Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
3723dcc3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3723dcc3
编写于
2月 27, 2019
作者:
M
minqiyang
提交者:
ceci3
3月 04, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish code
test=develop
上级
afc3fcd5
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
136 addition
and
135 deletion
+136
-135
paddle/fluid/framework/block_desc.cc
paddle/fluid/framework/block_desc.cc
+1
-0
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+2
-7
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+9
-9
python/paddle/fluid/tests/unittests/test_imperative_basic.py
python/paddle/fluid/tests/unittests/test_imperative_basic.py
+124
-119
未找到文件。
paddle/fluid/framework/block_desc.cc
浏览文件 @
3723dcc3
...
...
@@ -156,6 +156,7 @@ void BlockDesc::RemoveOp(size_t s, size_t e) {
}
void
BlockDesc
::
RemoveOpInternal
(
const
OpDesc
*
op_desc
)
{
// TODO(minqiyang): make this faster
for
(
auto
it
=
ops_
.
begin
();
it
!=
ops_
.
end
();
++
it
)
{
if
(
it
->
get
()
==
op_desc
)
{
ops_
.
erase
(
it
);
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
3723dcc3
...
...
@@ -235,6 +235,8 @@ class PYBIND11_HIDDEN OpBase {
backward_hooks_
()
{}
virtual
~
OpBase
()
{
// TODO(minqiyang): remove op_desc from block_desc in tracer
//
// reset all output vars' pre op
for
(
auto
iter
:
output_vars_
)
{
for
(
VarBase
*
var
:
iter
.
second
)
{
...
...
@@ -242,13 +244,6 @@ class PYBIND11_HIDDEN OpBase {
}
}
// remove op desc from block desc
if
(
op_desc_
)
{
if
(
block_
)
{
block_
->
RemoveOpInternal
(
op_desc_
);
}
}
// release resource
for
(
framework
::
OpDesc
*
desc
:
grad_op_descs_
)
{
delete
desc
;
...
...
python/paddle/fluid/initializer.py
浏览文件 @
3723dcc3
...
...
@@ -19,7 +19,7 @@ import numpy as np
from
.wrapped_decorator
import
signature_safe_contextmanager
from
.core
import
VarDesc
from
.
import
unique_name
from
.imperative
import
base
from
.imperative
import
base
as
imperative_base
__all__
=
[
'Constant'
,
'Uniform'
,
'Normal'
,
'TruncatedNormal'
,
'Xavier'
,
'Bilinear'
,
...
...
@@ -166,7 +166,7 @@ class ConstantInitializer(Initializer):
'force_cpu'
:
self
.
_force_cpu
or
force_init_on_cpu
()
},
stop_gradient
=
True
)
if
not
base
.
enabled
():
if
not
imperative_
base
.
enabled
():
var
.
op
=
op
return
op
...
...
@@ -246,7 +246,7 @@ class UniformInitializer(Initializer):
attrs
=
{
"in_dtype"
:
out_var
.
dtype
,
"out_dtype"
:
var
.
dtype
})
if
not
base
.
enabled
():
if
not
imperative_
base
.
enabled
():
var
.
op
=
op
return
op
...
...
@@ -325,7 +325,7 @@ class NormalInitializer(Initializer):
outputs
=
{
"Out"
:
var
},
attrs
=
{
"in_dtype"
:
out_var
.
dtype
,
"out_dtype"
:
var
.
dtype
})
if
not
base
.
enabled
():
if
not
imperative_
base
.
enabled
():
var
.
op
=
op
return
op
...
...
@@ -404,7 +404,7 @@ class TruncatedNormalInitializer(Initializer):
outputs
=
{
"Out"
:
var
},
attrs
=
{
"in_dtype"
:
out_var
.
dtype
,
"out_dtype"
:
var
.
dtype
})
if
not
base
.
enabled
():
if
not
imperative_
base
.
enabled
():
var
.
op
=
op
return
op
...
...
@@ -510,7 +510,7 @@ class XavierInitializer(Initializer):
"seed"
:
self
.
_seed
},
stop_gradient
=
True
)
if
not
base
.
enabled
():
if
not
imperative_
base
.
enabled
():
var
.
op
=
op
return
op
...
...
@@ -611,7 +611,7 @@ class MSRAInitializer(Initializer):
"seed"
:
self
.
_seed
},
stop_gradient
=
True
)
if
not
base
.
enabled
():
if
not
imperative_
base
.
enabled
():
var
.
op
=
op
return
op
...
...
@@ -710,7 +710,7 @@ class BilinearInitializer(Initializer):
'shape'
:
list
(
shape
),
value_name
:
values
})
if
not
base
.
enabled
():
if
not
imperative_
base
.
enabled
():
var
.
op
=
op
return
op
...
...
@@ -769,7 +769,7 @@ class NumpyArrayInitializer(Initializer):
value_name
:
values
},
stop_gradient
=
True
)
if
not
base
.
enabled
():
if
not
imperative_
base
.
enabled
():
var
.
op
=
op
return
op
...
...
python/paddle/fluid/tests/unittests/test_imperative_basic.py
浏览文件 @
3723dcc3
...
...
@@ -191,126 +191,28 @@ class SimpleRNN(fluid.imperative.Layer):
return
outs
,
pre_hiddens
# class TestImperative(unittest.TestCase):
# def test_sum_op(self):
# x = np.ones([2, 2], np.float32)
# with fluid.imperative.guard():
# inputs = []
# for _ in range(10):
# inputs.append(fluid.imperative.base.to_variable(x))
# ret = fluid.layers.sums(inputs)
# loss = fluid.layers.reduce_sum(ret)
# loss._backward()
# self.assertTrue(np.allclose(ret._numpy(), x * 10))
# self.assertTrue(np.allclose(inputs[0]._gradient(), x))
# def test_layer(self):
# with fluid.imperative.guard():
# cl = core.Layer()
# cl.forward([])
# l = fluid.imperative.Layer("l")
# self.assertRaises(NotImplementedError, l.forward, [])
# def test_layer_in_out(self):
# np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# l = MyLayer("my_layer")
# x = l(var_inp)[0]
# self.assertIsNotNone(x)
# dy_out = x._numpy()
# x._backward()
# dy_grad = l._x_for_debug._gradient()
# with new_program_scope():
# inp = fluid.layers.data(name="inp", shape=[3], append_batch_size=False)
# l = MyLayer("my_layer")
# x = l(inp)[0]
# param_grads = fluid.backward.append_backward(x, parameter_list=[l._x_for_debug.name])[0]
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
# static_out, static_grad = exe.run(feed={inp.name: np_inp},
# fetch_list=[x.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# mlp = MLP("mlp")
# out = mlp(var_inp)
# dy_out = out._numpy()
# out._backward()
# dy_grad = mlp._fc1._w._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[2, 2], append_batch_size=False)
# mlp = MLP("mlp")
# out = mlp(inp)
# param_grads = fluid.backward.append_backward(out, parameter_list=[mlp._fc1._w.name])[0]
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
# exe.run(fluid.default_startup_program())
# static_out, static_grad = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[out.name, param_grads[1].name])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad, static_grad))
# params = mlp.parameters(True)
# self.assertEqual("mlp/MLP_0/FC_0_0.w_0", params[0].name)
# self.assertEqual("mlp/MLP_0/FC_0_0.b_0", params[1].name)
# self.assertEqual("mlp/MLP_0/FC_1_0.w_0", params[2].name)
# self.assertEqual("mlp/MLP_0/FC_1_0.b_0", params[3].name)
# self.assertEqual(len(params), 4)
# sublayers = mlp.sublayers(True)
# self.assertEqual(mlp._fc1, sublayers[0])
# self.assertEqual(mlp._fc2, sublayers[1])
# self.assertEqual(len(sublayers), 2)
# def test_rnn(self):
# np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
# [10.0, 11.0, 12.0]])
# np_inp = np_inp.reshape((1, 4, 3))
# np_inp = np_inp.astype(np.float32)
# with fluid.imperative.guard():
# var_inp = fluid.imperative.base.to_variable(np_inp)
# var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
# simple_rnn = SimpleRNN("simple_rnn")
# outs, pre_hiddens = simple_rnn.forward(var_inp)
# dy_out = outs[3]._numpy()
# outs[3]._backward()
# dy_grad_h2o = simple_rnn._cell._h2o_w._gradient()
# dy_grad_h2h = simple_rnn._cell._h2h_w._gradient()
# dy_grad_i2h = simple_rnn._cell._i2h_w._gradient()
# with new_program_scope():
# inp = fluid.layers.data(
# name="inp", shape=[1, 4, 3], append_batch_size=False)
# simple_rnn = SimpleRNN("simple_rnn")
# outs, pre_hiddens = simple_rnn(inp)
# param_grads = fluid.backward.append_backward(outs[3])
# exe = fluid.Executor(fluid.CPUPlace())
# exe.run(fluid.default_startup_program())
# static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
# feed={inp.name: np_inp},
# fetch_list=[
# outs[3].name, param_grads[0][1].name,
# param_grads[1][1].name, param_grads[2][1].name
# ])
# self.assertTrue(np.allclose(dy_out, static_out))
# self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
# self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
# self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
class
TestImperativePyLayer
(
unittest
.
TestCase
):
class
TestImperative
(
unittest
.
TestCase
):
def
test_sum_op
(
self
):
x
=
np
.
ones
([
2
,
2
],
np
.
float32
)
with
fluid
.
imperative
.
guard
():
inputs
=
[]
for
_
in
range
(
10
):
inputs
.
append
(
fluid
.
imperative
.
base
.
to_variable
(
x
))
ret
=
fluid
.
layers
.
sums
(
inputs
)
loss
=
fluid
.
layers
.
reduce_sum
(
ret
)
loss
.
_backward
()
self
.
assertTrue
(
np
.
allclose
(
ret
.
_numpy
(),
x
*
10
))
self
.
assertTrue
(
np
.
allclose
(
inputs
[
0
].
_gradient
(),
x
))
def
test_layer
(
self
):
with
fluid
.
imperative
.
guard
():
cl
=
core
.
Layer
()
cl
.
forward
([])
l
=
fluid
.
imperative
.
Layer
(
"l"
)
self
.
assertRaises
(
NotImplementedError
,
l
.
forward
,
[])
def
test_pylayer_func_id
(
self
):
with
fluid
.
imperative
.
guard
():
class
PyLayer1
(
fluid
.
imperative
.
PyLayer
):
...
...
@@ -378,6 +280,109 @@ class TestImperativePyLayer(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
def
test_layer_in_out
(
self
):
np_inp
=
np
.
array
([
1.0
,
2.0
,
-
1.0
],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
l
=
MyLayer
(
"my_layer"
)
x
=
l
(
var_inp
)[
0
]
self
.
assertIsNotNone
(
x
)
dy_out
=
x
.
_numpy
()
x
.
_backward
()
dy_grad
=
l
.
_x_for_debug
.
_gradient
()
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
3
],
append_batch_size
=
False
)
l
=
MyLayer
(
"my_layer"
)
x
=
l
(
inp
)[
0
]
param_grads
=
fluid
.
backward
.
append_backward
(
x
,
parameter_list
=
[
l
.
_x_for_debug
.
name
])[
0
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
static_out
,
static_grad
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
fetch_list
=
[
x
.
name
,
param_grads
[
1
].
name
])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
def
test_mlp
(
self
):
np_inp
=
np
.
array
([[
1.0
,
2.0
],
[
3.0
,
4.0
]],
dtype
=
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
mlp
=
MLP
(
"mlp"
)
out
=
mlp
(
var_inp
)
dy_out
=
out
.
_numpy
()
out
.
_backward
()
dy_grad
=
mlp
.
_fc1
.
_w
.
_gradient
()
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
2
,
2
],
append_batch_size
=
False
)
mlp
=
MLP
(
"mlp"
)
out
=
mlp
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
out
,
parameter_list
=
[
mlp
.
_fc1
.
_w
.
name
])[
0
]
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
exe
.
run
(
fluid
.
default_startup_program
())
static_out
,
static_grad
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
fetch_list
=
[
out
.
name
,
param_grads
[
1
].
name
])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad
,
static_grad
))
params
=
mlp
.
parameters
(
True
)
self
.
assertEqual
(
"mlp/MLP_0/FC_0_0.w_0"
,
params
[
0
].
name
)
self
.
assertEqual
(
"mlp/MLP_0/FC_0_0.b_0"
,
params
[
1
].
name
)
self
.
assertEqual
(
"mlp/MLP_0/FC_1_0.w_0"
,
params
[
2
].
name
)
self
.
assertEqual
(
"mlp/MLP_0/FC_1_0.b_0"
,
params
[
3
].
name
)
self
.
assertEqual
(
len
(
params
),
4
)
sublayers
=
mlp
.
sublayers
(
True
)
self
.
assertEqual
(
mlp
.
_fc1
,
sublayers
[
0
])
self
.
assertEqual
(
mlp
.
_fc2
,
sublayers
[
1
])
self
.
assertEqual
(
len
(
sublayers
),
2
)
def
test_rnn
(
self
):
np_inp
=
np
.
array
([[
1.0
,
2.0
,
3.0
],
[
4.0
,
5.0
,
6.0
],
[
7.0
,
8.0
,
9.0
],
[
10.0
,
11.0
,
12.0
]])
np_inp
=
np_inp
.
reshape
((
1
,
4
,
3
))
np_inp
=
np_inp
.
astype
(
np
.
float32
)
with
fluid
.
imperative
.
guard
():
var_inp
=
fluid
.
imperative
.
base
.
to_variable
(
np_inp
)
var_inp
=
fluid
.
layers
.
reshape
(
var_inp
,
shape
=
[
1
,
4
,
3
])
simple_rnn
=
SimpleRNN
(
"simple_rnn"
)
outs
,
pre_hiddens
=
simple_rnn
.
forward
(
var_inp
)
dy_out
=
outs
[
3
].
_numpy
()
outs
[
3
].
_backward
()
dy_grad_h2o
=
simple_rnn
.
_cell
.
_h2o_w
.
_gradient
()
dy_grad_h2h
=
simple_rnn
.
_cell
.
_h2h_w
.
_gradient
()
dy_grad_i2h
=
simple_rnn
.
_cell
.
_i2h_w
.
_gradient
()
with
new_program_scope
():
inp
=
fluid
.
layers
.
data
(
name
=
"inp"
,
shape
=
[
1
,
4
,
3
],
append_batch_size
=
False
)
simple_rnn
=
SimpleRNN
(
"simple_rnn"
)
outs
,
pre_hiddens
=
simple_rnn
(
inp
)
param_grads
=
fluid
.
backward
.
append_backward
(
outs
[
3
])
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
static_out
,
static_grad_h2o
,
static_grad_h2h
,
static_grad_i2h
=
exe
.
run
(
feed
=
{
inp
.
name
:
np_inp
},
fetch_list
=
[
outs
[
3
].
name
,
param_grads
[
0
][
1
].
name
,
param_grads
[
1
][
1
].
name
,
param_grads
[
2
][
1
].
name
])
self
.
assertTrue
(
np
.
allclose
(
dy_out
,
static_out
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_h2o
,
static_grad_h2o
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_h2h
,
static_grad_h2h
))
self
.
assertTrue
(
np
.
allclose
(
dy_grad_i2h
,
static_grad_i2h
))
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录