Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3a3ff62e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3a3ff62e
编写于
4月 10, 2018
作者:
T
tangwei12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix quick start for fluid #9660
上级
e0babe7c
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
476 addition
and
4 deletion
+476
-4
doc/fluid/getstarted/quickstart_cn.rst
doc/fluid/getstarted/quickstart_cn.rst
+118
-1
doc/fluid/getstarted/quickstart_cn.rst
doc/fluid/getstarted/quickstart_cn.rst
+118
-1
doc/fluid/getstarted/quickstart_en.rst
doc/fluid/getstarted/quickstart_en.rst
+120
-1
doc/fluid/getstarted/quickstart_en.rst
doc/fluid/getstarted/quickstart_en.rst
+120
-1
未找到文件。
doc/fluid/getstarted/quickstart_cn.rst
已删除
120000 → 0
浏览文件 @
e0babe7c
../../v2/getstarted/quickstart_cn.rst
\ No newline at end of file
doc/fluid/getstarted/quickstart_cn.rst
0 → 100644
浏览文件 @
3a3ff62e
快速开始
========
快速安装
--------
PaddlePaddle支持使用pip快速安装,目前支持CentOS 6以上, Ubuntu 14.04以及MacOS 10.12,并安装有Python2.7。
执行下面的命令完成快速安装,版本为cpu_avx_openblas:
.. code-block:: bash
pip install paddlepaddle
如果需要安装支持GPU的版本(cuda7.5_cudnn5_avx_openblas),需要执行:
.. code-block:: bash
pip install paddlepaddle-gpu
更详细的安装和编译方法参考::ref:`install_steps` 。
快速使用
--------
创建一个 housing.py 并粘贴此Python代码:
.. code-block:: python
import sys
import math
import numpy
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle
def train(save_dirname):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.uci_housing.train(), buf_size=500), batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe.run(fluid.default_startup_program())
main_program = fluid.default_main_program()
PASS_NUM = 100
for pass_id in range(PASS_NUM):
for data in train_reader():
avg_loss_value, = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[avg_cost])
if avg_loss_value[0] < 10.0:
if save_dirname is not None:
fluid.io.save_inference_model(save_dirname, ['x'],
[y_predict], exe)
return
if math.isnan(float(avg_loss_value)):
sys.exit("got NaN loss, training failed.")
raise AssertionError("Fit a line cost is too large, {0:2.2}".format(
avg_loss_value[0]))
def infer(save_dirname):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
probs = []
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# The input's dimension should be 2-D and the second dim is 13
# The input data should be >= 0
batch_size = 10
tensor_x = numpy.random.uniform(0, 10,
[batch_size, 13]).astype("float32")
assert feed_target_names[0] == 'x'
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_x},
fetch_list=fetch_targets)
probs.append(results)
for i in xrange(len(probs)):
print(probs[i][0] * 1000)
print('Predicted price: ${0}'.format(probs[i][0] * 1000))
def main():
# Directory for saving the trained model
save_dirname = "fit_a_line.inference.model"
train(save_dirname)
infer(save_dirname)
if __name__=="__main__":
main()
执行 :code:`python housing.py` 瞧! 它应该打印出预测住房数据的清单。
doc/fluid/getstarted/quickstart_en.rst
已删除
120000 → 0
浏览文件 @
e0babe7c
../../v2/getstarted/quickstart_en.rst
\ No newline at end of file
doc/fluid/getstarted/quickstart_en.rst
0 → 100644
浏览文件 @
3a3ff62e
Quick Start
============
Quick Install
-------------
You can use pip to install PaddlePaddle with a single command, supports
CentOS 6 above, Ubuntu 14.04 above or MacOS 10.12, with Python 2.7 installed.
Simply run the following command to install, the version is cpu_avx_openblas:
.. code-block:: bash
pip install paddlepaddle
If you need to install GPU version (cuda7.5_cudnn5_avx_openblas), run:
.. code-block:: bash
pip install paddlepaddle-gpu
For more details about installation and build: :ref:`install_steps` .
Quick Use
---------
Create a new file called housing.py, and paste this Python
code:
.. code-block:: python
import sys
import math
import numpy
import paddle.fluid as fluid
import paddle.fluid.core as core
import paddle
def train(save_dirname):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
BATCH_SIZE = 20
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.uci_housing.train(), buf_size=500), batch_size=BATCH_SIZE)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe.run(fluid.default_startup_program())
main_program = fluid.default_main_program()
PASS_NUM = 100
for pass_id in range(PASS_NUM):
for data in train_reader():
avg_loss_value, = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[avg_cost])
if avg_loss_value[0] < 10.0:
if save_dirname is not None:
fluid.io.save_inference_model(save_dirname, ['x'],
[y_predict], exe)
return
if math.isnan(float(avg_loss_value)):
sys.exit("got NaN loss, training failed.")
raise AssertionError("Fit a line cost is too large, {0:2.2}".format(
avg_loss_value[0]))
def infer(save_dirname):
place = fluid.CPUPlace()
exe = fluid.Executor(place)
probs = []
inference_scope = fluid.core.Scope()
with fluid.scope_guard(inference_scope):
# Use fluid.io.load_inference_model to obtain the inference program desc,
# the feed_target_names (the names of variables that will be feeded
# data using feed operators), and the fetch_targets (variables that
# we want to obtain data from using fetch operators).
[inference_program, feed_target_names,
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
# The input's dimension should be 2-D and the second dim is 13
# The input data should be >= 0
batch_size = 10
tensor_x = numpy.random.uniform(0, 10,
[batch_size, 13]).astype("float32")
assert feed_target_names[0] == 'x'
results = exe.run(inference_program,
feed={feed_target_names[0]: tensor_x},
fetch_list=fetch_targets)
probs.append(results)
for i in xrange(len(probs)):
print(probs[i][0] * 1000)
print('Predicted price: ${0}'.format(probs[i][0] * 1000))
def main():
# Directory for saving the trained model
save_dirname = "fit_a_line.inference.model"
train(save_dirname)
infer(save_dirname)
if __name__=="__main__":
main()
Run :code:`python housing.py` and voila! It should print out a list of predictions
for the test housing data.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录