Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
393b3bd6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
393b3bd6
编写于
3月 31, 2021
作者:
T
Thunderbrook
提交者:
GitHub
3月 31, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix split core (#31892)
* fix split core * format
上级
3a95a0bc
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
24 addition
and
24 deletion
+24
-24
paddle/fluid/operators/math/concat_and_split.cu
paddle/fluid/operators/math/concat_and_split.cu
+24
-24
未找到文件。
paddle/fluid/operators/math/concat_and_split.cu
浏览文件 @
393b3bd6
...
@@ -114,8 +114,8 @@ __global__ void ConcatKernel(const T** inputs_data, const int in_num,
...
@@ -114,8 +114,8 @@ __global__ void ConcatKernel(const T** inputs_data, const int in_num,
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
in_row
,
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
64_t
in_row
,
const
int
in_col
,
const
in
t
*
out_cols
,
const
int
64_t
in_col
,
const
int64_
t
*
out_cols
,
int
out_cols_size
,
T
**
outputs_data
)
{
int
out_cols_size
,
T
**
outputs_data
)
{
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
tid_x
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
int
curr_segment
=
0
;
int
curr_segment
=
0
;
...
@@ -159,15 +159,15 @@ __device__ void SplitKernelDetail(const T* input_data, const int in_row,
...
@@ -159,15 +159,15 @@ __device__ void SplitKernelDetail(const T* input_data, const int in_row,
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
in_row
,
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
64_t
in_row
,
const
int
in_col
,
const
in
t
fixed_out_col
,
const
int
64_t
in_col
,
const
int64_
t
fixed_out_col
,
T
**
outputs_data
)
{
T
**
outputs_data
)
{
SplitKernelDetail
<
T
>
(
input_data
,
in_row
,
in_col
,
fixed_out_col
,
outputs_data
);
SplitKernelDetail
<
T
>
(
input_data
,
in_row
,
in_col
,
fixed_out_col
,
outputs_data
);
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
in_row
,
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
64_t
in_row
,
const
int
in_col
,
const
in
t
fixed_out_col
,
const
int
64_t
in_col
,
const
int64_
t
fixed_out_col
,
T
*
outputs_addr0
,
T
*
outputs_addr1
)
{
T
*
outputs_addr0
,
T
*
outputs_addr1
)
{
T
*
outputs_data
[
2
];
T
*
outputs_data
[
2
];
outputs_data
[
0
]
=
outputs_addr0
;
outputs_data
[
0
]
=
outputs_addr0
;
...
@@ -176,8 +176,8 @@ __global__ void SplitKernel(const T* input_data, const int in_row,
...
@@ -176,8 +176,8 @@ __global__ void SplitKernel(const T* input_data, const int in_row,
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
in_row
,
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
64_t
in_row
,
const
int
in_col
,
const
in
t
fixed_out_col
,
const
int
64_t
in_col
,
const
int64_
t
fixed_out_col
,
T
*
outputs_addr0
,
T
*
outputs_addr1
,
T
*
outputs_addr0
,
T
*
outputs_addr1
,
T
*
outputs_addr2
)
{
T
*
outputs_addr2
)
{
T
*
outputs_data
[
3
];
T
*
outputs_data
[
3
];
...
@@ -188,8 +188,8 @@ __global__ void SplitKernel(const T* input_data, const int in_row,
...
@@ -188,8 +188,8 @@ __global__ void SplitKernel(const T* input_data, const int in_row,
}
}
template
<
typename
T
>
template
<
typename
T
>
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
in_row
,
__global__
void
SplitKernel
(
const
T
*
input_data
,
const
int
64_t
in_row
,
const
int
in_col
,
const
in
t
fixed_out_col
,
const
int
64_t
in_col
,
const
int64_
t
fixed_out_col
,
T
*
outputs_addr0
,
T
*
outputs_addr1
,
T
*
outputs_addr0
,
T
*
outputs_addr1
,
T
*
outputs_addr2
,
T
*
outputs_addr3
)
{
T
*
outputs_addr2
,
T
*
outputs_addr3
)
{
T
*
outputs_data
[
4
];
T
*
outputs_data
[
4
];
...
@@ -201,8 +201,8 @@ __global__ void SplitKernel(const T* input_data, const int in_row,
...
@@ -201,8 +201,8 @@ __global__ void SplitKernel(const T* input_data, const int in_row,
}
}
static
inline
void
GetBlockDims
(
const
platform
::
CUDADeviceContext
&
context
,
static
inline
void
GetBlockDims
(
const
platform
::
CUDADeviceContext
&
context
,
int
num_rows
,
int
num_cols
,
dim3
*
block_dim
s
,
int
64_t
num_rows
,
int64_t
num_col
s
,
dim3
*
grid_dims
)
{
dim3
*
block_dims
,
dim3
*
grid_dims
)
{
// Set the thread block and grid according to CurrentDeviceId
// Set the thread block and grid according to CurrentDeviceId
const
int
kThreadsPerBlock
=
1024
;
const
int
kThreadsPerBlock
=
1024
;
int
block_cols
=
kThreadsPerBlock
;
int
block_cols
=
kThreadsPerBlock
;
...
@@ -213,12 +213,12 @@ static inline void GetBlockDims(const platform::CUDADeviceContext& context,
...
@@ -213,12 +213,12 @@ static inline void GetBlockDims(const platform::CUDADeviceContext& context,
*
block_dims
=
dim3
(
block_cols
,
block_rows
,
1
);
*
block_dims
=
dim3
(
block_cols
,
block_rows
,
1
);
int
max_threads
=
context
.
GetMaxPhysicalThreadCount
();
int
max_threads
=
context
.
GetMaxPhysicalThreadCount
();
int
max_blocks
=
std
::
max
(
max_threads
/
kThreadsPerBlock
,
1
);
int
64_t
max_blocks
=
std
::
max
(
max_threads
/
kThreadsPerBlock
,
1
);
int
grid_cols
=
int
grid_cols
=
std
::
min
((
num_cols
+
block_cols
-
1
)
/
block_cols
,
max_blocks
);
std
::
min
((
num_cols
+
block_cols
-
1
)
/
block_cols
,
max_blocks
);
int
grid_rows
=
int
grid_rows
=
std
::
min
(
max_blocks
/
grid_cols
,
std
::
min
(
max_blocks
/
grid_cols
,
std
::
max
(
num_rows
/
block_rows
,
1
));
std
::
max
(
num_rows
/
block_rows
,
(
int64_t
)
1
));
*
grid_dims
=
dim3
(
grid_cols
,
grid_rows
,
1
);
*
grid_dims
=
dim3
(
grid_cols
,
grid_rows
,
1
);
}
}
...
@@ -319,22 +319,22 @@ class SplitFunctor<platform::CUDADeviceContext, T> {
...
@@ -319,22 +319,22 @@ class SplitFunctor<platform::CUDADeviceContext, T> {
int
axis
,
std
::
vector
<
framework
::
Tensor
*>*
outputs
)
{
int
axis
,
std
::
vector
<
framework
::
Tensor
*>*
outputs
)
{
// TODO(zcd): Add input data validity checking
// TODO(zcd): Add input data validity checking
int
o_num
=
outputs
->
size
();
int
o_num
=
outputs
->
size
();
int
out_row
=
1
;
int
64_t
out_row
=
1
;
auto
dim_0
=
ref_inputs
[
0
]
->
dims
();
auto
dim_0
=
ref_inputs
[
0
]
->
dims
();
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
out_row
*=
dim_0
[
i
];
out_row
*=
dim_0
[
i
];
}
}
int
out0_col
=
ref_inputs
[
0
]
->
numel
()
/
out_row
;
int
64_t
out0_col
=
ref_inputs
[
0
]
->
numel
()
/
out_row
;
int
in_col
=
0
,
in_row
=
out_row
;
int
64_t
in_col
=
0
,
in_row
=
out_row
;
bool
has_same_shape
=
true
;
bool
has_same_shape
=
true
;
std
::
vector
<
T
*>
outputs_data
(
o_num
);
std
::
vector
<
T
*>
outputs_data
(
o_num
);
std
::
vector
<
int
>
outputs_cols
(
o_num
+
1
);
std
::
vector
<
int
64_t
>
outputs_cols
(
o_num
+
1
);
outputs_cols
[
0
]
=
0
;
outputs_cols
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
o_num
;
++
i
)
{
for
(
int
i
=
0
;
i
<
o_num
;
++
i
)
{
int
t_col
=
ref_inputs
.
at
(
i
)
->
numel
()
/
out_row
;
int
64_t
t_col
=
ref_inputs
.
at
(
i
)
->
numel
()
/
out_row
;
if
(
has_same_shape
)
{
if
(
has_same_shape
)
{
if
(
t_col
!=
out0_col
)
has_same_shape
=
false
;
if
(
t_col
!=
out0_col
)
has_same_shape
=
false
;
}
}
...
@@ -384,13 +384,13 @@ class SplitFunctor<platform::CUDADeviceContext, T> {
...
@@ -384,13 +384,13 @@ class SplitFunctor<platform::CUDADeviceContext, T> {
auto
tmp_dev_ins_col_data
=
auto
tmp_dev_ins_col_data
=
memory
::
Alloc
(
context
,
memory
::
Alloc
(
context
,
outputs_cols
.
size
()
*
sizeof
(
int
));
outputs_cols
.
size
()
*
sizeof
(
int
64_t
));
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()),
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
CUDAPlace
,
context
.
GetPlace
()),
tmp_dev_ins_col_data
->
ptr
(),
platform
::
CPUPlace
(),
tmp_dev_ins_col_data
->
ptr
(),
platform
::
CPUPlace
(),
reinterpret_cast
<
void
*>
(
outputs_cols
.
data
()),
reinterpret_cast
<
void
*>
(
outputs_cols
.
data
()),
outputs_cols
.
size
()
*
sizeof
(
int
),
context
.
stream
());
outputs_cols
.
size
()
*
sizeof
(
int
64_t
),
context
.
stream
());
int
*
dev_outs_col_data
=
int
64_t
*
dev_outs_col_data
=
reinterpret_cast
<
int
*>
(
tmp_dev_ins_col_data
->
ptr
());
reinterpret_cast
<
int
64_t
*>
(
tmp_dev_ins_col_data
->
ptr
());
SplitKernel
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
SplitKernel
<<<
grid_dims
,
block_dims
,
0
,
context
.
stream
()
>>>
(
input
.
data
<
T
>
(),
in_row
,
in_col
,
dev_outs_col_data
,
input
.
data
<
T
>
(),
in_row
,
in_col
,
dev_outs_col_data
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录