Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
38898c28
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
38898c28
编写于
3月 15, 2019
作者:
T
Tao Luo
提交者:
GitHub
3月 15, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #16212 from Aurelius84/develop
improve layers.fc api doc
上级
b77ebb2a
2d1e76fb
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
44 addition
and
13 deletion
+44
-13
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+43
-12
未找到文件。
paddle/fluid/API.spec
浏览文件 @
38898c28
...
@@ -68,7 +68,7 @@ paddle.fluid.initializer.MSRAInitializer.__init__ (ArgSpec(args=['self', 'unifor
...
@@ -68,7 +68,7 @@ paddle.fluid.initializer.MSRAInitializer.__init__ (ArgSpec(args=['self', 'unifor
paddle.fluid.initializer.force_init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '6d0f3e22c90d9d500d36ff57daf056ee'))
paddle.fluid.initializer.force_init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', '6d0f3e22c90d9d500d36ff57daf056ee'))
paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'a6d7011ca3d8c0d454dac3a56eae0c29'))
paddle.fluid.initializer.init_on_cpu (ArgSpec(args=[], varargs=None, keywords=None, defaults=None), ('document', 'a6d7011ca3d8c0d454dac3a56eae0c29'))
paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.initializer.NumpyArrayInitializer.__init__ (ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)), ('document', '
1929058262994f212620599c63aea6bd
'))
paddle.fluid.layers.fc (ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)), ('document', '
424e898365195e3ccbc2e7dc8b63605e
'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', '89c2c55a0b0656b106064048e068e77a'))
paddle.fluid.layers.embedding (ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')), ('document', '89c2c55a0b0656b106064048e068e77a'))
paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', 'dfbb624f85015df29e994ca6999e8ff6'))
paddle.fluid.layers.dynamic_lstm (ArgSpec(args=['input', 'size', 'h_0', 'c_0', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'dtype', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'float32', None)), ('document', 'dfbb624f85015df29e994ca6999e8ff6'))
paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', 'b4b608b986eb9617aa0525e1be21d32d'))
paddle.fluid.layers.dynamic_lstmp (ArgSpec(args=['input', 'size', 'proj_size', 'param_attr', 'bias_attr', 'use_peepholes', 'is_reverse', 'gate_activation', 'cell_activation', 'candidate_activation', 'proj_activation', 'dtype', 'name', 'h_0', 'c_0', 'cell_clip', 'proj_clip'], varargs=None, keywords=None, defaults=(None, None, True, False, 'sigmoid', 'tanh', 'tanh', 'tanh', 'float32', None, None, None, None, None)), ('document', 'b4b608b986eb9617aa0525e1be21d32d'))
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
38898c28
...
@@ -205,16 +205,23 @@ def fc(input,
...
@@ -205,16 +205,23 @@ def fc(input,
**Fully Connected Layer**
**Fully Connected Layer**
This function creates a fully connected layer in the network. It can take
This function creates a fully connected layer in the network. It can take
multiple tensors as its inputs. It creates a variable called weights for
one or multiple tensors as its inputs(input can be a list of Variable, see
each input tensor, which represents a fully connected weight matrix from
Args in detail). It creates a variable called weights for each input tensor,
each input unit to each output unit. The fully connected layer multiplies
which represents a fully connected weight matrix from each input unit to
each input tensor with its coresponding weight to produce an output Tensor.
each output unit. The fully connected layer multiplies each input tensor
If multiple input tensors are given, the results of multiple multiplications
with its corresponding weight to produce an output Tensor with shape [M, `size`],
will be sumed up. If bias_attr is not None, a bias variable will be created
where M is batch size. If multiple input tensors are given, the results of
and added to the output. Finally, if activation is not None, it will be applied
multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
to the output as well.
is not None, a bias variable will be created and added to the output.
Finally, if activation is not None, it will be applied to the output as well.
When the input is single tensor:
This process can be formulated as follows:
.. math::
Out = Act({XW + b})
When the input are multiple tensors:
.. math::
.. math::
...
@@ -222,13 +229,31 @@ def fc(input,
...
@@ -222,13 +229,31 @@ def fc(input,
In the above equation:
In the above equation:
* :math:`N`: Number of the input.
* :math:`N`: Number of the input.
N equals to len(input) if input is list of Variable.
* :math:`X_i`: The input tensor.
* :math:`X_i`: The i
-th i
nput tensor.
* :math:`W
`: The weights created by this laye
r.
* :math:`W
_i`: The i-th weights matrix corresponding i-th input tenso
r.
* :math:`b`: The bias parameter created by this layer (if needed).
* :math:`b`: The bias parameter created by this layer (if needed).
* :math:`Act`: The activation function.
* :math:`Act`: The activation function.
* :math:`Out`: The output tensor.
* :math:`Out`: The output tensor.
See below for an example.
.. code-block:: text
Given:
data_1.data = [[[0.1, 0.2],
[0.3, 0.4]]]
data_1.shape = (1, 2, 2) # 1 is batch_size
data_2 = [[[0.1, 0.2, 0.3]]]
data_2.shape = (1, 1, 3)
out = fluid.layers.fc(input=[data_1, data_2], size=2)
Then:
out.data = [[0.18669507, 0.1893476]]
out.shape = (1, 2)
Args:
Args:
input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
the input tensor(s) is at least 2.
the input tensor(s) is at least 2.
...
@@ -260,8 +285,14 @@ def fc(input,
...
@@ -260,8 +285,14 @@ def fc(input,
Examples:
Examples:
.. code-block:: python
.. code-block:: python
# when input is single tensor
data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
fc = fluid.layers.fc(input=data, size=1000, act="tanh")
fc = fluid.layers.fc(input=data, size=1000, act="tanh")
# when input are multiple tensors
data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
"""
"""
helper
=
LayerHelper
(
"fc"
,
**
locals
())
helper
=
LayerHelper
(
"fc"
,
**
locals
())
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录