Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
399a5eec
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
399a5eec
编写于
9月 13, 2017
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
auc_op
上级
f4e31347
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
44 addition
and
35 deletion
+44
-35
paddle/operators/auc_op.cc
paddle/operators/auc_op.cc
+18
-16
paddle/operators/auc_op.h
paddle/operators/auc_op.h
+26
-19
未找到文件。
paddle/operators/auc_op.cc
浏览文件 @
399a5eec
...
...
@@ -28,15 +28,12 @@ class AucOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Label"
),
"Input of Inference must be initialized."
);
auto
*
inference
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Inference"
);
auto
*
inference_prob
=
ctx
.
Input
<
framework
::
Tensor
>
(
"InferenceProb"
);
auto
*
label
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Label"
);
PADDLE_ENFORCE_EQ
(
label
->
dims
().
size
(),
1
,
"label must be a vector"
);
PADDLE_ENFORCE_EQ
(
inference
->
dims
()[
0
],
label
->
dims
()[
0
],
"inference size must be the same as label size"
);
PADDLE_ENFORCE_EQ
(
inference
->
dims
(),
inference_prob
->
dims
());
PADDLE_ENFORCE_EQ
(
inference
->
dims
(),
label
->
dims
(),
"inference should have same shape as label"
);
ctx
.
Output
<
Tensor
>
(
"A
ccuracy
"
)
->
Resize
({
1
});
ctx
.
Output
<
Tensor
>
(
"A
UC
"
)
->
Resize
({
1
});
}
};
...
...
@@ -45,14 +42,15 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
AucOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Inference"
,
"Topk(indices) the network output, float value indicating "
"probabilities of classification"
);
AddInput
(
"InferenceProb"
,
"Topk(values) the network output, float value indicating "
"probabilities of classification"
);
AddInput
(
"Label"
,
"Label of the training data"
);
// TODO(typhoonzero): support weight
AddOutput
(
"AUC"
,
"Area Under Curve caculations"
);
"A floating point `Tensor` of arbitrary shape and whose values"
"are in the range `[0, 1]`."
);
AddInput
(
"Label"
,
"A `Tensor` whose shape matches "
"`Inference`. Will be cast to `bool`."
);
// TODO(typhoonzero): support weight input
AddOutput
(
"AUC"
,
"A scalar `Tensor` representing the "
"current area-under-curve."
);
AddAttr
<
std
::
string
>
(
"curve"
,
"Possible curves are ROC and PR"
)
.
SetDefault
(
"ROC"
);
AddAttr
<
int
>
(
"num_thresholds"
,
...
...
@@ -62,12 +60,16 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(Computes the AUC according forward output and label.
Best to use for binary classification evaluations.
If `label` can be values other than 0 and 1, it will be cast
to bool.
You can find the definations here:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
Possible curves are:
ROC: Receiver operating characteristic
PR: Precision Recall
-
ROC: Receiver operating characteristic
-
PR: Precision Recall
)DOC"
);
}
};
...
...
paddle/operators/auc_op.h
浏览文件 @
399a5eec
...
...
@@ -22,12 +22,15 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
AucKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
inference
=
ctx
.
Input
<
Tensor
>
(
"Inference"
);
auto
*
inference_prob
=
ctx
.
Input
<
Tensor
>
(
"InferenceProb"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
auc
=
ctx
.
Output
<
Tensor
>
(
"AUC"
);
...
...
@@ -44,14 +47,20 @@ class AucKernel : public framework::OpKernel {
thresholds_list
[
0
]
=
0.0
f
-
kEpsilon
;
thresholds_list
[
num_thresholds
-
1
]
=
1.0
f
+
kEpsilon
;
const
int
*
inference_data
=
inference
->
data
<
int
>
();
const
T
*
inference_prob_data
=
inference_prob
->
data
<
T
>
();
const
T
*
label_data
=
label
->
data
<
T
>
();
size_t
num_samples
=
inference
->
numel
();
const
T
*
inference_data
=
inference
->
data
<
T
>
();
Tensor
label_casted
;
label_casted
.
Resize
(
label
->
dims
());
bool
*
label_casted_data
=
label_casted
.
mutable_data
<
bool
>
(
ctx
.
GetPlace
());
size_t
num_samples
=
inference
->
dims
()[
0
];
size_t
class_dim
=
inference
->
dims
()[
1
];
const
int
*
label_data
=
label
->
data
<
int
>
();
// cast label_data to bool
for
(
size_t
i
=
0
;
i
<
num_samples
;
i
++
)
{
label_casted_data
[
i
]
=
static_cast
<
bool
>
(
label_data
[
i
]);
}
//
c
reate local tensor for storing the curve: TP, FN, TN, FP
//
C
reate local tensor for storing the curve: TP, FN, TN, FP
// TODO(typhoonzero): put these tensors in Scope
// TODO(typhoonzero): use op to caculate these values.
Tensor
true_positive
,
false_positive
,
true_negative
,
false_negative
;
...
...
@@ -72,19 +81,17 @@ class AucKernel : public framework::OpKernel {
// caculate TP, FN, TN, FP for current thresh
int
tp
,
fn
,
tn
,
fp
=
0
;
for
(
size_t
i
=
0
;
i
<
num_samples
;
i
++
)
{
for
(
size_t
j
=
0
;
j
<
class_dim
;
j
++
)
{
if
(
inference_data
[
i
*
class_dim
+
j
]
==
label_data
[
i
])
{
if
(
inference_prob_data
[
i
*
class_dim
+
j
]
>=
(
*
thresh
))
{
tp
++
;
}
else
{
tn
++
;
}
if
(
label_casted_data
[
i
])
{
if
(
inference_data
[
i
]
>=
(
*
thresh
))
{
tp
++
;
}
else
{
tn
++
;
}
}
else
{
if
(
inference_data
[
i
]
>=
(
*
thresh
))
{
fp
++
;
}
else
{
if
(
inference_prob_data
[
i
*
class_dim
+
j
]
>=
(
*
thresh
))
{
fp
++
;
}
else
{
fn
++
;
}
fn
++
;
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录