Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
36f08826
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
36f08826
编写于
8月 03, 2022
作者:
Z
zhangkaihuo
提交者:
GitHub
8月 03, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
opt bn1d backward (#44783)
上级
65f38869
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
414 addition
and
18 deletion
+414
-18
paddle/phi/kernels/gpu/batch_norm_grad_kernel.cu
paddle/phi/kernels/gpu/batch_norm_grad_kernel.cu
+383
-17
paddle/phi/kernels/gpu/batch_norm_kernel.cu
paddle/phi/kernels/gpu/batch_norm_kernel.cu
+2
-1
python/paddle/fluid/tests/unittests/test_batch_norm_op_v2.py
python/paddle/fluid/tests/unittests/test_batch_norm_op_v2.py
+29
-0
未找到文件。
paddle/phi/kernels/gpu/batch_norm_grad_kernel.cu
浏览文件 @
36f08826
...
...
@@ -21,8 +21,10 @@
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/batch_norm_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/norm_utils.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/gpu/batch_norm_utils.h"
#ifdef __HIPCC__
...
...
@@ -197,6 +199,7 @@ static __global__ LAUNCH_BOUNDS(BlockDim) void BNBackward(
x_sum
+=
x_i
;
x_square_sum
+=
x_i
*
x_i
;
}
x_sum
=
BlockReduce
(
mean_storage
).
Reduce
(
x_sum
,
cub
::
Sum
());
x_square_sum
=
BlockReduce
(
variance_storeage
).
Reduce
(
x_square_sum
,
cub
::
Sum
());
...
...
@@ -218,6 +221,7 @@ static __global__ LAUNCH_BOUNDS(BlockDim) void BNBackward(
dy_i
*
(
static_cast
<
BatchNormParamType
<
T
>>
(
x
[
index
])
-
mean_val
);
db_sum
+=
dy_i
;
}
ds_sum
=
BlockReduce
(
ds_storage
).
Reduce
(
ds_sum
,
cub
::
Sum
());
db_sum
=
BlockReduce
(
db_storage
).
Reduce
(
db_sum
,
cub
::
Sum
());
if
(
threadIdx
.
x
==
0
)
{
...
...
@@ -241,6 +245,263 @@ static __global__ LAUNCH_BOUNDS(BlockDim) void BNBackward(
}
}
template
<
typename
T
>
__device__
__forceinline__
void
BlockReduceByVetical
(
BatchNormParamType
<
T
>
x_sum
,
BatchNormParamType
<
T
>
x_square_sum
,
BatchNormParamType
<
T
>
*
smem_sum
,
BatchNormParamType
<
T
>
*
smem_square_sum
,
BatchNormParamType
<
T
>
*
x_sum_out
,
BatchNormParamType
<
T
>
*
x_square_sum_out
)
{
int
tid
=
threadIdx
.
x
+
threadIdx
.
y
*
blockDim
.
x
;
#pragma unroll
for
(
int
offset
=
blockDim
.
y
/
2
;
offset
>
0
;
offset
>>=
1
)
{
if
(
threadIdx
.
y
<
offset
*
2
)
{
smem_sum
[
tid
]
=
x_sum
;
smem_square_sum
[
tid
]
=
x_square_sum
;
}
__syncthreads
();
if
(
threadIdx
.
y
<
offset
)
{
int
pair_tid
=
tid
+
offset
*
blockDim
.
x
;
x_sum
+=
smem_sum
[
pair_tid
];
x_square_sum
+=
smem_square_sum
[
pair_tid
];
}
}
if
(
threadIdx
.
y
==
0
)
{
*
x_sum_out
=
x_sum
;
*
x_square_sum_out
=
x_square_sum
;
}
}
template
<
typename
T
,
int
BlockDim
>
static
__global__
void
BNBackward2DChannelLastStage1
(
const
T
*
x
,
const
int
C
,
const
int
N
,
const
int
HxW
,
const
double
epsilon
,
BatchNormParamType
<
T
>
*
block_data_ptr
,
BatchNormParamType
<
T
>
*
compute_mean
,
BatchNormParamType
<
T
>
*
compute_inv_var
,
int
*
flag_ptr
)
{
int
outer_size
=
C
;
int
inner_size
=
N
*
HxW
;
__shared__
BatchNormParamType
<
T
>
smem_sum
[
BlockDim
];
__shared__
BatchNormParamType
<
T
>
smem_square_sum
[
BlockDim
];
__shared__
BatchNormParamType
<
T
>
inv_var_val
;
__shared__
BatchNormParamType
<
T
>
mean_val
;
int
outer_loop_stride
=
gridDim
.
x
*
blockDim
.
x
;
int
inner_loop_stride
=
gridDim
.
y
*
blockDim
.
y
;
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
outer_size
;
i
+=
outer_loop_stride
)
{
BatchNormParamType
<
T
>
x_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
BatchNormParamType
<
T
>
x_square_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
for
(
int
j
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
j
<
inner_size
;
j
+=
inner_loop_stride
)
{
const
int
index
=
j
*
outer_size
+
i
;
BatchNormParamType
<
T
>
x_i
=
static_cast
<
BatchNormParamType
<
T
>>
(
x
[
index
]);
x_sum
+=
x_i
;
x_square_sum
+=
x_i
*
x_i
;
}
// vertical block sum
BlockReduceByVetical
<
T
>
(
x_sum
,
x_square_sum
,
&
smem_sum
[
0
],
&
smem_square_sum
[
0
],
&
x_sum
,
&
x_square_sum
);
if
(
gridDim
.
y
>
1
)
{
volatile
BatchNormParamType
<
T
>
*
staging_sum
=
block_data_ptr
;
volatile
BatchNormParamType
<
T
>
*
staging_square_sum
=
&
block_data_ptr
[
C
*
gridDim
.
y
];
// write block data to global memory
if
(
threadIdx
.
y
==
0
)
{
staging_sum
[
i
+
blockIdx
.
y
*
C
]
=
x_sum
;
staging_square_sum
[
i
+
blockIdx
.
y
*
C
]
=
x_square_sum
;
}
// make sure write is visible to all blocks
__threadfence
();
__syncthreads
();
__shared__
bool
is_last_block_done
;
// mark block done
if
(
threadIdx
.
x
==
0
&&
threadIdx
.
y
==
0
)
{
int
old
=
atomicAdd
(
&
flag_ptr
[
blockIdx
.
x
],
1
);
is_last_block_done
=
(
old
==
(
gridDim
.
y
-
1
));
}
__syncthreads
();
if
(
is_last_block_done
)
{
x_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
x_square_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
// thread sum
for
(
int
y
=
threadIdx
.
y
;
y
<
gridDim
.
y
;
y
+=
blockDim
.
y
)
{
x_sum
+=
staging_sum
[
i
+
y
*
C
];
x_square_sum
+=
staging_square_sum
[
i
+
y
*
C
];
}
// vertical block sum
BlockReduceByVetical
<
T
>
(
x_sum
,
x_square_sum
,
&
smem_sum
[
0
],
&
smem_square_sum
[
0
],
&
x_sum
,
&
x_square_sum
);
// final compute
if
(
threadIdx
.
y
==
0
)
{
BatchNormParamType
<
T
>
compute_mean_val
=
x_sum
/
inner_size
;
BatchNormParamType
<
T
>
variance_val
=
x_square_sum
/
inner_size
-
compute_mean_val
*
compute_mean_val
;
BatchNormParamType
<
T
>
compute_inv_var_val
=
1
/
sqrt
(
variance_val
+
epsilon
);
compute_mean
[
i
]
=
compute_mean_val
;
compute_inv_var
[
i
]
=
compute_inv_var_val
;
}
}
}
}
}
template
<
typename
T
,
int
BlockDim
>
static
__global__
void
BNBackward2DChannelLastStage2
(
const
T
*
dy
,
const
T
*
x
,
const
BatchNormParamType
<
T
>
*
means
,
const
BatchNormParamType
<
T
>
*
variances
,
const
int
C
,
const
int
N
,
const
int
HxW
,
const
double
epsilon
,
BatchNormParamType
<
T
>
*
block_data_ptr
,
BatchNormParamType
<
T
>
*
dscale
,
BatchNormParamType
<
T
>
*
dbias
,
int
*
flag_ptr
)
{
int
outer_size
=
C
;
int
inner_size
=
N
*
HxW
;
__shared__
BatchNormParamType
<
T
>
smem_ds_sum
[
BlockDim
];
__shared__
BatchNormParamType
<
T
>
smem_db_sum
[
BlockDim
];
__shared__
BatchNormParamType
<
T
>
inv_var_val
;
__shared__
BatchNormParamType
<
T
>
mean_val
;
int
outer_loop_stride
=
gridDim
.
x
*
blockDim
.
x
;
int
inner_loop_stride
=
gridDim
.
y
*
blockDim
.
y
;
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
outer_size
;
i
+=
outer_loop_stride
)
{
BatchNormParamType
<
T
>
ds_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
BatchNormParamType
<
T
>
db_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
BatchNormParamType
<
T
>
mean_val
=
means
[
i
];
BatchNormParamType
<
T
>
inv_var_val
=
variances
[
i
];
for
(
int
j
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
j
<
inner_size
;
j
+=
inner_loop_stride
)
{
const
int
index
=
j
*
outer_size
+
i
;
BatchNormParamType
<
T
>
dy_i
=
static_cast
<
BatchNormParamType
<
T
>>
(
dy
[
index
]);
ds_sum
+=
dy_i
*
(
static_cast
<
BatchNormParamType
<
T
>>
(
x
[
index
])
-
mean_val
);
db_sum
+=
dy_i
;
}
// vertical block sum
BlockReduceByVetical
<
T
>
(
ds_sum
,
db_sum
,
&
smem_ds_sum
[
0
],
&
smem_db_sum
[
0
],
&
ds_sum
,
&
db_sum
);
if
(
gridDim
.
y
>
1
)
{
volatile
BatchNormParamType
<
T
>
*
staging_ds_sum
=
block_data_ptr
;
volatile
BatchNormParamType
<
T
>
*
staging_db_sum
=
&
block_data_ptr
[
C
*
gridDim
.
y
];
// write block data to global memory
if
(
threadIdx
.
y
==
0
)
{
staging_ds_sum
[
i
+
blockIdx
.
y
*
C
]
=
ds_sum
;
staging_db_sum
[
i
+
blockIdx
.
y
*
C
]
=
db_sum
;
}
// make sure write is visible to all blocks
__threadfence
();
__syncthreads
();
__shared__
bool
is_last_block_done
;
// mark block done
if
(
threadIdx
.
x
==
0
&&
threadIdx
.
y
==
0
)
{
int
old
=
atomicAdd
(
&
flag_ptr
[
blockIdx
.
x
],
1
);
is_last_block_done
=
(
old
==
(
gridDim
.
y
-
1
));
}
__syncthreads
();
if
(
is_last_block_done
)
{
ds_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
db_sum
=
static_cast
<
BatchNormParamType
<
T
>>
(
0
);
// thread sum
for
(
int
y
=
threadIdx
.
y
;
y
<
gridDim
.
y
;
y
+=
blockDim
.
y
)
{
ds_sum
+=
staging_ds_sum
[
i
+
y
*
C
];
db_sum
+=
staging_db_sum
[
i
+
y
*
C
];
}
// vertical block sum
BlockReduceByVetical
<
T
>
(
ds_sum
,
db_sum
,
&
smem_ds_sum
[
0
],
&
smem_db_sum
[
0
],
&
ds_sum
,
&
db_sum
);
// final compute
if
(
threadIdx
.
y
==
0
)
{
dscale
[
i
]
=
ds_sum
*
inv_var_val
;
dbias
[
i
]
=
db_sum
;
}
}
}
}
}
template
<
typename
T
,
int
BlockDim
>
static
__global__
void
BNBackward2DChannelLastStage3
(
const
T
*
dy
,
const
T
*
x
,
const
BatchNormParamType
<
T
>
*
scale
,
const
BatchNormParamType
<
T
>
*
dscales
,
const
BatchNormParamType
<
T
>
*
dbias
,
const
BatchNormParamType
<
T
>
*
means
,
const
BatchNormParamType
<
T
>
*
variances
,
const
int
C
,
const
int
N
,
const
int
HxW
,
const
double
epsilon
,
T
*
dx
)
{
const
int
outer_size
=
C
;
const
int
inner_size
=
N
*
HxW
;
int
outer_loop_stride
=
gridDim
.
x
*
blockDim
.
x
;
int
inner_loop_stride
=
gridDim
.
y
*
blockDim
.
y
;
for
(
int
i
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
i
<
outer_size
;
i
+=
outer_loop_stride
)
{
BatchNormParamType
<
T
>
mean_val
=
means
[
i
];
BatchNormParamType
<
T
>
inv_var_val
=
variances
[
i
];
BatchNormParamType
<
T
>
dscale_val
=
dscales
[
i
];
BatchNormParamType
<
T
>
dbias_val
=
dbias
[
i
];
for
(
int
j
=
blockIdx
.
y
*
blockDim
.
y
+
threadIdx
.
y
;
j
<
inner_size
;
j
+=
inner_loop_stride
)
{
const
int
index
=
j
*
outer_size
+
i
;
dx
[
index
]
=
scale
[
i
]
*
inv_var_val
*
(
static_cast
<
BatchNormParamType
<
T
>>
(
dy
[
index
])
-
dbias_val
/
static_cast
<
BatchNormParamType
<
T
>>
(
inner_size
)
-
(
static_cast
<
BatchNormParamType
<
T
>>
(
x
[
index
])
-
mean_val
)
*
inv_var_val
*
dscale_val
/
inner_size
);
}
}
}
template
<
typename
T
,
int
BlockDim
,
phi
::
DataLayout
layout
>
static
__global__
LAUNCH_BOUNDS
(
BlockDim
)
void
BNBackwardData
(
const
T
*
dy
,
...
...
@@ -592,42 +853,147 @@ void BatchNormGradRawKernel(const Context &ctx,
// epsilon, saved_mean_data, saved_var_data));
#else
// CUDNN only support small batch size
const
size_t
CUDNN_PER_ACTIVATION_THRESHOLD
=
131070
;
// const size_t CUDNN_PER_ACTIVATION_THRESHOLD = 131070;
const
size_t
CUDNN_PER_ACTIVATION_THRESHOLD
=
10240
;
const
size_t
CUDNN_SPATIAL_THRESHOLD
=
880801
;
const
bool
use_native_kernel
=
((
x_dims
.
size
()
==
2
&&
N
>=
CUDNN_PER_ACTIVATION_THRESHOLD
)
||
(
x_dims
.
size
()
==
3
&&
N
>=
CUDNN_SPATIAL_THRESHOLD
));
if
(
use_native_kernel
)
{
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
BNBackward
<
T
,
block
,
DataLayout
::
kNCHW
>
<<<
grid2
,
block
,
0
,
ctx
.
stream
()
>>>
(
if
(
x_dims
.
size
()
==
2
)
{
dim3
block
;
dim3
grid
;
const
int
block_size
=
512
;
const
int
MAX_GRID_SIZE
=
128
;
const
int
WARP_SIZE
=
32
;
// init intermediate storage
DenseTensor
block_data_tensor
;
DenseTensor
flag_tensor
;
DenseTensor
compute_mean_tensor
=
phi
::
Empty
<
BatchNormParamType
<
T
>
,
Context
>
(
ctx
,
{
C
});
DenseTensor
compute_inv_var_tensor
=
phi
::
Empty
<
BatchNormParamType
<
T
>
,
Context
>
(
ctx
,
{
C
});
BatchNormParamType
<
T
>
*
block_data_ptr
=
nullptr
;
int
*
flag_ptr
=
nullptr
;
int
block_x
=
std
::
min
(
phi
::
funcs
::
details
::
GetLastPow2
(
C
),
WARP_SIZE
);
int
block_y
=
std
::
min
(
phi
::
funcs
::
details
::
GetLastPow2
(
N
*
H
*
W
*
D
/
16
),
block_size
/
block_x
);
if
(
block_x
*
block_y
!=
block_size
)
{
block_x
=
std
::
min
(
phi
::
funcs
::
details
::
GetLastPow2
(
C
),
block_size
/
block_y
);
}
int
grid_x
=
(
C
+
block_x
-
1
)
/
block_x
;
int
grid_y
=
std
::
min
((
N
*
H
*
W
*
D
+
block_y
*
16
-
1
)
/
(
block_y
*
16
),
MAX_GRID_SIZE
);
block
.
x
=
block_x
;
block
.
y
=
block_y
;
grid
.
x
=
grid_x
;
grid
.
y
=
grid_y
;
if
(
grid
.
y
>
1
)
{
block_data_tensor
=
phi
::
Empty
<
BatchNormParamType
<
T
>
,
Context
>
(
ctx
,
{
2
*
C
*
grid
.
y
});
flag_tensor
=
phi
::
Empty
<
int
,
Context
>
(
ctx
,
{
grid
.
x
});
block_data_ptr
=
block_data_tensor
.
data
<
BatchNormParamType
<
T
>>
();
flag_ptr
=
flag_tensor
.
data
<
int
>
();
funcs
::
SetConstant
<
Context
,
int
>
set_zero
;
set_zero
(
ctx
,
&
flag_tensor
,
static_cast
<
int
>
(
0
));
}
// 1. reduce_sum(x) => mean, inv_var
auto
*
mean_ptr
=
saved_mean_data
==
nullptr
?
compute_mean_tensor
.
data
<
BatchNormParamType
<
T
>>
()
:
saved_mean_data
;
auto
*
variance_ptr
=
saved_var_data
==
nullptr
?
compute_inv_var_tensor
.
data
<
BatchNormParamType
<
T
>>
()
:
saved_var_data
;
if
(
saved_mean_data
==
nullptr
)
{
BNBackward2DChannelLastStage1
<
T
,
block_size
>
<<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
transformed_x
.
template
data
<
T
>(),
C
,
N
,
H
*
W
*
D
,
epsilon
,
block_data_ptr
,
compute_mean_tensor
.
data
<
BatchNormParamType
<
T
>>
(),
compute_inv_var_tensor
.
data
<
BatchNormParamType
<
T
>>
(),
flag_ptr
);
}
// 2. reduce_sum(x, dy, mean) => dscale, dbias
BNBackward2DChannelLastStage2
<
T
,
block_size
>
<<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
transformed_d_y
.
template
data
<
T
>(),
transformed_x
.
template
data
<
T
>(),
scale
.
template
data
<
BatchNormParamType
<
T
>
>
(),
saved_mean_data
,
saved_var_data
,
mean_ptr
,
variance_ptr
,
C
,
N
,
H
*
W
*
D
,
epsilon
,
transformed_d_x
.
template
data
<
T
>()
,
block_data_ptr
,
ctx
.
template
Alloc
<
BatchNormParamType
<
T
>
>
(
d_scale
),
ctx
.
template
Alloc
<
BatchNormParamType
<
T
>
>
(
d_bias
));
}
else
{
BNBackward
<
T
,
block
,
DataLayout
::
kNHWC
>
<<<
grid2
,
block
,
0
,
ctx
.
stream
()
>>>
(
ctx
.
template
Alloc
<
BatchNormParamType
<
T
>
>
(
d_bias
),
flag_ptr
);
// 3. elementwise_mul(scale, mean, inv_var, dy, dscale, dbias) => dx
BNBackward2DChannelLastStage3
<
T
,
block_size
>
<<<
grid
,
block
,
0
,
ctx
.
stream
()
>>>
(
transformed_d_y
.
template
data
<
T
>(),
transformed_x
.
template
data
<
T
>(),
scale
.
template
data
<
BatchNormParamType
<
T
>
>
(),
saved_mean_data
,
saved_var_data
,
d_scale
->
data
<
BatchNormParamType
<
T
>>
(),
d_bias
->
data
<
BatchNormParamType
<
T
>>
(),
mean_ptr
,
variance_ptr
,
C
,
N
,
H
*
W
*
D
,
epsilon
,
transformed_d_x
.
template
data
<
T
>(),
ctx
.
template
Alloc
<
BatchNormParamType
<
T
>
>
(
d_scale
),
ctx
.
template
Alloc
<
BatchNormParamType
<
T
>
>
(
d_bias
));
transformed_d_x
.
template
data
<
T
>());
}
else
{
if
(
compute_format
==
DataLayout
::
kNCHW
)
{
BNBackward
<
T
,
block
,
DataLayout
::
kNCHW
>
<<<
grid2
,
block
,
0
,
ctx
.
stream
()
>>>
(
transformed_d_y
.
template
data
<
T
>(),
transformed_x
.
template
data
<
T
>(),
scale
.
template
data
<
BatchNormParamType
<
T
>
>
(),
saved_mean_data
,
saved_var_data
,
C
,
N
,
H
*
W
*
D
,
epsilon
,
transformed_d_x
.
template
data
<
T
>(),
ctx
.
template
Alloc
<
BatchNormParamType
<
T
>
>
(
d_scale
),
ctx
.
template
Alloc
<
BatchNormParamType
<
T
>
>
(
d_bias
));
}
else
{
BNBackward
<
T
,
block
,
DataLayout
::
kNHWC
>
<<<
grid2
,
block
,
0
,
ctx
.
stream
()
>>>
(
transformed_d_y
.
template
data
<
T
>(),
transformed_x
.
template
data
<
T
>(),
scale
.
template
data
<
BatchNormParamType
<
T
>
>
(),
saved_mean_data
,
saved_var_data
,
C
,
N
,
H
*
W
*
D
,
epsilon
,
transformed_d_x
.
template
data
<
T
>(),
ctx
.
template
Alloc
<
BatchNormParamType
<
T
>
>
(
d_scale
),
ctx
.
template
Alloc
<
BatchNormParamType
<
T
>
>
(
d_bias
));
}
}
}
else
{
#if CUDNN_VERSION_MIN(7, 4, 1)
...
...
paddle/phi/kernels/gpu/batch_norm_kernel.cu
浏览文件 @
36f08826
...
...
@@ -908,7 +908,8 @@ void BatchNormKernel(const Context &ctx,
// static_cast<void *>(saved_variance->template mutable_data<
// BatchNormParamType<T>>(ctx.GetPlace()))));
#else
const
size_t
CUDNN_PER_ACTIVATION_THRESHOLD
=
131070
;
// const size_t CUDNN_PER_ACTIVATION_THRESHOLD = 131070;
const
size_t
CUDNN_PER_ACTIVATION_THRESHOLD
=
10240
;
const
size_t
CUDNN_SPATIAL_THRESHOLD
=
880801
;
const
bool
use_native_kernel
=
((
x_dims
.
size
()
==
2
&&
N
>=
CUDNN_PER_ACTIVATION_THRESHOLD
)
||
...
...
python/paddle/fluid/tests/unittests/test_batch_norm_op_v2.py
浏览文件 @
36f08826
...
...
@@ -323,6 +323,35 @@ class TestBatchNormChannelLast(unittest.TestCase):
else
:
self
.
assertEqual
(
np
.
allclose
(
y1
.
numpy
(),
y2
.
numpy
()),
True
)
def
test_1d_opt
(
self
):
with
fluid
.
dygraph
.
guard
():
batch_size
=
13700
channels
=
16
shape
=
(
batch_size
,
channels
)
x
=
paddle
.
randn
(
shape
)
x_4d
=
x
.
reshape
((
batch_size
,
channels
,
1
,
1
))
x
.
stop_gradient
=
False
x_4d
.
stop_gradient
=
False
bn1d
=
paddle
.
nn
.
BatchNorm1D
(
channels
)
bn2d
=
paddle
.
nn
.
BatchNorm2D
(
channels
)
y
=
bn1d
(
x
)
y2
=
bn2d
(
x_4d
)
y
.
backward
()
y2
.
backward
()
assert
np
.
allclose
(
y
.
numpy
().
flatten
(),
y2
.
numpy
().
flatten
(),
atol
=
1e-5
,
rtol
=
1e-5
)
assert
np
.
allclose
(
bn1d
.
weight
.
grad
.
numpy
().
flatten
(),
bn2d
.
weight
.
grad
.
numpy
().
flatten
(),
atol
=
1e-5
,
rtol
=
1e-5
)
class
TestBatchNormUseGlobalStats
(
unittest
.
TestCase
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录