Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3a29e4f8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3a29e4f8
编写于
4月 01, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
4月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add Sparse Op: copy_sparse_coo and copy_sparse_csr (#41193)
上级
db948373
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
306 addition
and
52 deletion
+306
-52
paddle/fluid/eager/grad_node_info.cc
paddle/fluid/eager/grad_node_info.cc
+20
-16
paddle/phi/api/lib/kernel_dispatch.h
paddle/phi/api/lib/kernel_dispatch.h
+10
-2
paddle/phi/api/lib/tensor_method.cc
paddle/phi/api/lib/tensor_method.cc
+34
-0
paddle/phi/core/sparse_coo_tensor.cc
paddle/phi/core/sparse_coo_tensor.cc
+5
-0
paddle/phi/core/sparse_coo_tensor.h
paddle/phi/core/sparse_coo_tensor.h
+3
-0
paddle/phi/core/sparse_csr_tensor.cc
paddle/phi/core/sparse_csr_tensor.cc
+8
-0
paddle/phi/core/sparse_csr_tensor.h
paddle/phi/core/sparse_csr_tensor.h
+4
-0
paddle/phi/kernels/copy_kernel.h
paddle/phi/kernels/copy_kernel.h
+0
-1
paddle/phi/kernels/sparse/copy_kernel.cc
paddle/phi/kernels/sparse/copy_kernel.cc
+99
-0
paddle/phi/kernels/sparse/copy_kernel.h
paddle/phi/kernels/sparse/copy_kernel.h
+41
-0
paddle/phi/kernels/sparse/cpu/convolution.h
paddle/phi/kernels/sparse/cpu/convolution.h
+3
-2
paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc
paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc
+4
-2
paddle/phi/kernels/sparse/gpu/convolution.cu.h
paddle/phi/kernels/sparse/gpu/convolution.cu.h
+7
-3
paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu
paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu
+4
-2
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
+4
-11
paddle/phi/tests/kernels/test_sparse_pool_dev_api.cc
paddle/phi/tests/kernels/test_sparse_pool_dev_api.cc
+9
-13
python/paddle/fluid/tests/unittests/test_sparse_copy_op.py
python/paddle/fluid/tests/unittests/test_sparse_copy_op.py
+51
-0
未找到文件。
paddle/fluid/eager/grad_node_info.cc
浏览文件 @
3a29e4f8
...
@@ -19,6 +19,7 @@
...
@@ -19,6 +19,7 @@
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type.h"
...
@@ -124,29 +125,32 @@ void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
...
@@ -124,29 +125,32 @@ void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
return
;
return
;
}
}
phi
::
DenseTensor
*
dense_tensor
=
nullptr
;
// Record TensorMeta
// Record TensorMeta
if
(
phi
::
DenseTensor
::
classof
(
fwd_out
.
impl
().
get
()))
{
if
(
phi
::
DenseTensor
::
classof
(
fwd_out
.
impl
().
get
()))
{
// Only Copy Meta
// Only Copy Meta
phi
::
DenseTensor
*
dense_tensor
=
dense_tensor
=
static_cast
<
phi
::
DenseTensor
*>
(
fwd_out
.
impl
().
get
());
static_cast
<
phi
::
DenseTensor
*>
(
fwd_out
.
impl
().
get
());
}
else
if
(
phi
::
SparseCooTensor
::
classof
(
fwd_out
.
impl
().
get
()))
{
phi
::
SparseCooTensor
*
coo_tensor
=
PADDLE_ENFORCE_NE
(
static_cast
<
phi
::
SparseCooTensor
*>
(
fwd_out
.
impl
().
get
());
dense_tensor
->
meta
().
dtype
,
phi
::
DataType
::
UNDEFINED
,
dense_tensor
=
coo_tensor
->
mutable_non_zero_elements
();
paddle
::
platform
::
errors
::
Fatal
(
"Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
"which is illegal."
));
meta
.
SetTensorMeta
(
dense_tensor
->
meta
());
meta
.
SetPlace
(
fwd_out
.
inner_place
());
if
(
paddle
::
framework
::
IsComplexType
(
paddle
::
framework
::
TransToProtoVarType
(
dense_tensor
->
type
())))
{
need_complex_to_real_
=
true
;
}
}
else
{
}
else
{
VLOG
(
6
)
<<
"Unable to initialize the DenseTensorMeta of GradSlotMeta with "
VLOG
(
6
)
<<
"Unable to initialize the DenseTensorMeta of GradSlotMeta with "
"non-DenseTensor argument."
;
"non-DenseTensor argument."
;
}
}
PADDLE_ENFORCE_NE
(
dense_tensor
->
meta
().
dtype
,
phi
::
DataType
::
UNDEFINED
,
paddle
::
platform
::
errors
::
Fatal
(
"Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
"which is illegal."
));
meta
.
SetTensorMeta
(
dense_tensor
->
meta
());
meta
.
SetPlace
(
fwd_out
.
inner_place
());
if
(
paddle
::
framework
::
IsComplexType
(
paddle
::
framework
::
TransToProtoVarType
(
dense_tensor
->
type
())))
{
need_complex_to_real_
=
true
;
}
}
}
void
GradNodeBase
::
SetGradInMeta
(
void
GradNodeBase
::
SetGradInMeta
(
...
...
paddle/phi/api/lib/kernel_dispatch.h
浏览文件 @
3a29e4f8
...
@@ -25,6 +25,8 @@ limitations under the License. */
...
@@ -25,6 +25,8 @@ limitations under the License. */
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/core/selected_rows.h"
#include "paddle/phi/core/selected_rows.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
// TODO(chenweihang): split Key, Kernel, Factory into diff files
// TODO(chenweihang): split Key, Kernel, Factory into diff files
#include "paddle/phi/core/kernel_factory.h"
#include "paddle/phi/core/kernel_factory.h"
...
@@ -40,8 +42,10 @@ std::size_t CountLeadingZeros(uint64_t val);
...
@@ -40,8 +42,10 @@ std::size_t CountLeadingZeros(uint64_t val);
phi
::
DeviceContext
*
GetDeviceContextByBackend
(
phi
::
Backend
backend
);
phi
::
DeviceContext
*
GetDeviceContextByBackend
(
phi
::
Backend
backend
);
enum
class
KernelType
{
enum
class
KernelType
{
DENSE_TENSOR_KENREL
,
// kernel for DenseTensor
DENSE_TENSOR_KENREL
,
// kernel for DenseTensor
SELECTED_ROWS_KENREL
// kernel for SelectedRows
SELECTED_ROWS_KENREL
,
// kernel for SelectedRows
SPARSE_COO_KERNEL
,
// kernel for SparseCooTensor
SPARSE_CSR_KERNEL
// kernel for SparseCsrTensor
};
};
// TODO(chenweihang): support DataLayout and DataType selected
// TODO(chenweihang): support DataLayout and DataType selected
...
@@ -130,6 +134,10 @@ struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
...
@@ -130,6 +134,10 @@ struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
void
operator
()(
const
Tensor
&
x
)
{
void
operator
()(
const
Tensor
&
x
)
{
if
(
phi
::
SelectedRows
::
classof
(
x
.
impl
().
get
()))
{
if
(
phi
::
SelectedRows
::
classof
(
x
.
impl
().
get
()))
{
kernel_type
=
KernelType
::
SELECTED_ROWS_KENREL
;
kernel_type
=
KernelType
::
SELECTED_ROWS_KENREL
;
}
else
if
(
phi
::
SparseCooTensor
::
classof
(
x
.
impl
().
get
()))
{
kernel_type
=
KernelType
::
SPARSE_COO_KERNEL
;
}
else
if
(
phi
::
SparseCsrTensor
::
classof
(
x
.
impl
().
get
()))
{
kernel_type
=
KernelType
::
SPARSE_CSR_KERNEL
;
}
}
}
}
...
...
paddle/phi/api/lib/tensor_method.cc
浏览文件 @
3a29e4f8
...
@@ -177,6 +177,40 @@ void Tensor::copy_(const Tensor &src,
...
@@ -177,6 +177,40 @@ void Tensor::copy_(const Tensor &src,
target_place
,
target_place
,
blocking
,
blocking
,
static_cast
<
phi
::
SelectedRows
*>
(
impl_
.
get
()));
static_cast
<
phi
::
SelectedRows
*>
(
impl_
.
get
()));
}
else
if
(
kernel_type
==
KernelType
::
SPARSE_COO_KERNEL
)
{
auto
kernel
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
"copy_sparse_coo"
,
{
kernel_backend
,
kernel_layout
,
kernel_data_type
});
VLOG
(
6
)
<<
"copy API kernel key: "
<<
kernel_key
;
VLOG
(
6
)
<<
"copy API kernel: "
<<
kernel
;
using
kernel_signature
=
void
(
*
)(
const
platform
::
DeviceContext
&
,
const
phi
::
SparseCooTensor
&
,
phi
::
Place
,
bool
,
phi
::
SparseCooTensor
*
);
this
->
set_impl
(
std
::
make_shared
<
phi
::
SparseCooTensor
>
());
auto
*
kernel_fn
=
kernel
.
GetVariadicKernelFn
<
kernel_signature
>
();
(
*
kernel_fn
)(
*
dev_ctx
,
(
*
(
std
::
static_pointer_cast
<
phi
::
SparseCooTensor
>
(
src
.
impl_
))),
target_place
,
blocking
,
static_cast
<
phi
::
SparseCooTensor
*>
(
impl_
.
get
()));
}
else
if
(
kernel_type
==
KernelType
::
SPARSE_CSR_KERNEL
)
{
auto
kernel
=
phi
::
KernelFactory
::
Instance
().
SelectKernelOrThrowError
(
"copy_sparse_csr"
,
{
kernel_backend
,
kernel_layout
,
kernel_data_type
});
VLOG
(
6
)
<<
"copy API kernel key: "
<<
kernel_key
;
VLOG
(
6
)
<<
"copy API kernel: "
<<
kernel
;
using
kernel_signature
=
void
(
*
)(
const
platform
::
DeviceContext
&
,
const
phi
::
SparseCsrTensor
&
,
phi
::
Place
,
bool
,
phi
::
SparseCsrTensor
*
);
this
->
set_impl
(
std
::
make_shared
<
phi
::
SparseCsrTensor
>
());
auto
*
kernel_fn
=
kernel
.
GetVariadicKernelFn
<
kernel_signature
>
();
(
*
kernel_fn
)(
*
dev_ctx
,
(
*
(
std
::
static_pointer_cast
<
phi
::
SparseCsrTensor
>
(
src
.
impl_
))),
target_place
,
blocking
,
static_cast
<
phi
::
SparseCsrTensor
*>
(
impl_
.
get
()));
}
else
{
}
else
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"We currently only support dense tensor copy for now and if u need to "
"We currently only support dense tensor copy for now and if u need to "
...
...
paddle/phi/core/sparse_coo_tensor.cc
浏览文件 @
3a29e4f8
...
@@ -16,6 +16,11 @@ limitations under the License. */
...
@@ -16,6 +16,11 @@ limitations under the License. */
namespace
phi
{
namespace
phi
{
SparseCooTensor
::
SparseCooTensor
()
{
DenseTensor
non_zero_indices
,
non_zero_elements
;
this
->
SetMember
(
non_zero_indices
,
non_zero_elements
,
{
1
},
true
);
}
SparseCooTensor
::
SparseCooTensor
(
const
DenseTensor
&
non_zero_indices
,
SparseCooTensor
::
SparseCooTensor
(
const
DenseTensor
&
non_zero_indices
,
const
DenseTensor
&
non_zero_elements
,
const
DenseTensor
&
non_zero_elements
,
const
DDim
&
dims
)
const
DDim
&
dims
)
...
...
paddle/phi/core/sparse_coo_tensor.h
浏览文件 @
3a29e4f8
...
@@ -30,6 +30,7 @@ namespace phi {
...
@@ -30,6 +30,7 @@ namespace phi {
class
SparseCooTensor
:
public
TensorBase
,
class
SparseCooTensor
:
public
TensorBase
,
public
TypeInfoTraits
<
TensorBase
,
SparseCooTensor
>
{
public
TypeInfoTraits
<
TensorBase
,
SparseCooTensor
>
{
public:
public:
SparseCooTensor
();
/// \brief Create the sparse coo tensor
/// \brief Create the sparse coo tensor
/// \param non_zero_indices The indices of non zero elements in original dense
/// \param non_zero_indices The indices of non zero elements in original dense
/// tensor.
/// tensor.
...
@@ -145,6 +146,8 @@ class SparseCooTensor : public TensorBase,
...
@@ -145,6 +146,8 @@ class SparseCooTensor : public TensorBase,
void
*
AllocateFrom
(
Allocator
*
allocator
,
void
*
AllocateFrom
(
Allocator
*
allocator
,
DataType
dtype
,
DataType
dtype
,
size_t
requested_size
=
0
)
override
;
size_t
requested_size
=
0
)
override
;
/// \brief set the dims of original dense tensor
void
set_dims
(
const
DDim
&
dims
)
{
this
->
dims_
=
dims
;
}
void
set_dims
(
const
DDim
&
dims
)
{
this
->
dims_
=
dims
;
}
private:
private:
...
...
paddle/phi/core/sparse_csr_tensor.cc
浏览文件 @
3a29e4f8
...
@@ -16,6 +16,14 @@ limitations under the License. */
...
@@ -16,6 +16,14 @@ limitations under the License. */
namespace
phi
{
namespace
phi
{
SparseCsrTensor
::
SparseCsrTensor
()
{
DenseTensor
crows
,
cols
,
values
;
this
->
non_zero_crows_
=
crows
;
this
->
non_zero_cols_
=
cols
;
this
->
non_zero_elements_
=
values
;
this
->
dims_
=
phi
::
make_ddim
({
1
,
1
});
}
inline
void
check_shape
(
const
DDim
&
dims
)
{
inline
void
check_shape
(
const
DDim
&
dims
)
{
bool
valid
=
dims
.
size
()
==
2
||
dims
.
size
()
==
3
;
bool
valid
=
dims
.
size
()
==
2
||
dims
.
size
()
==
3
;
...
...
paddle/phi/core/sparse_csr_tensor.h
浏览文件 @
3a29e4f8
...
@@ -33,6 +33,7 @@ class CompatibleDenseTensorUtils;
...
@@ -33,6 +33,7 @@ class CompatibleDenseTensorUtils;
class
SparseCsrTensor
:
public
TensorBase
,
class
SparseCsrTensor
:
public
TensorBase
,
public
TypeInfoTraits
<
TensorBase
,
SparseCsrTensor
>
{
public
TypeInfoTraits
<
TensorBase
,
SparseCsrTensor
>
{
public:
public:
SparseCsrTensor
();
/// \brief Because sparse csr tensor is a resource handle, we provide a
/// \brief Because sparse csr tensor is a resource handle, we provide a
/// default
/// default
/// move constructor to support move semantics.
/// move constructor to support move semantics.
...
@@ -143,6 +144,9 @@ class SparseCsrTensor : public TensorBase,
...
@@ -143,6 +144,9 @@ class SparseCsrTensor : public TensorBase,
/// return a mutable pointer of non_zero_elements.
/// return a mutable pointer of non_zero_elements.
DenseTensor
*
mutable_non_zero_elements
()
{
return
&
non_zero_elements_
;
}
DenseTensor
*
mutable_non_zero_elements
()
{
return
&
non_zero_elements_
;
}
/// \brief set the dims of original dense tensor
void
set_dims
(
const
DDim
&
dims
)
{
this
->
dims_
=
dims
;
}
private:
private:
// save the compressed rows information of non zero elements
// save the compressed rows information of non zero elements
DenseTensor
non_zero_crows_
;
DenseTensor
non_zero_crows_
;
...
...
paddle/phi/kernels/copy_kernel.h
浏览文件 @
3a29e4f8
...
@@ -15,7 +15,6 @@ limitations under the License. */
...
@@ -15,7 +15,6 @@ limitations under the License. */
#pragma once
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
namespace
phi
{
namespace
phi
{
...
...
paddle/phi/kernels/sparse/copy_kernel.cc
0 → 100644
浏览文件 @
3a29e4f8
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/copy_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/kernels/copy_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
Context
>
void
CopyCoo
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
src
,
Place
dst_place
,
bool
blocking
,
SparseCooTensor
*
dst
)
{
phi
::
Copy
<
Context
>
(
dev_ctx
,
src
.
non_zero_indices
(),
dst_place
,
blocking
,
dst
->
mutable_non_zero_indices
());
phi
::
Copy
<
Context
>
(
dev_ctx
,
src
.
non_zero_elements
(),
dst_place
,
blocking
,
dst
->
mutable_non_zero_elements
());
dst
->
set_dims
(
src
.
dims
());
}
template
<
typename
Context
>
void
CopyCsr
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
src
,
Place
dst_place
,
bool
blocking
,
SparseCsrTensor
*
dst
)
{
phi
::
Copy
<
Context
>
(
dev_ctx
,
src
.
non_zero_crows
(),
dst_place
,
blocking
,
dst
->
mutable_non_zero_crows
());
phi
::
Copy
<
Context
>
(
dev_ctx
,
src
.
non_zero_cols
(),
dst_place
,
blocking
,
dst
->
mutable_non_zero_cols
());
phi
::
Copy
<
Context
>
(
dev_ctx
,
src
.
non_zero_elements
(),
dst_place
,
blocking
,
dst
->
mutable_non_zero_elements
());
dst
->
set_dims
(
src
.
dims
());
}
}
// namespace sparse
}
// namespace phi
PD_REGISTER_GENERAL_KERNEL
(
copy_sparse_coo
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CopyCoo
<
phi
::
CPUContext
>
,
ALL_DTYPE
)
{}
PD_REGISTER_GENERAL_KERNEL
(
copy_sparse_csr
,
CPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CopyCsr
<
phi
::
CPUContext
>
,
ALL_DTYPE
)
{}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_GENERAL_KERNEL
(
copy_sparse_coo
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CopyCoo
<
phi
::
GPUContext
>
,
ALL_DTYPE
)
{}
PD_REGISTER_GENERAL_KERNEL
(
copy_sparse_csr
,
GPU
,
ALL_LAYOUT
,
phi
::
sparse
::
CopyCsr
<
phi
::
GPUContext
>
,
ALL_DTYPE
)
{}
#endif
paddle/phi/kernels/sparse/copy_kernel.h
0 → 100644
浏览文件 @
3a29e4f8
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
namespace
phi
{
namespace
sparse
{
template
<
typename
Context
>
void
CopyCoo
(
const
Context
&
dev_ctx
,
const
SparseCooTensor
&
src
,
Place
dst_place
,
bool
blocking
,
SparseCooTensor
*
dst
);
template
<
typename
Context
>
void
CopyCsr
(
const
Context
&
dev_ctx
,
const
SparseCsrTensor
&
src
,
Place
dst_place
,
bool
blocking
,
SparseCsrTensor
*
dst
);
}
// namespace sparse
}
// namespace phi
paddle/phi/kernels/sparse/cpu/convolution.h
浏览文件 @
3a29e4f8
...
@@ -153,8 +153,9 @@ void UpdateRulebookAndOutIndex(const Context& dev_ctx,
...
@@ -153,8 +153,9 @@ void UpdateRulebookAndOutIndex(const Context& dev_ctx,
const
int64_t
sparse_dim
=
4
;
const
int64_t
sparse_dim
=
4
;
DenseTensorMeta
indices_meta
(
DenseTensorMeta
indices_meta
(
DataType
::
INT32
,
{
sparse_dim
,
out_non_zero_num
},
DataLayout
::
NCHW
);
DataType
::
INT32
,
{
sparse_dim
,
out_non_zero_num
},
DataLayout
::
NCHW
);
DenseTensorMeta
values_meta
(
DenseTensorMeta
values_meta
(
x
.
dtype
(),
x
.
dtype
(),
{
out_non_zero_num
,
out_channels
},
x
.
layout
());
{
out_non_zero_num
,
out_channels
},
x
.
non_zero_elements
().
layout
());
phi
::
DenseTensor
out_indices
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
indices_meta
));
phi
::
DenseTensor
out_indices
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
indices_meta
));
phi
::
DenseTensor
out_values
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
values_meta
));
phi
::
DenseTensor
out_values
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
values_meta
));
int
*
out_indices_ptr
=
out_indices
.
data
<
int
>
();
int
*
out_indices_ptr
=
out_indices
.
data
<
int
>
();
...
...
paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc
浏览文件 @
3a29e4f8
...
@@ -121,7 +121,8 @@ void SparseCsrToCooKernel(const Context& dev_ctx,
...
@@ -121,7 +121,8 @@ void SparseCsrToCooKernel(const Context& dev_ctx,
const
auto
place
=
dev_ctx
.
GetPlace
();
const
auto
place
=
dev_ctx
.
GetPlace
();
DenseTensorMeta
indices_meta
(
DenseTensorMeta
indices_meta
(
DataType
::
INT64
,
{
sparse_dim
,
non_zero_num
},
DataLayout
::
NCHW
);
DataType
::
INT64
,
{
sparse_dim
,
non_zero_num
},
DataLayout
::
NCHW
);
DenseTensorMeta
values_meta
(
x
.
dtype
(),
{
non_zero_num
},
x
.
layout
());
DenseTensorMeta
values_meta
(
x
.
dtype
(),
{
non_zero_num
},
x
.
non_zero_elements
().
layout
());
phi
::
DenseTensor
indices
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
indices_meta
));
phi
::
DenseTensor
indices
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
indices_meta
));
phi
::
DenseTensor
values
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
values_meta
));
phi
::
DenseTensor
values
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
values_meta
));
int64_t
*
coo_indices
=
indices
.
mutable_data
<
int64_t
>
(
place
);
int64_t
*
coo_indices
=
indices
.
mutable_data
<
int64_t
>
(
place
);
...
@@ -174,7 +175,8 @@ void SparseCooToCsrKernel(const Context& dev_ctx,
...
@@ -174,7 +175,8 @@ void SparseCooToCsrKernel(const Context& dev_ctx,
DenseTensorMeta
crows_meta
(
DenseTensorMeta
crows_meta
(
DataType
::
INT64
,
{
batchs
*
(
rows
+
1
)},
DataLayout
::
NCHW
);
DataType
::
INT64
,
{
batchs
*
(
rows
+
1
)},
DataLayout
::
NCHW
);
DenseTensorMeta
cols_meta
(
DataType
::
INT64
,
{
non_zero_num
},
DataLayout
::
NCHW
);
DenseTensorMeta
cols_meta
(
DataType
::
INT64
,
{
non_zero_num
},
DataLayout
::
NCHW
);
DenseTensorMeta
values_meta
(
x
.
dtype
(),
{
non_zero_num
},
x
.
layout
());
DenseTensorMeta
values_meta
(
x
.
dtype
(),
{
non_zero_num
},
x
.
non_zero_elements
().
layout
());
phi
::
DenseTensor
non_zero_crows
(
phi
::
DenseTensor
non_zero_crows
(
phi
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
place
),
phi
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
place
),
std
::
move
(
crows_meta
));
std
::
move
(
crows_meta
));
...
...
paddle/phi/kernels/sparse/gpu/convolution.cu.h
浏览文件 @
3a29e4f8
...
@@ -349,7 +349,10 @@ int ProductRuleBook(const Context& dev_ctx,
...
@@ -349,7 +349,10 @@ int ProductRuleBook(const Context& dev_ctx,
int
kernel_size
=
kernel_sizes
[
0
]
*
kernel_sizes
[
1
]
*
kernel_sizes
[
2
];
int
kernel_size
=
kernel_sizes
[
0
]
*
kernel_sizes
[
1
]
*
kernel_sizes
[
2
];
const
int
rulebook_rows
=
3
;
const
int
rulebook_rows
=
3
;
const
int
rulebook_cols
=
kernel_size
*
non_zero_num
;
const
int
rulebook_cols
=
kernel_size
*
non_zero_num
;
rulebook
->
ResizeAndAllocate
({
rulebook_rows
,
rulebook_cols
});
DenseTensorMeta
rulebook_meta
(
DataType
::
INT32
,
{
rulebook_rows
,
rulebook_cols
},
DataLayout
::
NCHW
);
rulebook
->
set_meta
(
rulebook_meta
);
dev_ctx
.
Alloc
(
rulebook
,
rulebook
->
dtype
(),
rulebook
->
numel
()
*
sizeof
(
int
));
int
*
rulebook_ptr
=
rulebook
->
data
<
int
>
();
int
*
rulebook_ptr
=
rulebook
->
data
<
int
>
();
const
auto
x_dims
=
x
.
dims
();
const
auto
x_dims
=
x
.
dims
();
...
@@ -608,8 +611,9 @@ int ProductRuleBook(const Context& dev_ctx,
...
@@ -608,8 +611,9 @@ int ProductRuleBook(const Context& dev_ctx,
const
int64_t
sparse_dim
=
4
;
const
int64_t
sparse_dim
=
4
;
DenseTensorMeta
indices_meta
(
DenseTensorMeta
indices_meta
(
DataType
::
INT32
,
{
sparse_dim
,
out_non_zero_num
},
DataLayout
::
NCHW
);
DataType
::
INT32
,
{
sparse_dim
,
out_non_zero_num
},
DataLayout
::
NCHW
);
DenseTensorMeta
values_meta
(
DenseTensorMeta
values_meta
(
x
.
dtype
(),
x
.
dtype
(),
{
out_non_zero_num
,
kernel_sizes
[
4
]},
x
.
layout
());
{
out_non_zero_num
,
kernel_sizes
[
4
]},
x
.
non_zero_elements
().
layout
());
phi
::
DenseTensor
out_indices
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
indices_meta
));
phi
::
DenseTensor
out_indices
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
indices_meta
));
phi
::
DenseTensor
out_values
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
values_meta
));
phi
::
DenseTensor
out_values
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
values_meta
));
...
...
paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu
浏览文件 @
3a29e4f8
...
@@ -257,7 +257,8 @@ void SparseCsrToCooKernel(const Context& dev_ctx,
...
@@ -257,7 +257,8 @@ void SparseCsrToCooKernel(const Context& dev_ctx,
const
auto
place
=
dev_ctx
.
GetPlace
();
const
auto
place
=
dev_ctx
.
GetPlace
();
DenseTensorMeta
indices_meta
(
DenseTensorMeta
indices_meta
(
DataType
::
INT64
,
{
sparse_dim
,
non_zero_num
},
DataLayout
::
NCHW
);
DataType
::
INT64
,
{
sparse_dim
,
non_zero_num
},
DataLayout
::
NCHW
);
DenseTensorMeta
values_meta
(
x
.
dtype
(),
{
non_zero_num
},
x
.
layout
());
DenseTensorMeta
values_meta
(
x
.
dtype
(),
{
non_zero_num
},
x
.
non_zero_elements
().
layout
());
DenseTensorMeta
offsets_meta
(
DataType
::
INT32
,
{
batchs
},
DataLayout
::
NCHW
);
DenseTensorMeta
offsets_meta
(
DataType
::
INT32
,
{
batchs
},
DataLayout
::
NCHW
);
DenseTensor
indices
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
indices_meta
));
DenseTensor
indices
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
indices_meta
));
DenseTensor
values
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
values_meta
));
DenseTensor
values
=
phi
::
Empty
(
dev_ctx
,
std
::
move
(
values_meta
));
...
@@ -385,7 +386,8 @@ void SparseCooToCsrKernel(const Context& dev_ctx,
...
@@ -385,7 +386,8 @@ void SparseCooToCsrKernel(const Context& dev_ctx,
DenseTensorMeta
crows_meta
(
DenseTensorMeta
crows_meta
(
DataType
::
INT64
,
{
batchs
*
(
rows
+
1
)},
DataLayout
::
NCHW
);
DataType
::
INT64
,
{
batchs
*
(
rows
+
1
)},
DataLayout
::
NCHW
);
DenseTensorMeta
cols_meta
(
DataType
::
INT64
,
{
non_zero_num
},
DataLayout
::
NCHW
);
DenseTensorMeta
cols_meta
(
DataType
::
INT64
,
{
non_zero_num
},
DataLayout
::
NCHW
);
DenseTensorMeta
values_meta
(
x
.
dtype
(),
{
non_zero_num
},
x
.
layout
());
DenseTensorMeta
values_meta
(
x
.
dtype
(),
{
non_zero_num
},
x
.
non_zero_elements
().
layout
());
phi
::
DenseTensor
non_zero_crows
(
phi
::
DenseTensor
non_zero_crows
(
phi
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
place
),
phi
::
make_intrusive
<
paddle
::
experimental
::
SharedStorage
>
(
place
),
std
::
move
(
crows_meta
));
std
::
move
(
crows_meta
));
...
...
paddle/phi/tests/kernels/test_sparse_conv3d_dev_api.cc
浏览文件 @
3a29e4f8
...
@@ -218,11 +218,8 @@ void TestConv3dBase(const std::vector<int>& indices,
...
@@ -218,11 +218,8 @@ void TestConv3dBase(const std::vector<int>& indices,
correct_out_indices
.
size
()
*
sizeof
(
int
));
correct_out_indices
.
size
()
*
sizeof
(
int
));
ASSERT_EQ
(
cmp_indices2
,
0
);
ASSERT_EQ
(
cmp_indices2
,
0
);
DenseTensor
h_features_tensor
=
phi
::
Empty
(
DenseTensor
h_features_tensor
=
dev_ctx_cpu
,
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
d_out
.
non_zero_elements
());
DenseTensorMeta
(
paddle
::
experimental
::
CppTypeToDataType
<
T
>::
Type
(),
{
d_out
.
nnz
()},
d_out
.
layout
()));
phi
::
Copy
(
dev_ctx_gpu
,
phi
::
Copy
(
dev_ctx_gpu
,
d_out
.
non_zero_elements
(),
d_out
.
non_zero_elements
(),
...
@@ -243,15 +240,11 @@ void TestConv3dBase(const std::vector<int>& indices,
...
@@ -243,15 +240,11 @@ void TestConv3dBase(const std::vector<int>& indices,
strides
,
strides
,
1
,
1
,
subm
);
subm
);
DenseTensor
h_features_grad
=
phi
::
Empty
(
DenseTensor
h_features_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
grads
[
0
]);
dev_ctx_cpu
,
DenseTensorMeta
(
grads
[
0
].
dtype
(),
grads
[
0
].
dims
(),
grads
[
0
].
layout
()));
phi
::
Copy
(
dev_ctx_gpu
,
grads
[
0
],
phi
::
CPUPlace
(),
true
,
&
h_features_grad
);
phi
::
Copy
(
dev_ctx_gpu
,
grads
[
0
],
phi
::
CPUPlace
(),
true
,
&
h_features_grad
);
f_verify
(
h_features_grad
.
data
<
T
>
(),
features_grad
);
f_verify
(
h_features_grad
.
data
<
T
>
(),
features_grad
);
DenseTensor
h_kernel_grad
=
phi
::
Empty
(
DenseTensor
h_kernel_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
grads
[
1
]);
dev_ctx_cpu
,
DenseTensorMeta
(
grads
[
1
].
dtype
(),
grads
[
1
].
dims
(),
grads
[
1
].
layout
()));
phi
::
Copy
(
dev_ctx_gpu
,
grads
[
1
],
phi
::
CPUPlace
(),
true
,
&
h_kernel_grad
);
phi
::
Copy
(
dev_ctx_gpu
,
grads
[
1
],
phi
::
CPUPlace
(),
true
,
&
h_kernel_grad
);
f_verify
(
h_kernel_grad
.
data
<
T
>
(),
kernel_grad
);
f_verify
(
h_kernel_grad
.
data
<
T
>
(),
kernel_grad
);
}
}
...
...
paddle/phi/tests/kernels/test_sparse_pool_dev_api.cc
浏览文件 @
3a29e4f8
...
@@ -56,6 +56,10 @@ void TestMaxPoolBase(const std::vector<int>& indices,
...
@@ -56,6 +56,10 @@ void TestMaxPoolBase(const std::vector<int>& indices,
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
paddle
::
platform
::
CPUPlace
())
.
GetAllocator
(
paddle
::
platform
::
CPUPlace
())
.
get
());
.
get
());
dev_ctx_cpu
.
SetHostAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
phi
::
CPUPlace
())
.
get
());
dev_ctx_cpu
.
Init
();
dev_ctx_cpu
.
Init
();
const
int
in_channels
=
x_dims
[
4
];
const
int
in_channels
=
x_dims
[
4
];
...
@@ -138,11 +142,8 @@ void TestMaxPoolBase(const std::vector<int>& indices,
...
@@ -138,11 +142,8 @@ void TestMaxPoolBase(const std::vector<int>& indices,
phi
::
Copy
(
phi
::
Copy
(
dev_ctx_gpu
,
indices_tensor
,
phi
::
GPUPlace
(),
true
,
&
d_indices_tensor
);
dev_ctx_gpu
,
indices_tensor
,
phi
::
GPUPlace
(),
true
,
&
d_indices_tensor
);
DenseTensor
d_features_tensor
=
phi
::
Empty
(
DenseTensor
d_features_tensor
=
dev_ctx_gpu
,
phi
::
EmptyLike
<
T
>
(
dev_ctx_gpu
,
features_tensor
);
DenseTensorMeta
(
paddle
::
experimental
::
CppTypeToDataType
<
T
>::
Type
(),
{
non_zero_num
,
in_channels
},
DataLayout
::
NHWC
));
phi
::
Copy
(
phi
::
Copy
(
dev_ctx_gpu
,
features_tensor
,
phi
::
GPUPlace
(),
true
,
&
d_features_tensor
);
dev_ctx_gpu
,
features_tensor
,
phi
::
GPUPlace
(),
true
,
&
d_features_tensor
);
...
@@ -178,11 +179,8 @@ void TestMaxPoolBase(const std::vector<int>& indices,
...
@@ -178,11 +179,8 @@ void TestMaxPoolBase(const std::vector<int>& indices,
correct_out_indices
.
size
()
*
sizeof
(
int
));
correct_out_indices
.
size
()
*
sizeof
(
int
));
ASSERT_EQ
(
cmp_indices2
,
0
);
ASSERT_EQ
(
cmp_indices2
,
0
);
DenseTensor
h_features_tensor
=
phi
::
Empty
(
DenseTensor
h_features_tensor
=
dev_ctx_cpu
,
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
d_out
.
non_zero_elements
());
DenseTensorMeta
(
paddle
::
experimental
::
CppTypeToDataType
<
T
>::
Type
(),
{
d_out
.
nnz
()},
d_out
.
layout
()));
phi
::
Copy
(
dev_ctx_gpu
,
phi
::
Copy
(
dev_ctx_gpu
,
d_out
.
non_zero_elements
(),
d_out
.
non_zero_elements
(),
...
@@ -198,9 +196,7 @@ void TestMaxPoolBase(const std::vector<int>& indices,
...
@@ -198,9 +196,7 @@ void TestMaxPoolBase(const std::vector<int>& indices,
d_out
,
d_out
,
d_out
.
non_zero_elements
(),
d_out
.
non_zero_elements
(),
kernel_sizes
);
kernel_sizes
);
DenseTensor
h_features_grad
=
phi
::
Empty
(
DenseTensor
h_features_grad
=
phi
::
EmptyLike
<
T
>
(
dev_ctx_cpu
,
x_grad
);
dev_ctx_cpu
,
DenseTensorMeta
(
x_grad
.
dtype
(),
x_grad
.
dims
(),
x_grad
.
layout
()));
phi
::
Copy
(
dev_ctx_gpu
,
x_grad
,
phi
::
CPUPlace
(),
true
,
&
h_features_grad
);
phi
::
Copy
(
dev_ctx_gpu
,
x_grad
,
phi
::
CPUPlace
(),
true
,
&
h_features_grad
);
f_verify
(
h_features_grad
.
data
<
T
>
(),
features_grad
);
f_verify
(
h_features_grad
.
data
<
T
>
(),
features_grad
);
}
}
...
...
python/paddle/fluid/tests/unittests/test_sparse_copy_op.py
0 → 100644
浏览文件 @
3a29e4f8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
paddle
from
paddle
import
_C_ops
from
paddle.fluid
import
core
from
paddle.fluid.framework
import
_test_eager_guard
class
TestSparseCopy
(
unittest
.
TestCase
):
def
test_copy_sparse_coo
(
self
):
with
_test_eager_guard
():
np_x
=
[[
0
,
1.0
,
0
],
[
2.0
,
0
,
0
],
[
0
,
3.0
,
0
]]
np_values
=
[
1.0
,
2.0
,
3.0
]
dense_x
=
paddle
.
to_tensor
(
np_x
,
dtype
=
'float32'
)
coo_x
=
dense_x
.
to_sparse_coo
(
2
)
np_x_2
=
[[
0
,
3.0
,
0
],
[
2.0
,
0
,
0
],
[
0
,
3.0
,
0
]]
dense_x_2
=
paddle
.
to_tensor
(
np_x_2
,
dtype
=
'float32'
)
coo_x_2
=
dense_x_2
.
to_sparse_coo
(
2
)
coo_x_2
.
copy_
(
coo_x
,
True
)
assert
np
.
array_equal
(
np_values
,
coo_x_2
.
non_zero_elements
().
numpy
())
def
test_copy_sparse_csr
(
self
):
with
_test_eager_guard
():
np_x
=
[[
0
,
1.0
,
0
],
[
2.0
,
0
,
0
],
[
0
,
3.0
,
0
]]
np_values
=
[
1.0
,
2.0
,
3.0
]
dense_x
=
paddle
.
to_tensor
(
np_x
,
dtype
=
'float32'
)
csr_x
=
dense_x
.
to_sparse_csr
()
np_x_2
=
[[
0
,
3.0
,
0
],
[
2.0
,
0
,
0
],
[
0
,
3.0
,
0
]]
dense_x_2
=
paddle
.
to_tensor
(
np_x_2
,
dtype
=
'float32'
)
csr_x_2
=
dense_x_2
.
to_sparse_csr
()
csr_x_2
.
copy_
(
csr_x
,
True
)
assert
np
.
array_equal
(
np_values
,
csr_x_2
.
non_zero_elements
().
numpy
())
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录