未验证 提交 36eb5cde 编写于 作者: R RedContritio 提交者: GitHub

support auto generate for static op elementwise_min (#55008)

上级 36b2c5e5
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <string>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/prim/api/composite_backward/composite_backward_api.h"
#include "paddle/fluid/prim/utils/static/composite_grad_desc_maker.h"
#include "paddle/fluid/prim/utils/static/desc_tensor.h"
namespace paddle {
namespace framework {
class OpDesc;
} // namespace framework
namespace imperative {
class OpBase;
} // namespace imperative
} // namespace paddle
namespace paddle {
namespace operators {
class ElementwiseMinOpMaker : public ElementwiseOpMaker {
protected:
std::string GetName() const override { return "Min"; }
std::string GetEquation() const override { return "Out = min(X, Y)"; }
void AddInputX() override {
AddInput("X", "The first tensor holding the elements to be compared.");
}
void AddInputY() override {
AddInput("Y", "The second tensor holding the elements to be compared.");
}
std::string GetOpFunctionality() const override {
return "Compare two tensors and returns a new tensor containing the "
"element-wise minima.";
}
};
class ElementwiseFMinOpMaker : public ElementwiseOpMaker {
protected:
std::string GetName() const override { return "FMin"; }
std::string GetEquation() const override { return "Out = fmin(X, Y)"; }
void AddInputX() override {
AddInput("X", "The first tensor holding the elements to be compared.");
}
void AddInputY() override {
AddInput("Y", "The second tensor holding the elements to be compared.");
}
std::string GetOpFunctionality() const override {
return "Compare two tensors and returns a new tensor containing the "
"element-wise minima. If the element of one tensor is nan, "
"return the element value of the other tensor, if both are nan, "
"return the first nan";
}
};
class ElementwiseMinCompositeGradOpMaker
: public prim::CompositeGradOpMakerBase {
using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;
public:
void Apply() override {
paddle::Tensor x = this->GetSingleForwardInput("X");
paddle::Tensor y = this->GetSingleForwardInput("Y");
paddle::Tensor out_grad = this->GetSingleOutputGrad("Out");
paddle::Tensor dx = this->GetSingleInputGrad("X");
auto* dx_ptr = this->GetOutputPtr(&dx);
std::string dx_name = this->GetOutputName(dx);
paddle::Tensor dy = this->GetSingleInputGrad("Y");
auto* dy_ptr = this->GetOutputPtr(&dy);
std::string dy_name = this->GetOutputName(dy);
VLOG(6) << "Runing minimum_grad composite func";
int axis = static_cast<int>(this->Attr<int>("axis"));
PADDLE_ENFORCE_EQ(
axis,
-1,
phi::errors::InvalidArgument(
"We only support axis = -1 in composite minimum_grad but we got: ",
axis));
prim::minimum_grad<prim::DescTensor>(x, y, out_grad, dx_ptr, dy_ptr);
this->RecoverOutputName(dx, dx_name);
this->RecoverOutputName(dy, dy_name);
}
};
template <typename T>
class ElementwiseMinGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("elementwise_min_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Y", this->Input("Y"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
op->SetAttrMap(this->Attrs());
}
};
template <typename T>
class ElementwiseFMinGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("elementwise_fmin_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Y", this->Input("Y"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(elementwise_min,
ops::ElementwiseOp,
ops::ElementwiseMinOpMaker,
ops::ElementwiseOpInferVarType,
ops::ElementwiseMinGradOpMaker<paddle::framework::OpDesc>,
ops::ElementwiseMinGradOpMaker<paddle::imperative::OpBase>,
ops::ElementwiseMinCompositeGradOpMaker);
REGISTER_OPERATOR(elementwise_min_grad, ops::ElementwiseOpGrad);
REGISTER_OP_VERSION(elementwise_min)
.AddCheckpoint(
R"ROC(Register elementwise_min for adding the attribute of Scale_y)ROC",
paddle::framework::compatible::OpVersionDesc().NewAttr(
"Scale_y",
"In order to support the function of scaling the input Y when "
"using the operator of elementwise_min.",
1.0f));
REGISTER_OPERATOR(elementwise_fmin,
ops::ElementwiseOp,
ops::ElementwiseFMinOpMaker,
ops::ElementwiseOpInferVarType,
ops::ElementwiseFMinGradOpMaker<paddle::framework::OpDesc>,
ops::ElementwiseFMinGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(elementwise_fmin_grad, ops::ElementwiseOpGrad);
......@@ -4,9 +4,8 @@
# Generally, the combination rules in this file do not need to be modified.
# If there are some redefined error in compiling with the source file which
# in combination rule, you can remove the source file from the following rules.
register_unity_group(
cc elementwise_add_op.cc elementwise_div_op.cc elementwise_min_op.cc
elementwise_mul_op.cc elementwise_sub_op.cc)
register_unity_group(cc elementwise_add_op.cc elementwise_div_op.cc
elementwise_mul_op.cc elementwise_sub_op.cc)
register_unity_group(
cu
elementwise_add_op.cu
......
......@@ -870,6 +870,17 @@
func : fmax_grad
data_type : out_grad
- backward_op : fmin_grad
forward : fmin(Tensor x, Tensor y) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out_grad)
output : Tensor(x_grad), Tensor(y_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param: [x, y]
kernel :
func : fmin_grad
data_type : out_grad
- backward_op : fold_grad
forward: fold (Tensor x, int[] output_sizes, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) -> Tensor(out)
args: (Tensor x, Tensor out_grad, int[] output_sizes, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
......
......@@ -232,16 +232,6 @@
func : UnchangedInferMeta
invoke : zeros_like(out_grad)
- backward_op : fmin_grad
forward : fmin(Tensor x, Tensor y) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out_grad)
output : Tensor(x_grad), Tensor(y_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param: [x, y]
kernel :
func : fmin_grad
- backward_op : frobenius_norm_grad
forward : frobenius_norm(Tensor x, int64_t[] axis, bool keep_dim, bool reduce_all) -> Tensor(out)
args : (Tensor x, Tensor out, Tensor out_grad, int64_t[] axis, bool keep_dim, bool reduce_all)
......
......@@ -326,16 +326,6 @@
kernel :
func : floor_divide
- op : fmin
args : (Tensor x, Tensor y)
output : Tensor(out)
infer_meta :
param: [x, y]
func : ElementwiseInferMeta
kernel :
func : fmin
backward : fmin_grad
- op : frobenius_norm
args : (Tensor x, int64_t[] axis, bool keep_dim, bool reduce_all)
output : Tensor(out)
......
......@@ -1107,9 +1107,15 @@
- op : fmin (elementwise_fmin)
backward : fmin_grad (elementwise_fmin_grad)
inputs :
{x : X, y : Y}
outputs :
{out : Out}
extra :
attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32",
bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]
complex_promote : [X, Y]
manual_signature : [fmin]
- op : fold
inputs :
......@@ -1839,9 +1845,15 @@
- op : minimum (elementwise_min)
backward : minimum_grad (elementwise_min_grad)
inputs :
{x : X, y : Y}
outputs :
{out : Out}
extra :
attrs : [bool use_mkldnn = false, str x_data_format = "", str y_data_format = "", str mkldnn_data_type = "float32",
bool use_quantizer = false, float Scale_x = 1.0f, float Scale_y = 1.0f, float Scale_out = 1.0f]
complex_promote : [X, Y]
manual_signature : [minimum]
- op : mish
backward : mish_grad
......
......@@ -181,6 +181,14 @@
comment : In order to support the function of scaling the input Y when using the operator of elementwise_max.
default : 1.0
- op : elementwise_min
version :
- checkpoint : Register elementwise_min for adding the attribute of Scale_y.
action :
- add_attr : Scale_y
comment : In order to support the function of scaling the input Y when using the operator of elementwise_min.
default : 1.0
- op : elementwise_mod
version :
- checkpoint : Register elementwise_mod for adding the attribute of Scale_y
......
......@@ -941,6 +941,16 @@
func : fmax
backward : fmax_grad
- op : fmin
args : (Tensor x, Tensor y)
output : Tensor(out)
infer_meta :
func : ElementwiseInferMeta
param: [x, y]
kernel :
func : fmin
backward : fmin_grad
- op : fold
args: (Tensor x, int[] output_sizes, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations)
output: Tensor(out)
......
......@@ -211,6 +211,18 @@
kernel :
func : min_grad
- backward_op : minimum_grad
forward : minimum(Tensor x, Tensor y, int axis = -1) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out_grad)
output : Tensor(x_grad), Tensor(y_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param: [x, y]
kernel :
func : minimum_grad
data_type : out_grad
composite : minimum_grad(x, y, out_grad, x_grad, y_grad)
- backward_op : norm_grad
forward : norm (Tensor x, int axis, float epsilon=1.0e-10f, bool is_test=false) -> Tensor(out), Tensor(norm)
args : (Tensor x, Tensor norm, Tensor out_grad, int axis, float epsilon, bool is_test)
......
......@@ -407,6 +407,15 @@
param : [x, axis, keepdim, reduce_all]
backward : min_grad
- op : minimum
args : (Tensor x, Tensor y, int axis = -1)
output : Tensor(out)
infer_meta :
func : ElementwiseRawInferMeta
kernel :
func : minimum
backward : minimum_grad
- op : norm
args : (Tensor x, int axis, float epsilon=1.0e-10f, bool is_test=false)
output : Tensor(out), Tensor(norm)
......
......@@ -78,6 +78,9 @@ KernelSignature ElementwiseMaxOpArgumentMapping(
KernelSignature ElementwiseMinOpArgumentMapping(
const ArgumentMappingContext& ctx) {
if (ctx.IsForInferShape()) {
return KernelSignature("minimum_raw", {"X", "Y"}, {"axis"}, {"Out"});
}
int axis = paddle::any_cast<int>(ctx.Attr("axis"));
if (axis == -1) {
return KernelSignature("minimum", {"X", "Y"}, {}, {"Out"});
......@@ -162,12 +165,6 @@ KernelSignature ElementwiseDivGradOpArgumentMapping(
{"X@GRAD", "Y@GRAD"});
}
KernelSignature ElementwiseFMinGradOpArgumentMapping(
const ArgumentMappingContext& ctx UNUSED) {
return KernelSignature(
"fmin_grad", {"X", "Y", "Out@GRAD"}, {}, {"X@GRAD", "Y@GRAD"});
}
KernelSignature ElementwiseDivDoubleGradOpArgumentMapping(
const ArgumentMappingContext& ctx UNUSED) {
return KernelSignature("divide_double_grad",
......@@ -209,12 +206,6 @@ KernelSignature ElementwiseMulTripleGradOpArgumentMapping(
{"D_X", "D_Y", "D_DOut", "D_DDX", "D_DDY"});
}
KernelSignature ElementwiseMinGradOpArgumentMapping(
const ArgumentMappingContext& ctx UNUSED) {
return KernelSignature(
"minimum_grad", {"X", "Y", "Out@GRAD"}, {}, {"X@GRAD", "Y@GRAD"});
}
} // namespace phi
PD_REGISTER_BASE_KERNEL_NAME(elementwise_add, add);
......@@ -237,8 +228,6 @@ PD_REGISTER_BASE_KERNEL_NAME(elementwise_mul_grad_grad, multiply_double_grad);
PD_REGISTER_BASE_KERNEL_NAME(elementwise_mul_triple_grad, multiply_triple_grad);
PD_REGISTER_BASE_KERNEL_NAME(elementwise_fmax, fmax);
PD_REGISTER_BASE_KERNEL_NAME(elementwise_fmin, fmin);
PD_REGISTER_BASE_KERNEL_NAME(elementwise_fmin_grad, fmin_grad);
PD_REGISTER_BASE_KERNEL_NAME(elementwise_min_grad, minimum_grad);
PD_REGISTER_ARG_MAPPING_FN(elementwise_add,
phi::ElementwiseAddOpArgumentMapping);
......@@ -282,8 +271,4 @@ PD_REGISTER_ARG_MAPPING_FN(elementwise_fmax,
phi::ElementwiseFMaxOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(elementwise_fmin,
phi::ElementwiseFMinOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(elementwise_fmin_grad,
phi::ElementwiseFMinGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(elementwise_min_grad,
phi::ElementwiseMinGradOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(grad_add, phi::ElementwiseGradAddOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册