Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
387c1db4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
387c1db4
编写于
2月 25, 2021
作者:
X
xiayanming
提交者:
GitHub
2月 25, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Ascendrc (#31065)
Ascendrc
上级
ff4654e2
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
228 addition
and
162 deletion
+228
-162
python/paddle/distributed/fleet/ascend_utils.py
python/paddle/distributed/fleet/ascend_utils.py
+10
-12
python/paddle/distributed/fleet/launch.py
python/paddle/distributed/fleet/launch.py
+0
-10
python/paddle/distributed/fleet/launch_utils.py
python/paddle/distributed/fleet/launch_utils.py
+5
-13
python/paddle/fluid/tests/unittests/ascend_group.py
python/paddle/fluid/tests/unittests/ascend_group.py
+21
-2
python/paddle/fluid/tests/unittests/hccl_tools.py
python/paddle/fluid/tests/unittests/hccl_tools.py
+150
-0
python/paddle/fluid/tests/unittests/test_ascend_group.sh
python/paddle/fluid/tests/unittests/test_ascend_group.sh
+7
-8
python/paddle/fluid/tests/unittests/test_fleet_launch_ascend.sh
.../paddle/fluid/tests/unittests/test_fleet_launch_ascend.sh
+35
-14
python/paddle/fluid/tests/unittests/test_fleet_launch_ascend2.sh
...paddle/fluid/tests/unittests/test_fleet_launch_ascend2.sh
+0
-103
未找到文件。
python/paddle/distributed/fleet/ascend_utils.py
浏览文件 @
387c1db4
...
...
@@ -79,24 +79,25 @@ def _get_ascend_rankfile(rank_table_file_path):
def
get_cloud_cluster
(
rank_table_file
=
None
,
device_mode
=
DeviceMode
.
ASCEND_NPU
,
devices_per_proc
=
None
,
start_port
=
6070
):
"""
Args:
rank_table_file: string, ascend npu rank file path
device_mode: DeviceMode(Int)
devices_per_proc:list
start_port: the start port of current runtime env
"""
if
rank_table_file
:
# multi trainers
node_ips
,
device_count
=
_get_ascend_rankfile
(
rank_table_file
)
node_index
=
os
.
environ
.
get
(
"PADDLE_TRAINER_ID"
)
node_ip
=
None
if
node_index
is
None
:
_
,
node_ip
=
get_host_name_ip
()
if
len
(
node_ips
)
==
1
:
node_ip
=
node_ips
[
0
]
else
:
node_ip
=
node_ips
[
int
(
node_index
)]
node_index
=
os
.
environ
.
get
(
"PADDLE_TRAINER_ID"
)
node_ip
=
None
if
node_index
:
node_ip
=
node_ips
[
int
(
node_index
)]
else
:
_
,
node_ip
=
get_host_name_ip
()
assert
node_ip
in
node_ips
,
"Can't find your local ip {%s} in node_ips: {%s}"
\
%
(
node_ip
,
node_ips
)
...
...
@@ -105,11 +106,8 @@ def get_cloud_cluster(rank_table_file=None,
node_ips
=
[
"127.0.0.1"
]
node_ip
=
node_ips
[
0
]
device_count
=
1
devices_per_proc
=
None
if
devices_per_proc
is
None
:
devices_per_proc
=
[
str
(
x
)
for
x
in
range
(
device_count
)]
devices_per_proc
=
[
str
(
x
)
for
x
in
range
(
device_count
)]
free_ports
=
[
x
for
x
in
range
(
start_port
,
start_port
+
len
(
devices_per_proc
))
]
...
...
python/paddle/distributed/fleet/launch.py
浏览文件 @
387c1db4
...
...
@@ -124,15 +124,6 @@ see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/tra
default
=
"collective"
,
help
=
"run mode of job, can be:collective/ps/ps-heter"
)
base_group
.
add_argument
(
"--ascend_npus"
,
type
=
str
,
default
=
None
,
help
=
"It's for ascend npu training."
"For example:"
"--ascend_npus=
\"
0,1,2,3
\"
will launch four training processes each bound to one npu."
)
base_group
.
add_argument
(
"--selected_gpus"
,
dest
=
"gpus"
)
base_group
.
add_argument
(
...
...
@@ -233,7 +224,6 @@ def launch_collective(args):
cluster
,
pod
=
ascend_utils
.
get_cloud_cluster
(
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
),
device_mode
=
device_mode
,
devices_per_proc
=
devices_per_proc
,
start_port
=
start_port
)
else
:
# trainers_num = 1 or not use paddlecloud ips="a,b"
...
...
python/paddle/distributed/fleet/launch_utils.py
浏览文件 @
387c1db4
...
...
@@ -476,6 +476,10 @@ def start_local_trainers(cluster,
if
len
(
t
.
accelerators
)
>
0
and
pod
.
device_mode
==
DeviceMode
.
GPU
:
proc_env
[
"FLAGS_selected_gpus"
]
=
"%s"
%
","
.
join
(
[
str
(
g
)
for
g
in
t
.
accelerators
])
if
len
(
t
.
accelerators
)
>
0
and
pod
.
device_mode
==
DeviceMode
.
ASCEND_NPU
:
proc_env
[
"FLAGS_selected_npus"
]
=
"%s"
%
","
.
join
(
[
str
(
g
)
for
g
in
t
.
accelerators
])
if
len
(
t
.
accelerators
)
>
0
:
proc_env
[
"FLAGS_selected_accelerators"
]
=
"%s"
%
","
.
join
(
...
...
@@ -578,16 +582,6 @@ def watch_local_trainers(procs, nranks):
return
alive
def
get_ascend_npus
(
npus
):
if
npus
is
None
:
count
=
fluid
.
core
.
NPUDevice
.
get_device_count
()
if
count
<=
0
:
return
None
ret
=
[
str
(
x
)
for
x
in
range
(
count
)]
else
:
ret
=
[
x
.
strip
()
for
x
in
npus
.
split
(
','
)]
return
ret
def
get_gpus
(
gpus
):
if
gpus
is
None
:
gpus_num
=
fluid
.
core
.
get_cuda_device_count
()
...
...
@@ -650,9 +644,7 @@ def get_device_proc_info(args):
else
:
devices_per_proc
=
gpus
elif
device_mode
==
DeviceMode
.
ASCEND_NPU
:
npus
=
get_ascend_npus
(
args
.
ascend_npus
)
assert
args
.
nproc_per_node
is
None
,
"ascend_npus need't nproc_per_node arguments"
devices_per_proc
=
npus
devices_per_proc
=
None
elif
device_mode
==
DeviceMode
.
CPU
:
if
args
.
nproc_per_node
is
None
:
devices_per_proc
=
[
0
]
...
...
python/paddle/fluid/tests/unittests/ascend_group.py
浏览文件 @
387c1db4
...
...
@@ -69,6 +69,24 @@ def init_communicator(startup_program, main_program, current_endpoint, endpoints
OP_ROLE_KEY
:
OpRole
.
Forward
,
})
# add input op for test
fill_var_name
=
"tensor@Filled"
fill_var
=
block
.
create_var
(
name
=
fill_var_name
,
shape
=
[
10
,
10
],
dtype
=
'float32'
,
persistable
=
False
,
stop_gradient
=
True
)
block
.
append_op
(
type
=
"fill_constant"
,
outputs
=
{
"Out"
:
fill_var_name
},
attrs
=
{
"shape"
:
[
10
,
10
],
"dtype"
:
fill_var
.
dtype
,
"value"
:
1.0
,
"place_type"
:
1
})
with
fluid
.
program_guard
(
main_program
):
op_type
=
"c_allreduce_sum"
data
=
fluid
.
layers
.
fill_constant
(
shape
=
[
1
],
dtype
=
'float32'
,
value
=
2.5
)
...
...
@@ -117,10 +135,11 @@ def train(world_endpoints, world_device_ids, local_device_ids,local_rank):
main_program
=
main_programs
[
local_rank
]
loss
=
Loss
(
Block
(
main_program
))
optimizer
=
ascend_optimizer
.
AscendOptimizer
(
None
,
fetch_list
=
[])
optimizer
.
minimize
(
loss
,
startup_program
,
auto_dp
=
True
)
optimizer
.
minimize
(
loss
,
startup_program
,
auto_dp
=
True
,
rank_table_file
=
os
.
getenv
(
"RANK_TABLE_FILE"
,
None
))
exe
=
paddle
.
static
.
Executor
(
paddle
.
CPUPlace
())
#
exe.run(startup_program)
exe
.
run
(
startup_program
)
exe
.
run
(
main_program
)
...
...
python/paddle/fluid/tests/unittests/hccl_tools.py
0 → 100644
浏览文件 @
387c1db4
# -*- coding:UTF-8 -*-
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""generate hccl config file script"""
import
os
import
sys
import
json
import
socket
from
argparse
import
ArgumentParser
from
typing
import
Dict
,
Any
def
parse_args
():
"""
parse args .
Args:
Returns:
args.
Examples:
>>> parse_args()
"""
parser
=
ArgumentParser
(
description
=
"mindspore distributed training launch "
"helper utilty that will generate hccl"
" config file"
)
parser
.
add_argument
(
"--device_num"
,
type
=
str
,
default
=
"[0,8)"
,
help
=
"The number of the Ascend accelerators used. please note that the Ascend accelerators"
"used must be continuous, such [0,4) means to use four chips "
"0,1,2,3; [0,1) means to use chip 0; The first four chips are"
"a group, and the last four chips are a group. In addition to"
"the [0,8) chips are allowed, other cross-group such as [3,6)"
"are prohibited."
)
parser
.
add_argument
(
"--visible_devices"
,
type
=
str
,
default
=
"0,1,2,3,4,5,6,7"
,
help
=
"will use the visible devices sequentially"
)
parser
.
add_argument
(
"--server_ip"
,
type
=
str
,
default
=
""
,
help
=
"server ip"
)
args
=
parser
.
parse_args
()
return
args
def
get_host_ip
():
"""
get host ip
"""
ip
=
None
try
:
hostname
=
socket
.
gethostname
()
ip
=
socket
.
gethostbyname
(
hostname
)
except
EOFError
:
pass
return
ip
def
main
():
print
(
"start"
,
__file__
)
args
=
parse_args
()
# visible_devices
visible_devices
=
args
.
visible_devices
.
split
(
','
)
print
(
'visible_devices:{}'
.
format
(
visible_devices
))
# server_id
ip
=
get_host_ip
()
if
args
.
server_ip
:
server_id
=
args
.
server_ip
elif
ip
:
server_id
=
ip
else
:
raise
ValueError
(
"please input server ip!"
)
print
(
'server_id:{}'
.
format
(
server_id
))
# device_num
first_num
=
int
(
args
.
device_num
[
1
])
last_num
=
int
(
args
.
device_num
[
3
])
if
first_num
<
0
or
last_num
>
8
:
raise
ValueError
(
"device num {} must be in range [0,8] !"
.
format
(
args
.
device_num
))
if
first_num
>
last_num
:
raise
ValueError
(
"First num {} of device num {} must less than last num {} !"
.
format
(
first_num
,
args
.
device_num
,
last_num
))
if
first_num
<
4
:
if
last_num
>
4
:
if
first_num
==
0
and
last_num
==
8
:
pass
else
:
raise
ValueError
(
"device num {} must be in the same group of [0,4] or [4,8] !"
.
format
(
args
.
device_num
))
device_num_list
=
list
(
range
(
first_num
,
last_num
))
print
(
"device_num_list:"
,
device_num_list
)
assert
len
(
visible_devices
)
>=
len
(
device_num_list
)
# construct hccn_table
device_ips
:
Dict
[
Any
,
Any
]
=
{}
with
open
(
'/etc/hccn.conf'
,
'r'
)
as
fin
:
for
hccn_item
in
fin
.
readlines
():
if
hccn_item
.
strip
().
startswith
(
'address_'
):
device_id
,
device_ip
=
hccn_item
.
split
(
'='
)
device_id
=
device_id
.
split
(
'_'
)[
1
]
device_ips
[
device_id
]
=
device_ip
.
strip
()
hccn_table
=
{
'version'
:
'1.0'
,
'server_count'
:
'1'
,
'server_list'
:
[]}
device_list
=
[]
rank_id
=
0
for
instance_id
in
device_num_list
:
device_id
=
visible_devices
[
instance_id
]
device_ip
=
device_ips
[
device_id
]
device
=
{
'device_id'
:
device_id
,
'device_ip'
:
device_ip
,
'rank_id'
:
str
(
rank_id
)}
print
(
'rank_id:{}, device_id:{}, device_ip:{}'
.
format
(
rank_id
,
device_id
,
device_ip
))
rank_id
+=
1
device_list
.
append
(
device
)
hccn_table
[
'server_list'
].
append
({
'server_id'
:
server_id
,
'device'
:
device_list
,
'host_nic_ip'
:
'reserve'
})
hccn_table
[
'status'
]
=
'completed'
# save hccn_table to file
table_path
=
os
.
getcwd
()
table_fn
=
os
.
path
.
join
(
table_path
,
'hccl_{}p_{}_{}.json'
.
format
(
len
(
device_num_list
),
""
.
join
(
map
(
str
,
device_num_list
)),
server_id
))
with
open
(
table_fn
,
'w'
)
as
table_fp
:
json
.
dump
(
hccn_table
,
table_fp
,
indent
=
4
)
sys
.
stdout
.
flush
()
print
(
"Completed: hccl file was save in :"
,
table_fn
)
if
__name__
==
"__main__"
:
main
()
python/paddle/fluid/tests/unittests/test_ascend_group.sh
浏览文件 @
387c1db4
...
...
@@ -16,15 +16,14 @@
set
-e
cluster_node_ips
=
"127.0.0.1"
export
PADDLE_TRAINERS_NUM
=
4
export
POD_IP
=
127.0.0.1
export
PADDLE_TRAINERS
=
127.0.0.1
export
PADDLE_TRAINER_ID
=
0
curr_host_ip
=
`
hostname
-i
`
python hccl_tools.py
--device_num
"[0,4)"
--server_ip
${
curr_host_ip
}
export
PADDLE_PORT
=
35789
export
TRAINER_PORTS_NUM
=
4
export
RANK_TABLE_FILE
=
"
${
PWD
}
/hccl_4p_0123_
${
curr_host_ip
}
.json"
distributed_args
=
"--ips=
${
cluster_node_ips
}
--ascend_npus=0,1,2,3 --log_dir=testlog"
# use ascend
echo
"begin test use ascend npu"
distributed_args
=
"--run_mode=collective --log_dir=testlog"
python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
\
ascend_group.py fleetascendgroup
\ No newline at end of file
python/paddle/fluid/tests/unittests/test_fleet_launch_ascend.sh
浏览文件 @
387c1db4
...
...
@@ -16,22 +16,43 @@
set
-e
# use paddlecloud
echo
"begin test use paddlecloud"
cluster_node_ips
=
"127.0.0.1,127.0.0.2"
export
PADDLE_TRAINERS_NUM
=
2
export
POD_IP
=
127.0.0.1
export
PADDLE_TRAINERS
=
127.0.0.1,127.0.0.2
export
PADDLE_TRAINER_ID
=
0
export
PADDLE_PORT
=
35789
export
TRAINER_PORTS_NUM
=
2
distributed_args
=
"--ips=
${
cluster_node_ips
}
--ascend_npus=0,1 --log_dir=testlog"
RANK_TABLE_FILE_NAME
=
"rank_table_file.json"
cat
>
${
RANK_TABLE_FILE_NAME
}
<<
EOF
{
"status": "completed",
"version": "1.0",
"server_count": "1",
"server_list": [
{
"server_id": "127.0.0.1",
"device": [
{
"device_id": "0",
"device_ip": "192.1.184.23",
"rank_id": "0"
},
{
"device_id": "1",
"device_ip": "192.2.21.93",
"rank_id": "1"
}
]
}
]
}
EOF
# set ascend rank table file env
export
RANK_TABLE_FILE
=
"
${
PWD
}
/
${
RANK_TABLE_FILE_NAME
}
"
# use ascend
echo
"begin test use ascend npu"
distributed_args
=
"--run_mode=collective --log_dir=testlog"
python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
ascend_multi_process_collective.py fleetlaunchascend
str1
=
"selected_accelerators:0 worker_endpoints:127.0.0.1:
35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35789 trainer_id:0 device_ids:0,1,
0,1 device_id:0"
str2
=
"selected_accelerators:1 worker_endpoints:127.0.0.1:
35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35790 trainer_id:1 device_ids:0,1,
0,1 device_id:1"
str1
=
"selected_accelerators:0 worker_endpoints:127.0.0.1:
6170,127.0.0.1:6171 trainers_num:2 current_endpoint:127.0.0.1:6170 trainer_id:0 device_ids:
0,1 device_id:0"
str2
=
"selected_accelerators:1 worker_endpoints:127.0.0.1:
6170,127.0.0.1:6171 trainers_num:2 current_endpoint:127.0.0.1:6171 trainer_id:1 device_ids:
0,1 device_id:1"
file_0
=
"multi_process_fleetlaunchascend.check_0.log"
file_1
=
"multi_process_fleetlaunchascend.check_1.log"
...
...
python/paddle/fluid/tests/unittests/test_fleet_launch_ascend2.sh
已删除
100644 → 0
浏览文件 @
ff4654e2
#!/bin/bash
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
set
-e
RANK_TABLE_FILE_NAME
=
"rank_table_file.json"
cat
>
${
RANK_TABLE_FILE_NAME
}
<<
EOF
{
"status": "completed",
"version": "1.0",
"server_count": "2",
"server_list": [
{
"server_id": "127.0.0.1",
"device": [
{
"device_id": "0",
"device_ip": "192.1.184.23",
"rank_id": "0"
},
{
"device_id": "1",
"device_ip": "192.2.21.93",
"rank_id": "1"
}
]
},
{
"server_id": "127.0.0.2",
"device": [
{
"device_id": "0",
"device_ip": "192.1.94.132",
"rank_id": "2"
},
{
"device_id": "1",
"device_ip": "192.2.94.30",
"rank_id": "3"
}
]
}
]
}
EOF
# set ascend rank table file env
export
RANK_TABLE_FILE
=
"
${
PWD
}
/
${
RANK_TABLE_FILE_NAME
}
"
# use paddlecloud
echo
"begin test use paddlecloud"
cluster_node_ips
=
"127.0.0.1,127.0.0.2"
export
PADDLE_TRAINERS_NUM
=
2
export
POD_IP
=
127.0.0.1
export
PADDLE_TRAINERS
=
127.0.0.1,127.0.0.2
export
PADDLE_TRAINER_ID
=
0
export
PADDLE_PORT
=
35789
export
TRAINER_PORTS_NUM
=
2
distributed_args
=
"--run_mode=collective --log_dir=testlog"
python
-m
paddle.distributed.fleet.launch
${
distributed_args
}
ascend_multi_process_collective.py fleetlaunchascend
str1
=
"selected_accelerators:0 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35789 trainer_id:0 device_ids:0,1,0,1 device_id:0"
str2
=
"selected_accelerators:1 worker_endpoints:127.0.0.1:35789,127.0.0.1:35790,127.0.0.2:35789,127.0.0.2:35790 trainers_num:4 current_endpoint:127.0.0.1:35790 trainer_id:1 device_ids:0,1,0,1 device_id:1"
file_0
=
"multi_process_fleetlaunchascend.check_0.log"
file_1
=
"multi_process_fleetlaunchascend.check_1.log"
echo
"paddlecloud params test"
if
grep
-q
"
$str1
"
"
$file_0
"
;
then
echo
"find trainer 0"
else
echo
"not find trainer 0"
exit
-1
fi
if
grep
-q
"
$str2
"
"
$file_1
"
;
then
echo
"find trainer 1"
else
echo
"not find trainer 1"
exit
-1
fi
# test async poll process
if
[
-f
$file_0
]
;
then
rm
$file_0
fi
if
[
-f
$file_1
]
;
then
rm
$file_1
fi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录