未验证 提交 3a29e4f8 编写于 作者: Z zhangkaihuo 提交者: GitHub

Add Sparse Op: copy_sparse_coo and copy_sparse_csr (#41193)

上级 db948373
...@@ -19,6 +19,7 @@ ...@@ -19,6 +19,7 @@
#include "paddle/phi/common/data_type.h" #include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/framework/convert_utils.h"
#include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/data_type.h"
...@@ -124,29 +125,32 @@ void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out, ...@@ -124,29 +125,32 @@ void GradNodeBase::SetGradInMeta(const paddle::experimental::Tensor& fwd_out,
return; return;
} }
phi::DenseTensor* dense_tensor = nullptr;
// Record TensorMeta // Record TensorMeta
if (phi::DenseTensor::classof(fwd_out.impl().get())) { if (phi::DenseTensor::classof(fwd_out.impl().get())) {
// Only Copy Meta // Only Copy Meta
phi::DenseTensor* dense_tensor = dense_tensor = static_cast<phi::DenseTensor*>(fwd_out.impl().get());
static_cast<phi::DenseTensor*>(fwd_out.impl().get()); } else if (phi::SparseCooTensor::classof(fwd_out.impl().get())) {
phi::SparseCooTensor* coo_tensor =
PADDLE_ENFORCE_NE( static_cast<phi::SparseCooTensor*>(fwd_out.impl().get());
dense_tensor->meta().dtype, phi::DataType::UNDEFINED, dense_tensor = coo_tensor->mutable_non_zero_elements();
paddle::platform::errors::Fatal(
"Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
"which is illegal."));
meta.SetTensorMeta(dense_tensor->meta());
meta.SetPlace(fwd_out.inner_place());
if (paddle::framework::IsComplexType(
paddle::framework::TransToProtoVarType(dense_tensor->type()))) {
need_complex_to_real_ = true;
}
} else { } else {
VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with " VLOG(6) << "Unable to initialize the DenseTensorMeta of GradSlotMeta with "
"non-DenseTensor argument."; "non-DenseTensor argument.";
} }
PADDLE_ENFORCE_NE(
dense_tensor->meta().dtype, phi::DataType::UNDEFINED,
paddle::platform::errors::Fatal(
"Attempting to copy DenseTensorMeta with phi::DataType::UNDEFINED,"
"which is illegal."));
meta.SetTensorMeta(dense_tensor->meta());
meta.SetPlace(fwd_out.inner_place());
if (paddle::framework::IsComplexType(
paddle::framework::TransToProtoVarType(dense_tensor->type()))) {
need_complex_to_real_ = true;
}
} }
void GradNodeBase::SetGradInMeta( void GradNodeBase::SetGradInMeta(
......
...@@ -25,6 +25,8 @@ limitations under the License. */ ...@@ -25,6 +25,8 @@ limitations under the License. */
#include "paddle/phi/common/data_type.h" #include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h" #include "paddle/phi/common/layout.h"
#include "paddle/phi/core/selected_rows.h" #include "paddle/phi/core/selected_rows.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
// TODO(chenweihang): split Key, Kernel, Factory into diff files // TODO(chenweihang): split Key, Kernel, Factory into diff files
#include "paddle/phi/core/kernel_factory.h" #include "paddle/phi/core/kernel_factory.h"
...@@ -40,8 +42,10 @@ std::size_t CountLeadingZeros(uint64_t val); ...@@ -40,8 +42,10 @@ std::size_t CountLeadingZeros(uint64_t val);
phi::DeviceContext* GetDeviceContextByBackend(phi::Backend backend); phi::DeviceContext* GetDeviceContextByBackend(phi::Backend backend);
enum class KernelType { enum class KernelType {
DENSE_TENSOR_KENREL, // kernel for DenseTensor DENSE_TENSOR_KENREL, // kernel for DenseTensor
SELECTED_ROWS_KENREL // kernel for SelectedRows SELECTED_ROWS_KENREL, // kernel for SelectedRows
SPARSE_COO_KERNEL, // kernel for SparseCooTensor
SPARSE_CSR_KERNEL // kernel for SparseCsrTensor
}; };
// TODO(chenweihang): support DataLayout and DataType selected // TODO(chenweihang): support DataLayout and DataType selected
...@@ -130,6 +134,10 @@ struct KernelTypeParser : ArgsIterator<KernelTypeParser> { ...@@ -130,6 +134,10 @@ struct KernelTypeParser : ArgsIterator<KernelTypeParser> {
void operator()(const Tensor& x) { void operator()(const Tensor& x) {
if (phi::SelectedRows::classof(x.impl().get())) { if (phi::SelectedRows::classof(x.impl().get())) {
kernel_type = KernelType::SELECTED_ROWS_KENREL; kernel_type = KernelType::SELECTED_ROWS_KENREL;
} else if (phi::SparseCooTensor::classof(x.impl().get())) {
kernel_type = KernelType::SPARSE_COO_KERNEL;
} else if (phi::SparseCsrTensor::classof(x.impl().get())) {
kernel_type = KernelType::SPARSE_CSR_KERNEL;
} }
} }
......
...@@ -177,6 +177,40 @@ void Tensor::copy_(const Tensor &src, ...@@ -177,6 +177,40 @@ void Tensor::copy_(const Tensor &src,
target_place, target_place,
blocking, blocking,
static_cast<phi::SelectedRows *>(impl_.get())); static_cast<phi::SelectedRows *>(impl_.get()));
} else if (kernel_type == KernelType::SPARSE_COO_KERNEL) {
auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
"copy_sparse_coo", {kernel_backend, kernel_layout, kernel_data_type});
VLOG(6) << "copy API kernel key: " << kernel_key;
VLOG(6) << "copy API kernel: " << kernel;
using kernel_signature = void (*)(const platform::DeviceContext &,
const phi::SparseCooTensor &,
phi::Place,
bool,
phi::SparseCooTensor *);
this->set_impl(std::make_shared<phi::SparseCooTensor>());
auto *kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
(*kernel_fn)(*dev_ctx,
(*(std::static_pointer_cast<phi::SparseCooTensor>(src.impl_))),
target_place,
blocking,
static_cast<phi::SparseCooTensor *>(impl_.get()));
} else if (kernel_type == KernelType::SPARSE_CSR_KERNEL) {
auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
"copy_sparse_csr", {kernel_backend, kernel_layout, kernel_data_type});
VLOG(6) << "copy API kernel key: " << kernel_key;
VLOG(6) << "copy API kernel: " << kernel;
using kernel_signature = void (*)(const platform::DeviceContext &,
const phi::SparseCsrTensor &,
phi::Place,
bool,
phi::SparseCsrTensor *);
this->set_impl(std::make_shared<phi::SparseCsrTensor>());
auto *kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
(*kernel_fn)(*dev_ctx,
(*(std::static_pointer_cast<phi::SparseCsrTensor>(src.impl_))),
target_place,
blocking,
static_cast<phi::SparseCsrTensor *>(impl_.get()));
} else { } else {
PADDLE_THROW(phi::errors::InvalidArgument( PADDLE_THROW(phi::errors::InvalidArgument(
"We currently only support dense tensor copy for now and if u need to " "We currently only support dense tensor copy for now and if u need to "
......
...@@ -16,6 +16,11 @@ limitations under the License. */ ...@@ -16,6 +16,11 @@ limitations under the License. */
namespace phi { namespace phi {
SparseCooTensor::SparseCooTensor() {
DenseTensor non_zero_indices, non_zero_elements;
this->SetMember(non_zero_indices, non_zero_elements, {1}, true);
}
SparseCooTensor::SparseCooTensor(const DenseTensor& non_zero_indices, SparseCooTensor::SparseCooTensor(const DenseTensor& non_zero_indices,
const DenseTensor& non_zero_elements, const DenseTensor& non_zero_elements,
const DDim& dims) const DDim& dims)
......
...@@ -30,6 +30,7 @@ namespace phi { ...@@ -30,6 +30,7 @@ namespace phi {
class SparseCooTensor : public TensorBase, class SparseCooTensor : public TensorBase,
public TypeInfoTraits<TensorBase, SparseCooTensor> { public TypeInfoTraits<TensorBase, SparseCooTensor> {
public: public:
SparseCooTensor();
/// \brief Create the sparse coo tensor /// \brief Create the sparse coo tensor
/// \param non_zero_indices The indices of non zero elements in original dense /// \param non_zero_indices The indices of non zero elements in original dense
/// tensor. /// tensor.
...@@ -145,6 +146,8 @@ class SparseCooTensor : public TensorBase, ...@@ -145,6 +146,8 @@ class SparseCooTensor : public TensorBase,
void* AllocateFrom(Allocator* allocator, void* AllocateFrom(Allocator* allocator,
DataType dtype, DataType dtype,
size_t requested_size = 0) override; size_t requested_size = 0) override;
/// \brief set the dims of original dense tensor
void set_dims(const DDim& dims) { this->dims_ = dims; } void set_dims(const DDim& dims) { this->dims_ = dims; }
private: private:
......
...@@ -16,6 +16,14 @@ limitations under the License. */ ...@@ -16,6 +16,14 @@ limitations under the License. */
namespace phi { namespace phi {
SparseCsrTensor::SparseCsrTensor() {
DenseTensor crows, cols, values;
this->non_zero_crows_ = crows;
this->non_zero_cols_ = cols;
this->non_zero_elements_ = values;
this->dims_ = phi::make_ddim({1, 1});
}
inline void check_shape(const DDim& dims) { inline void check_shape(const DDim& dims) {
bool valid = dims.size() == 2 || dims.size() == 3; bool valid = dims.size() == 2 || dims.size() == 3;
......
...@@ -33,6 +33,7 @@ class CompatibleDenseTensorUtils; ...@@ -33,6 +33,7 @@ class CompatibleDenseTensorUtils;
class SparseCsrTensor : public TensorBase, class SparseCsrTensor : public TensorBase,
public TypeInfoTraits<TensorBase, SparseCsrTensor> { public TypeInfoTraits<TensorBase, SparseCsrTensor> {
public: public:
SparseCsrTensor();
/// \brief Because sparse csr tensor is a resource handle, we provide a /// \brief Because sparse csr tensor is a resource handle, we provide a
/// default /// default
/// move constructor to support move semantics. /// move constructor to support move semantics.
...@@ -143,6 +144,9 @@ class SparseCsrTensor : public TensorBase, ...@@ -143,6 +144,9 @@ class SparseCsrTensor : public TensorBase,
/// return a mutable pointer of non_zero_elements. /// return a mutable pointer of non_zero_elements.
DenseTensor* mutable_non_zero_elements() { return &non_zero_elements_; } DenseTensor* mutable_non_zero_elements() { return &non_zero_elements_; }
/// \brief set the dims of original dense tensor
void set_dims(const DDim& dims) { this->dims_ = dims; }
private: private:
// save the compressed rows information of non zero elements // save the compressed rows information of non zero elements
DenseTensor non_zero_crows_; DenseTensor non_zero_crows_;
......
...@@ -15,7 +15,6 @@ limitations under the License. */ ...@@ -15,7 +15,6 @@ limitations under the License. */
#pragma once #pragma once
#include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
namespace phi { namespace phi {
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/copy_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/kernels/copy_kernel.h"
namespace phi {
namespace sparse {
template <typename Context>
void CopyCoo(const Context& dev_ctx,
const SparseCooTensor& src,
Place dst_place,
bool blocking,
SparseCooTensor* dst) {
phi::Copy<Context>(dev_ctx,
src.non_zero_indices(),
dst_place,
blocking,
dst->mutable_non_zero_indices());
phi::Copy<Context>(dev_ctx,
src.non_zero_elements(),
dst_place,
blocking,
dst->mutable_non_zero_elements());
dst->set_dims(src.dims());
}
template <typename Context>
void CopyCsr(const Context& dev_ctx,
const SparseCsrTensor& src,
Place dst_place,
bool blocking,
SparseCsrTensor* dst) {
phi::Copy<Context>(dev_ctx,
src.non_zero_crows(),
dst_place,
blocking,
dst->mutable_non_zero_crows());
phi::Copy<Context>(dev_ctx,
src.non_zero_cols(),
dst_place,
blocking,
dst->mutable_non_zero_cols());
phi::Copy<Context>(dev_ctx,
src.non_zero_elements(),
dst_place,
blocking,
dst->mutable_non_zero_elements());
dst->set_dims(src.dims());
}
} // namespace sparse
} // namespace phi
PD_REGISTER_GENERAL_KERNEL(copy_sparse_coo,
CPU,
ALL_LAYOUT,
phi::sparse::CopyCoo<phi::CPUContext>,
ALL_DTYPE) {}
PD_REGISTER_GENERAL_KERNEL(copy_sparse_csr,
CPU,
ALL_LAYOUT,
phi::sparse::CopyCsr<phi::CPUContext>,
ALL_DTYPE) {}
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
PD_REGISTER_GENERAL_KERNEL(copy_sparse_coo,
GPU,
ALL_LAYOUT,
phi::sparse::CopyCoo<phi::GPUContext>,
ALL_DTYPE) {}
PD_REGISTER_GENERAL_KERNEL(copy_sparse_csr,
GPU,
ALL_LAYOUT,
phi::sparse::CopyCsr<phi::GPUContext>,
ALL_DTYPE) {}
#endif
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/kernels/empty_kernel.h"
namespace phi {
namespace sparse {
template <typename Context>
void CopyCoo(const Context& dev_ctx,
const SparseCooTensor& src,
Place dst_place,
bool blocking,
SparseCooTensor* dst);
template <typename Context>
void CopyCsr(const Context& dev_ctx,
const SparseCsrTensor& src,
Place dst_place,
bool blocking,
SparseCsrTensor* dst);
} // namespace sparse
} // namespace phi
...@@ -153,8 +153,9 @@ void UpdateRulebookAndOutIndex(const Context& dev_ctx, ...@@ -153,8 +153,9 @@ void UpdateRulebookAndOutIndex(const Context& dev_ctx,
const int64_t sparse_dim = 4; const int64_t sparse_dim = 4;
DenseTensorMeta indices_meta( DenseTensorMeta indices_meta(
DataType::INT32, {sparse_dim, out_non_zero_num}, DataLayout::NCHW); DataType::INT32, {sparse_dim, out_non_zero_num}, DataLayout::NCHW);
DenseTensorMeta values_meta( DenseTensorMeta values_meta(x.dtype(),
x.dtype(), {out_non_zero_num, out_channels}, x.layout()); {out_non_zero_num, out_channels},
x.non_zero_elements().layout());
phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta)); phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta));
phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta)); phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta));
int* out_indices_ptr = out_indices.data<int>(); int* out_indices_ptr = out_indices.data<int>();
......
...@@ -121,7 +121,8 @@ void SparseCsrToCooKernel(const Context& dev_ctx, ...@@ -121,7 +121,8 @@ void SparseCsrToCooKernel(const Context& dev_ctx,
const auto place = dev_ctx.GetPlace(); const auto place = dev_ctx.GetPlace();
DenseTensorMeta indices_meta( DenseTensorMeta indices_meta(
DataType::INT64, {sparse_dim, non_zero_num}, DataLayout::NCHW); DataType::INT64, {sparse_dim, non_zero_num}, DataLayout::NCHW);
DenseTensorMeta values_meta(x.dtype(), {non_zero_num}, x.layout()); DenseTensorMeta values_meta(
x.dtype(), {non_zero_num}, x.non_zero_elements().layout());
phi::DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta)); phi::DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta));
phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta)); phi::DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
int64_t* coo_indices = indices.mutable_data<int64_t>(place); int64_t* coo_indices = indices.mutable_data<int64_t>(place);
...@@ -174,7 +175,8 @@ void SparseCooToCsrKernel(const Context& dev_ctx, ...@@ -174,7 +175,8 @@ void SparseCooToCsrKernel(const Context& dev_ctx,
DenseTensorMeta crows_meta( DenseTensorMeta crows_meta(
DataType::INT64, {batchs * (rows + 1)}, DataLayout::NCHW); DataType::INT64, {batchs * (rows + 1)}, DataLayout::NCHW);
DenseTensorMeta cols_meta(DataType::INT64, {non_zero_num}, DataLayout::NCHW); DenseTensorMeta cols_meta(DataType::INT64, {non_zero_num}, DataLayout::NCHW);
DenseTensorMeta values_meta(x.dtype(), {non_zero_num}, x.layout()); DenseTensorMeta values_meta(
x.dtype(), {non_zero_num}, x.non_zero_elements().layout());
phi::DenseTensor non_zero_crows( phi::DenseTensor non_zero_crows(
phi::make_intrusive<paddle::experimental::SharedStorage>(place), phi::make_intrusive<paddle::experimental::SharedStorage>(place),
std::move(crows_meta)); std::move(crows_meta));
......
...@@ -349,7 +349,10 @@ int ProductRuleBook(const Context& dev_ctx, ...@@ -349,7 +349,10 @@ int ProductRuleBook(const Context& dev_ctx,
int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2]; int kernel_size = kernel_sizes[0] * kernel_sizes[1] * kernel_sizes[2];
const int rulebook_rows = 3; const int rulebook_rows = 3;
const int rulebook_cols = kernel_size * non_zero_num; const int rulebook_cols = kernel_size * non_zero_num;
rulebook->ResizeAndAllocate({rulebook_rows, rulebook_cols}); DenseTensorMeta rulebook_meta(
DataType::INT32, {rulebook_rows, rulebook_cols}, DataLayout::NCHW);
rulebook->set_meta(rulebook_meta);
dev_ctx.Alloc(rulebook, rulebook->dtype(), rulebook->numel() * sizeof(int));
int* rulebook_ptr = rulebook->data<int>(); int* rulebook_ptr = rulebook->data<int>();
const auto x_dims = x.dims(); const auto x_dims = x.dims();
...@@ -608,8 +611,9 @@ int ProductRuleBook(const Context& dev_ctx, ...@@ -608,8 +611,9 @@ int ProductRuleBook(const Context& dev_ctx,
const int64_t sparse_dim = 4; const int64_t sparse_dim = 4;
DenseTensorMeta indices_meta( DenseTensorMeta indices_meta(
DataType::INT32, {sparse_dim, out_non_zero_num}, DataLayout::NCHW); DataType::INT32, {sparse_dim, out_non_zero_num}, DataLayout::NCHW);
DenseTensorMeta values_meta( DenseTensorMeta values_meta(x.dtype(),
x.dtype(), {out_non_zero_num, kernel_sizes[4]}, x.layout()); {out_non_zero_num, kernel_sizes[4]},
x.non_zero_elements().layout());
phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta)); phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta));
phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta)); phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta));
......
...@@ -257,7 +257,8 @@ void SparseCsrToCooKernel(const Context& dev_ctx, ...@@ -257,7 +257,8 @@ void SparseCsrToCooKernel(const Context& dev_ctx,
const auto place = dev_ctx.GetPlace(); const auto place = dev_ctx.GetPlace();
DenseTensorMeta indices_meta( DenseTensorMeta indices_meta(
DataType::INT64, {sparse_dim, non_zero_num}, DataLayout::NCHW); DataType::INT64, {sparse_dim, non_zero_num}, DataLayout::NCHW);
DenseTensorMeta values_meta(x.dtype(), {non_zero_num}, x.layout()); DenseTensorMeta values_meta(
x.dtype(), {non_zero_num}, x.non_zero_elements().layout());
DenseTensorMeta offsets_meta(DataType::INT32, {batchs}, DataLayout::NCHW); DenseTensorMeta offsets_meta(DataType::INT32, {batchs}, DataLayout::NCHW);
DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta)); DenseTensor indices = phi::Empty(dev_ctx, std::move(indices_meta));
DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta)); DenseTensor values = phi::Empty(dev_ctx, std::move(values_meta));
...@@ -385,7 +386,8 @@ void SparseCooToCsrKernel(const Context& dev_ctx, ...@@ -385,7 +386,8 @@ void SparseCooToCsrKernel(const Context& dev_ctx,
DenseTensorMeta crows_meta( DenseTensorMeta crows_meta(
DataType::INT64, {batchs * (rows + 1)}, DataLayout::NCHW); DataType::INT64, {batchs * (rows + 1)}, DataLayout::NCHW);
DenseTensorMeta cols_meta(DataType::INT64, {non_zero_num}, DataLayout::NCHW); DenseTensorMeta cols_meta(DataType::INT64, {non_zero_num}, DataLayout::NCHW);
DenseTensorMeta values_meta(x.dtype(), {non_zero_num}, x.layout()); DenseTensorMeta values_meta(
x.dtype(), {non_zero_num}, x.non_zero_elements().layout());
phi::DenseTensor non_zero_crows( phi::DenseTensor non_zero_crows(
phi::make_intrusive<paddle::experimental::SharedStorage>(place), phi::make_intrusive<paddle::experimental::SharedStorage>(place),
std::move(crows_meta)); std::move(crows_meta));
......
...@@ -218,11 +218,8 @@ void TestConv3dBase(const std::vector<int>& indices, ...@@ -218,11 +218,8 @@ void TestConv3dBase(const std::vector<int>& indices,
correct_out_indices.size() * sizeof(int)); correct_out_indices.size() * sizeof(int));
ASSERT_EQ(cmp_indices2, 0); ASSERT_EQ(cmp_indices2, 0);
DenseTensor h_features_tensor = phi::Empty( DenseTensor h_features_tensor =
dev_ctx_cpu, phi::EmptyLike<T>(dev_ctx_cpu, d_out.non_zero_elements());
DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
{d_out.nnz()},
d_out.layout()));
phi::Copy(dev_ctx_gpu, phi::Copy(dev_ctx_gpu,
d_out.non_zero_elements(), d_out.non_zero_elements(),
...@@ -243,15 +240,11 @@ void TestConv3dBase(const std::vector<int>& indices, ...@@ -243,15 +240,11 @@ void TestConv3dBase(const std::vector<int>& indices,
strides, strides,
1, 1,
subm); subm);
DenseTensor h_features_grad = phi::Empty( DenseTensor h_features_grad = phi::EmptyLike<T>(dev_ctx_cpu, grads[0]);
dev_ctx_cpu,
DenseTensorMeta(grads[0].dtype(), grads[0].dims(), grads[0].layout()));
phi::Copy(dev_ctx_gpu, grads[0], phi::CPUPlace(), true, &h_features_grad); phi::Copy(dev_ctx_gpu, grads[0], phi::CPUPlace(), true, &h_features_grad);
f_verify(h_features_grad.data<T>(), features_grad); f_verify(h_features_grad.data<T>(), features_grad);
DenseTensor h_kernel_grad = phi::Empty( DenseTensor h_kernel_grad = phi::EmptyLike<T>(dev_ctx_cpu, grads[1]);
dev_ctx_cpu,
DenseTensorMeta(grads[1].dtype(), grads[1].dims(), grads[1].layout()));
phi::Copy(dev_ctx_gpu, grads[1], phi::CPUPlace(), true, &h_kernel_grad); phi::Copy(dev_ctx_gpu, grads[1], phi::CPUPlace(), true, &h_kernel_grad);
f_verify(h_kernel_grad.data<T>(), kernel_grad); f_verify(h_kernel_grad.data<T>(), kernel_grad);
} }
......
...@@ -56,6 +56,10 @@ void TestMaxPoolBase(const std::vector<int>& indices, ...@@ -56,6 +56,10 @@ void TestMaxPoolBase(const std::vector<int>& indices,
paddle::memory::allocation::AllocatorFacade::Instance() paddle::memory::allocation::AllocatorFacade::Instance()
.GetAllocator(paddle::platform::CPUPlace()) .GetAllocator(paddle::platform::CPUPlace())
.get()); .get());
dev_ctx_cpu.SetHostAllocator(
paddle::memory::allocation::AllocatorFacade::Instance()
.GetAllocator(phi::CPUPlace())
.get());
dev_ctx_cpu.Init(); dev_ctx_cpu.Init();
const int in_channels = x_dims[4]; const int in_channels = x_dims[4];
...@@ -138,11 +142,8 @@ void TestMaxPoolBase(const std::vector<int>& indices, ...@@ -138,11 +142,8 @@ void TestMaxPoolBase(const std::vector<int>& indices,
phi::Copy( phi::Copy(
dev_ctx_gpu, indices_tensor, phi::GPUPlace(), true, &d_indices_tensor); dev_ctx_gpu, indices_tensor, phi::GPUPlace(), true, &d_indices_tensor);
DenseTensor d_features_tensor = phi::Empty( DenseTensor d_features_tensor =
dev_ctx_gpu, phi::EmptyLike<T>(dev_ctx_gpu, features_tensor);
DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
{non_zero_num, in_channels},
DataLayout::NHWC));
phi::Copy( phi::Copy(
dev_ctx_gpu, features_tensor, phi::GPUPlace(), true, &d_features_tensor); dev_ctx_gpu, features_tensor, phi::GPUPlace(), true, &d_features_tensor);
...@@ -178,11 +179,8 @@ void TestMaxPoolBase(const std::vector<int>& indices, ...@@ -178,11 +179,8 @@ void TestMaxPoolBase(const std::vector<int>& indices,
correct_out_indices.size() * sizeof(int)); correct_out_indices.size() * sizeof(int));
ASSERT_EQ(cmp_indices2, 0); ASSERT_EQ(cmp_indices2, 0);
DenseTensor h_features_tensor = phi::Empty( DenseTensor h_features_tensor =
dev_ctx_cpu, phi::EmptyLike<T>(dev_ctx_cpu, d_out.non_zero_elements());
DenseTensorMeta(paddle::experimental::CppTypeToDataType<T>::Type(),
{d_out.nnz()},
d_out.layout()));
phi::Copy(dev_ctx_gpu, phi::Copy(dev_ctx_gpu,
d_out.non_zero_elements(), d_out.non_zero_elements(),
...@@ -198,9 +196,7 @@ void TestMaxPoolBase(const std::vector<int>& indices, ...@@ -198,9 +196,7 @@ void TestMaxPoolBase(const std::vector<int>& indices,
d_out, d_out,
d_out.non_zero_elements(), d_out.non_zero_elements(),
kernel_sizes); kernel_sizes);
DenseTensor h_features_grad = phi::Empty( DenseTensor h_features_grad = phi::EmptyLike<T>(dev_ctx_cpu, x_grad);
dev_ctx_cpu,
DenseTensorMeta(x_grad.dtype(), x_grad.dims(), x_grad.layout()));
phi::Copy(dev_ctx_gpu, x_grad, phi::CPUPlace(), true, &h_features_grad); phi::Copy(dev_ctx_gpu, x_grad, phi::CPUPlace(), true, &h_features_grad);
f_verify(h_features_grad.data<T>(), features_grad); f_verify(h_features_grad.data<T>(), features_grad);
} }
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
from paddle import _C_ops
from paddle.fluid import core
from paddle.fluid.framework import _test_eager_guard
class TestSparseCopy(unittest.TestCase):
def test_copy_sparse_coo(self):
with _test_eager_guard():
np_x = [[0, 1.0, 0], [2.0, 0, 0], [0, 3.0, 0]]
np_values = [1.0, 2.0, 3.0]
dense_x = paddle.to_tensor(np_x, dtype='float32')
coo_x = dense_x.to_sparse_coo(2)
np_x_2 = [[0, 3.0, 0], [2.0, 0, 0], [0, 3.0, 0]]
dense_x_2 = paddle.to_tensor(np_x_2, dtype='float32')
coo_x_2 = dense_x_2.to_sparse_coo(2)
coo_x_2.copy_(coo_x, True)
assert np.array_equal(np_values,
coo_x_2.non_zero_elements().numpy())
def test_copy_sparse_csr(self):
with _test_eager_guard():
np_x = [[0, 1.0, 0], [2.0, 0, 0], [0, 3.0, 0]]
np_values = [1.0, 2.0, 3.0]
dense_x = paddle.to_tensor(np_x, dtype='float32')
csr_x = dense_x.to_sparse_csr()
np_x_2 = [[0, 3.0, 0], [2.0, 0, 0], [0, 3.0, 0]]
dense_x_2 = paddle.to_tensor(np_x_2, dtype='float32')
csr_x_2 = dense_x_2.to_sparse_csr()
csr_x_2.copy_(csr_x, True)
assert np.array_equal(np_values,
csr_x_2.non_zero_elements().numpy())
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册