未验证 提交 397c9403 编写于 作者: Q QingshuChen 提交者: GitHub

add c_reduce_sum/unstack/all_reduce_datatype for kunlun (#50606)

上级 1cfcb71d
......@@ -18,4 +18,6 @@ namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_XPU_KERNEL(c_allreduce_max,
ops::CAllReduceOpXPUKernel<ops::kRedMax, plat::float16>,
ops::CAllReduceOpXPUKernel<ops::kRedMax, int>,
ops::CAllReduceOpXPUKernel<ops::kRedMax, float>)
......@@ -18,4 +18,5 @@ namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_XPU_KERNEL(c_reduce_sum,
ops::CReduceOpXPUKernel<ops::kRedSum, plat::float16>,
ops::CReduceOpXPUKernel<ops::kRedSum, float>)
......@@ -79,6 +79,10 @@ XPUOpMap& get_kl2_ops() {
phi::DataType::FLOAT64,
phi::DataType::INT32,
phi::DataType::INT64})},
{"c_allreduce_max",
XPUKernelSet({phi::DataType::FLOAT16,
phi::DataType::FLOAT32,
phi::DataType::INT32})},
{"c_allreduce_sum",
XPUKernelSet({phi::DataType::FLOAT16,
phi::DataType::FLOAT32,
......@@ -94,6 +98,8 @@ XPUOpMap& get_kl2_ops() {
phi::DataType::FLOAT64,
phi::DataType::INT32,
phi::DataType::INT64})},
{"c_reduce_sum",
XPUKernelSet({phi::DataType::FLOAT16, phi::DataType::FLOAT32})},
{"c_split",
XPUKernelSet({phi::DataType::FLOAT16,
phi::DataType::FLOAT32,
......@@ -730,6 +736,16 @@ XPUOpMap& get_kl2_ops() {
phi::DataType::UINT8,
phi::DataType::FLOAT16,
phi::DataType::FLOAT32})},
{"unstack",
XPUKernelSet({phi::DataType::INT64,
phi::DataType::INT32,
phi::DataType::FLOAT16,
phi::DataType::FLOAT32})},
{"unstack_grad",
XPUKernelSet({phi::DataType::INT64,
phi::DataType::INT32,
phi::DataType::FLOAT16,
phi::DataType::FLOAT32})},
{"warpctc_grad", XPUKernelSet({phi::DataType::FLOAT32})},
{"warpctc", XPUKernelSet({phi::DataType::FLOAT32})},
{"where_index",
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/unstack_grad_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void UnStackGradKernel(const Context &dev_ctx,
const std::vector<const DenseTensor *> &x,
int axis,
DenseTensor *x_grad) {
using XPUType = typename XPUTypeTrait<T>::Type;
if (axis < 0) {
axis += x[0]->dims().size() + 1;
}
dev_ctx.template Alloc<T>(x_grad);
auto &dim = x[0]->dims();
std::vector<int> xdims;
for (auto i = 0; i < dim.size(); ++i) {
xdims.push_back(dim[i]);
}
xdims.push_back(1);
std::vector<std::vector<int>> xdims_list;
int n = static_cast<int>(x.size());
for (int i = 0; i < n; i++) {
xdims_list.push_back(xdims);
}
std::vector<const XPUType *> x_list;
for (int i = 0; i < n; i++) {
x_list.push_back(reinterpret_cast<const XPUType *>(x[i]->data<T>()));
}
int r = xpu::concat<XPUType>(dev_ctx.x_context(),
x_list,
reinterpret_cast<XPUType *>(x_grad->data<T>()),
xdims_list,
axis);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "concat in unstack_grad op");
}
} // namespace phi
PD_REGISTER_KERNEL(unstack_grad,
XPU,
ALL_LAYOUT,
phi::UnStackGradKernel,
float,
phi::dtype::float16,
int,
int64_t) {}
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/unstack_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void UnStackKernel(const Context &dev_ctx,
const DenseTensor &x,
int axis,
int num,
std::vector<DenseTensor *> outs) {
using XPUType = typename XPUTypeTrait<T>::Type;
auto x_dims = x.dims();
if (axis < 0) axis += x_dims.size();
auto x_shape = phi::vectorize<int>(x_dims);
std::vector<int> dx_dims_list(outs.size(), 1);
std::vector<XPUType *> dx_lists;
for (size_t j = 0; j < outs.size(); ++j) {
dev_ctx.template Alloc<T>(outs[j]);
dx_lists.push_back(reinterpret_cast<XPUType *>(outs[j]->data<T>()));
}
int r = xpu::split<XPUType>(dev_ctx.x_context(),
reinterpret_cast<const XPUType *>(x.data<T>()),
dx_lists,
x_shape,
dx_dims_list,
axis);
PADDLE_ENFORCE_XDNN_SUCCESS(r, "split in unstack op");
}
} // namespace phi
PD_REGISTER_KERNEL(unstack,
XPU,
ALL_LAYOUT,
phi::UnStackKernel,
phi::dtype::float16,
float,
int,
int64_t) {}
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
import numpy as np
sys.path.append("..")
from op_test_xpu import XPUOpTest
from xpu.get_test_cover_info import (
XPUOpTestWrapper,
create_test_class,
get_xpu_op_support_types,
)
import paddle
paddle.enable_static()
class XPUTestUnStackOp(XPUOpTestWrapper):
def __init__(self):
self.op_name = 'unstack'
self.use_dynamic_create_class = False
class TestUnStackOpBase(XPUOpTest):
def initDefaultParameters(self):
self.input_dim = (5, 6, 7)
self.axis = 0
self.dtype = 'float32'
def initParameters(self):
pass
def get_y_names(self):
y_names = []
for i in range(self.input_dim[self.axis]):
y_names.append('y{}'.format(i))
return y_names
def setUp(self):
self.initDefaultParameters()
self.initParameters()
self.op_type = 'unstack'
self.python_api = paddle.unstack
self.x = np.random.random(size=self.input_dim).astype(self.dtype)
outs = np.split(self.x, self.input_dim[self.axis], self.axis)
new_shape = list(self.input_dim)
del new_shape[self.axis]
y_names = self.get_y_names()
tmp = []
tmp_names = []
for i in range(self.input_dim[self.axis]):
tmp.append((y_names[i], np.reshape(outs[i], new_shape)))
tmp_names.append(y_names[i])
self.python_out_sig = tmp_names
self.inputs = {'X': self.x}
self.outputs = {'Y': tmp}
self.attrs = {'axis': self.axis, 'num': self.input_dim[self.axis]}
def test_check_output(self):
if paddle.is_compiled_with_xpu():
place = paddle.XPUPlace(0)
self.check_output_with_place(place)
def test_check_grad(self):
self.check_grad_with_place(
paddle.XPUPlace(0), self.get_y_names, 'Y'
)
class TestStackOp3(TestUnStackOpBase):
def initParameters(self):
self.axis = -1
class TestStackOp4(TestUnStackOpBase):
def initParameters(self):
self.axis = -3
class TestStackOp5(TestUnStackOpBase):
def initParameters(self):
self.axis = 1
class TestStackOp6(TestUnStackOpBase):
def initParameters(self):
self.axis = 2
class TestUnstackZeroInputOp(unittest.TestCase):
def unstack_zero_input_static(self):
paddle.enable_static()
array = np.array([], dtype=np.float32)
x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
paddle.unstack(x, axis=1)
def unstack_zero_input_dynamic(self):
array = np.array([], dtype=np.float32)
x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
paddle.unstack(x, axis=1)
def test_type_error(self):
paddle.disable_static()
self.assertRaises(ValueError, self.unstack_zero_input_dynamic)
self.assertRaises(ValueError, self.unstack_zero_input_static)
paddle.disable_static()
support_types = get_xpu_op_support_types('unstack')
for stype in support_types:
create_test_class(globals(), XPUTestUnStackOp, stype)
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册