpu
,
4096
);
EXPECT_NE
(
p
,
nullptr
);
paddle
::
platform
::
Place
place
=
cpu
;
EXPECT_EQ
(
paddle
::
memory
::
Used
(
cpu
),
paddle
::
memory
::
memory_usage
(
place
));
paddle
::
memory
::
Free
(
cpu
,
p
);
}
TEST
(
BuddyAllocator
,
CUDAPinnedMultAllocator
)
{
paddle
::
platform
::
CUDAPinnedPlace
cpu
;
std
::
unordered_map
<
void
*
,
size_t
>
ps
;
size_t
total_size
=
paddle
::
memory
::
Used
(
cpu
);
EXPECT_EQ
(
total_size
,
0UL
);
for
(
auto
size
:
{
0
,
128
,
256
,
1024
,
4096
,
16384
,
65536
,
262144
,
1048576
,
4194304
})
{
ps
[
paddle
::
memory
::
Alloc
(
cpu
,
size
)]
=
size
;
// Buddy Allocator doesn't manage too large memory chunk
if
(
paddle
::
memory
::
Used
(
cpu
)
==
total_size
)
continue
;
size_t
aligned_size
=
align
(
size
,
cpu
);
total_size
+=
aligned_size
;
EXPECT_EQ
(
total_size
,
paddle
::
memory
::
Used
(
cpu
));
}
for
(
auto
p
:
ps
)
{
EXPECT_EQ
(
is_aligned
(
p
.
first
),
true
);
paddle
::
memory
::
Free
(
cpu
,
p
.
first
);
// Buddy Allocator doesn't manage too large memory chunk
if
(
paddle
::
memory
::
Used
(
cpu
)
==
total_size
)
continue
;
size_t
aligned_size
=
align
(
p
.
second
,
cpu
);
total_size
-=
aligned_size
;
EXPECT_EQ
(
total_size
,
paddle
::
memory
::
Used
(
cpu
));
}
}
#endif
paddle/fluid/memory/memcpy.cc
浏览文件 @
3a72a634
...
...
@@ -27,6 +27,8 @@ void Copy<platform::CPUPlace, platform::CPUPlace>(platform::CPUPlace, void* dst,
}
#ifdef PADDLE_WITH_CUDA
static
constexpr
size_t
kMaxGpuAsyncCopyBytes
=
64
*
1024
;
// 64K
template
<
>
void
Copy
<
platform
::
CPUPlace
,
platform
::
CUDAPlace
>
(
platform
::
CPUPlace
dst_place
,
void
*
dst
,
platform
::
CUDAPlace
src_place
,
...
...
@@ -36,6 +38,10 @@ void Copy<platform::CPUPlace, platform::CUDAPlace>(
platform
::
GpuMemcpyAsync
(
dst
,
src
,
num
,
cudaMemcpyDeviceToHost
,
stream
);
}
else
{
platform
::
GpuMemcpySync
(
dst
,
src
,
num
,
cudaMemcpyDeviceToHost
);
// FIXME(zjl): do we really need it?
if
(
num
<=
kMaxGpuAsyncCopyBytes
)
{
cudaStreamSynchronize
(
0
);
}
}
}
...
...
@@ -48,6 +54,10 @@ void Copy<platform::CUDAPlace, platform::CPUPlace>(
platform
::
GpuMemcpyAsync
(
dst
,
src
,
num
,
cudaMemcpyHostToDevice
,
stream
);
}
else
{
platform
::
GpuMemcpySync
(
dst
,
src
,
num
,
cudaMemcpyHostToDevice
);
// FIXME(zjl): do we really need it?
if
(
num
<=
kMaxGpuAsyncCopyBytes
)
{
cudaStreamSynchronize
(
0
);
}
}
}
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
3a72a634
...
...
@@ -72,7 +72,7 @@ set(OPERATOR_DEPS ${OPERATOR_DEPS} ${COMMON_OP_DEPS})
set
(
GLOB_OPERATOR_DEPS
${
OPERATOR_DEPS
}
CACHE INTERNAL
"Global Op dependencies"
)
cc_test
(
gather_test SRCS gather_test.cc DEPS tensor
)
cc_test
(
scatter_test SRCS scatter_test.cc DEPS tensor
)
cc_test
(
scatter_test SRCS scatter_test.cc DEPS tensor
math_function
)
cc_test
(
beam_search_decode_op_test SRCS beam_search_decode_op_test.cc DEPS lod_tensor
)
cc_test
(
beam_search_op_test SRCS beam_search_op_test.cc DEPS lod_tensor beam_search_op
)
cc_test
(
strided_memcpy_test SRCS strided_memcpy_test.cc DEPS tensor memory
)
...
...
paddle/fluid/operators/beam_search_op_test.cc
浏览文件 @
3a72a634
...
...
@@ -54,7 +54,8 @@ void CreateInput(LoDTensor* ids, LoDTensor* scores) {
}
}
TEST
(
beam_search_op
,
run
)
{
// It seems that beam_search_op has bugs.
TEST
(
DISABLED_beam_search_op
,
run
)
{
CPUPlace
place
;
LoDTensor
ids
,
scores
;
CreateInput
(
&
ids
,
&
scores
);
...
...
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
3a72a634
...
...
@@ -12,11 +12,11 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/framework/data_layout_transform.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -428,8 +428,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"same dimension sizes"
);
if
(
residual_param
->
format
()
!=
handler
.
GetDstFormat
())
{
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
::
paddle
::
memory
::
Allocator
::
kDefault
,
handler
.
GetDstMemorySize
());
auto
residual_data_tz
=
paddle
::
framework
::
vectorize2int
(
residual_param
->
dims
());
auto
residual_data_type
=
...
...
@@ -449,8 +450,9 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
}
else
{
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
handler
.
GetDstMemorySize
());
auto
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
paddle
::
memory
::
Allocator
::
kDefault
,
handler
.
GetDstMemorySize
());
dst_memory_p
=
handler
.
AcquireDstMemoryFromPrimitive
(
to_void_cast
<
T
>
(
output_data
));
}
...
...
@@ -692,7 +694,8 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
user_diff_dst_memory_p
,
pipeline
);
const
size_t
size
=
handler
.
GetDiffWeightsMemorySize
();
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
size
);
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
paddle
::
memory
::
Allocator
::
kDefault
,
size
);
auto
diff_weights_memory_p
=
handler
.
AcquireDiffWeightsMemoryFromWeightsPrimitive
(
...
...
@@ -717,7 +720,8 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
pipeline
);
const
size_t
size
=
handler
.
GetDiffSourceMemorySize
();
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
size
);
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(),
paddle
::
memory
::
Allocator
::
kDefault
,
size
);
auto
diff_src_memory_p
=
handler
.
AcquireDiffSrcMemoryFromDataPrimitive
(
reinterpret_cast
<
void
*>
(
input_grad_data
));
...
...
paddle/fluid/operators/detection/box_coder_op.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/detection/generate_proposals_op.cu
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/detection/multiclass_nms_op.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/distributed/grpc_serde.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/distributed/sendrecvop_utils.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/distributed/sendrecvop_utils.h
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/distributed/variable_response.cc
浏览文件 @
3a72a634
...
...
@@ -115,11 +115,11 @@ bool VariableResponse::CopyLodTensorData(
void
*
tensor_data
=
tensor
->
mutable_data
(
ctx
.
GetPlace
(),
ToTypeIndex
(
meta_
.
data_type
()));
if
(
!
ReadRaw
(
input
,
ctx
,
tensor
->
place
(),
tensor_data
,
length
))
{
return
false
;
}
return
true
;
VLOG
(
6
)
<<
"Tensor.memory_size = "
<<
tensor
->
memory_size
()
<<
", Buffer Size = "
<<
length
;
PADDLE_ENFORCE_EQ
(
tensor
->
memory_size
(),
length
);
return
ReadRaw
(
input
,
ctx
,
tensor
->
place
(),
tensor_data
,
length
);
}
inline
framework
::
DDim
GetDims
(
...
...
paddle/fluid/operators/layer_norm_op.h
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/math/jit_kernel_layer_norm.cc
0 → 100644
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/math/selected_rows_functor_test.cu
→
paddle/fluid/operators/math/selected_rows_functor_test.cu
.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/prelu_op.h
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/reader/create_recordio_file_reader_op.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/scatter_test.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/operators/strided_memcpy_test.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
3a72a634
...
...
@@ -73,3 +73,4 @@ cc_test(float16_test SRCS float16_test.cc DEPS lod_tensor)
IF
(
WITH_GPU
)
nv_test
(
cuda_helper_test SRCS cuda_helper_test.cu
)
ENDIF
()
nv_library
(
cuda_device_guard SRCS cuda_device_guard.cc DEPS gpu_info
)
paddle/fluid/platform/cpu_info.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/cpu_info.h
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/cuda_device_guard.cc
0 → 100644
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/cuda_device_guard.h
0 → 100644
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/device_context.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/device_context.h
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/init.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/lock_guard_ptr.h
0 → 100644
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/place.h
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/transform_test.cu
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/platform/variant.h
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/pybind/pybind.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/fluid/pybind/tensor_py.h
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
paddle/testing/paddle_gtest_main.cc
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
python/paddle/dataset/wmt16.py
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
python/paddle/fluid/__init__.py
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
python/paddle/fluid/layers/detection.py
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
python/paddle/fluid/layers/nn.py
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_conv2d_op.py
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_data_balance.py
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
python/paddle/fluid/tests/unittests/test_dist_simnet_bow.py
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
python/paddle/v2/dataset/wmt16.py
浏览文件 @
3a72a634
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录