Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
36abeff4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
36abeff4
编写于
6月 30, 2020
作者:
S
Sylwester Fraczek
提交者:
GitHub
6月 30, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
adding elementwiseadd quantization (#25178)
上级
87a4a7ec
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
222 addition
and
14 deletion
+222
-14
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
+109
-7
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
+2
-0
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass_tester.cc
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass_tester.cc
+107
-7
paddle/fluid/inference/api/mkldnn_quantizer_config.cc
paddle/fluid/inference/api/mkldnn_quantizer_config.cc
+4
-0
未找到文件。
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.cc
浏览文件 @
36abeff4
...
...
@@ -37,10 +37,11 @@ void UnlinkNodes(ir::Node* a, ir::Node* b) {
b
->
inputs
.
end
());
}
void
LogCannotQuantizeOp
(
Node
*
op
)
{
void
LogCannotQuantizeOp
(
Node
*
op
,
const
char
*
details
=
nullptr
)
{
std
::
stringstream
msg_ss
;
msg_ss
<<
"Cannot quantize operator "
<<
op
->
Name
()
<<
" (type: "
<<
op
->
Op
()
->
Type
()
<<
", id: "
<<
op
->
id
()
<<
")."
;
if
(
details
)
msg_ss
<<
" "
<<
details
;
PrettyLogDetail
(
msg_ss
.
str
().
c_str
());
}
...
...
@@ -51,6 +52,13 @@ void LogScaleIsMissingForVar(Node* var) {
PrettyLogDetail
(
msg_ss
.
str
().
c_str
());
}
void
LogQuantizationDisabled
(
Node
*
op
)
{
std
::
stringstream
msg_ss
;
VLOG
(
4
)
<<
"Qantization skipped for operator "
<<
op
->
Name
()
<<
" (type: "
<<
op
->
Op
()
->
Type
()
<<
", id: "
<<
op
->
id
()
<<
"). Attribute use_quantizer = false."
;
}
}
// namespace
enum
{
U8_MAX
=
255
,
S8_MAX
=
127
};
...
...
@@ -239,7 +247,10 @@ void CPUQuantizePass::QuantizeConv(Graph* graph,
auto
*
conv_op_desc
=
conv_op
->
Op
();
// skip if should not be quantized
if
(
!
conv_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
return
;
if
(
!
conv_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
{
LogQuantizationDisabled
(
conv_op
);
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
conv_filter
,
conv_filter
,
conv_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
conv_input
,
conv_input
,
conv_pattern
);
...
...
@@ -333,9 +344,13 @@ void CPUQuantizePass::QuantizeFc(Graph* graph) const {
auto
*
fc_op_desc
=
fc
->
Op
();
// skip if should not be quantized
if
(
fc_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
)
!=
true
||
fc_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_mkldnn"
)
!=
true
)
if
(
!
fc_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
{
LogQuantizationDisabled
(
fc
);
return
;
}
if
(
!
fc_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_mkldnn"
))
{
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
weights
,
weights
,
fc_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
input
,
input
,
fc_pattern
);
...
...
@@ -396,7 +411,10 @@ void CPUQuantizePass::QuantizePool(Graph* graph) const {
auto
*
pool_op_desc
=
pool_op
->
Op
();
// skip if should not be quantized
if
(
!
pool_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
return
;
if
(
!
pool_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
{
LogQuantizationDisabled
(
pool_op
);
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
pool_input
,
pool_input
,
pool_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
pool_output
,
pool_output
,
pool_pattern
);
...
...
@@ -438,7 +456,10 @@ void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
auto
*
concat_op_desc
=
concat_op
->
Op
();
// skip if should not be quantized
if
(
!
concat_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
return
;
if
(
!
concat_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
{
LogQuantizationDisabled
(
concat_op
);
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
concat_out
,
concat_out
,
concat_pattern
);
...
...
@@ -481,7 +502,10 @@ void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
auto
*
prior_box_op_desc
=
prior_box_op
->
Op
();
// skip if should not be quantized
if
(
!
prior_box_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
return
;
if
(
!
prior_box_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
{
LogQuantizationDisabled
(
prior_box_op
);
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
prior_box_input
,
prior_box_input
,
prior_box_pattern
);
...
...
@@ -522,6 +546,7 @@ void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
// skip if should not be quantized
if
(
!
transpose_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
{
LogQuantizationDisabled
(
transpose_op
);
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
prev_op
,
prev_op
,
transpose_pattern
);
...
...
@@ -576,6 +601,7 @@ void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
// skip if should not be quantized
if
(
!
reshape_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
{
LogQuantizationDisabled
(
reshape_op
);
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
prev_op
,
prev_op
,
reshape_pattern
);
...
...
@@ -628,6 +654,7 @@ void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
// skip if should not be quantized
if
(
!
matmul_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
{
LogQuantizationDisabled
(
matmul_op
);
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
prev_op_x
,
prev_op_x
,
matmul_pattern
);
...
...
@@ -676,6 +703,80 @@ void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
PrettyLogDetail
(
"--- quantized %d matmul ops"
,
quantize_matmul_count
);
}
void
CPUQuantizePass
::
QuantizeElementwiseAdd
(
Graph
*
graph
)
const
{
GraphPatternDetector
gpd
;
auto
pattern
=
gpd
.
mutable_pattern
();
patterns
::
ElementwiseAdd
elementwise_add_pattern
{
pattern
,
name_scope_
};
elementwise_add_pattern
(
pattern
->
NewNode
(
elementwise_add_pattern
.
elementwise_add_x_repr
()),
pattern
->
NewNode
(
elementwise_add_pattern
.
elementwise_add_y_repr
()));
int
quantize_elementwise_add_count
=
0
;
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
VLOG
(
4
)
<<
"Quantize elementwise_add op"
;
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_op
,
elementwise_add_op
,
elementwise_add_pattern
);
auto
*
elementwise_add_op_desc
=
elementwise_add_op
->
Op
();
// skip if should not be quantized
if
(
!
elementwise_add_op_desc
->
GetAttrIfExists
<
bool
>
(
"use_quantizer"
))
{
LogQuantizationDisabled
(
elementwise_add_op
);
return
;
}
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_x
,
elementwise_add_x
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_y
,
elementwise_add_y
,
elementwise_add_pattern
);
GET_IR_NODE_FROM_SUBGRAPH
(
elementwise_add_out
,
elementwise_add_out
,
elementwise_add_pattern
);
if
(
!
AreScalesPresentForNodes
(
elementwise_add_op
,
{
elementwise_add_x
,
elementwise_add_y
}))
{
LogCannotQuantizeOp
(
elementwise_add_op
);
return
;
}
bool
is_x_unsigned
{
false
},
is_y_unsigned
{
false
};
auto
input_x_scale
=
GetScaleValueForNode
(
elementwise_add_x
,
&
is_x_unsigned
);
auto
input_y_scale
=
GetScaleValueForNode
(
elementwise_add_y
,
&
is_y_unsigned
);
// TODO(sfraczek): add support for different signness
if
(
is_x_unsigned
!=
is_y_unsigned
)
{
LogCannotQuantizeOp
(
elementwise_add_op
,
"ElementwiseAdd inputs must be of the same type."
);
return
;
}
QuantizeInput
(
g
,
elementwise_add_op
,
elementwise_add_x
,
"X"
,
input_x_scale
,
is_x_unsigned
,
"Scale_x"
);
QuantizeInput
(
g
,
elementwise_add_op
,
elementwise_add_y
,
"Y"
,
input_y_scale
,
is_y_unsigned
,
"Scale_y"
);
// if quantization scale is missing for output tensor, return fp32 data
if
(
AreScalesPresentForNodes
(
elementwise_add_op
,
{
elementwise_add_out
}))
{
bool
is_output_unsigned
{
false
};
auto
output_scale
=
GetScaleValueForNode
(
elementwise_add_out
,
&
is_output_unsigned
);
DequantizeOutput
(
g
,
elementwise_add_op
,
elementwise_add_out
,
"Out"
,
output_scale
,
is_output_unsigned
,
"Scale_out"
);
}
else
{
elementwise_add_op
->
Op
()
->
SetAttr
(
"force_fp32_output"
,
true
);
}
++
quantize_elementwise_add_count
;
};
gpd
(
graph
,
handler
);
AddStatis
(
quantize_elementwise_add_count
);
PrettyLogDetail
(
"--- quantized %d elementwise_add ops"
,
quantize_elementwise_add_count
);
}
void
CPUQuantizePass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
VLOG
(
3
)
<<
"Quantizing the graph."
;
PADDLE_ENFORCE
(
graph
);
...
...
@@ -692,6 +793,7 @@ void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
QuantizeFc
(
graph
);
QuantizeReshape
(
graph
);
QuantizeMatmul
(
graph
);
QuantizeElementwiseAdd
(
graph
);
}
}
// namespace ir
...
...
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h
浏览文件 @
36abeff4
...
...
@@ -60,6 +60,8 @@ class CPUQuantizePass : public FusePassBase {
void
QuantizeMatmul
(
Graph
*
graph
)
const
;
void
QuantizeElementwiseAdd
(
Graph
*
graph
)
const
;
void
QuantizeInput
(
Graph
*
g
,
Node
*
op
,
Node
*
input
,
std
::
string
input_name
,
double
scale_to_one
,
bool
is_unsigned
,
std
::
string
scale_attr_name
=
""
)
const
;
...
...
paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass_tester.cc
浏览文件 @
36abeff4
...
...
@@ -14,6 +14,7 @@
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/naive_executor.h"
#include "paddle/fluid/imperative/type_defs.h"
#include "paddle/fluid/platform/place.h"
...
...
@@ -82,6 +83,14 @@ void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
op
->
SetAttr
(
"Scale_x"
,
1.0
f
);
op
->
SetAttr
(
"Scale_y"
,
1.0
f
);
op
->
SetAttr
(
"Scale_out"
,
1.0
f
);
}
else
if
(
type
==
"elementwise_add"
)
{
op
->
SetInput
(
"X"
,
{
inputs
[
0
]});
if
(
inputs
.
size
()
>
1
)
op
->
SetInput
(
"Y"
,
{
inputs
[
1
]});
op
->
SetOutput
(
"Out"
,
{
outputs
[
0
]});
op
->
SetAttr
(
"use_quantizer"
,
use_quantizer
);
op
->
SetAttr
(
"Scale_x"
,
1.0
f
);
op
->
SetAttr
(
"Scale_y"
,
1.0
f
);
op
->
SetAttr
(
"Scale_out"
,
1.0
f
);
}
}
...
...
@@ -95,7 +104,8 @@ void InitTensorHolder(Scope* scope, const paddle::platform::Place& place,
void
PreparePass
(
std
::
unique_ptr
<
ir
::
Graph
>*
graph
,
const
ProgramDesc
&
prog
,
const
std
::
initializer_list
<
std
::
string
>
variable_names
,
int
*
original_nodes_num
,
int
*
current_nodes_num
,
std
::
string
var_without_scale
=
""
)
{
std
::
string
var_without_scale
=
""
,
std
::
string
var_signed
=
""
)
{
auto
place
=
paddle
::
platform
::
CPUPlace
();
NaiveExecutor
exe
{
place
};
Scope
scope
;
...
...
@@ -108,8 +118,7 @@ void PreparePass(std::unique_ptr<ir::Graph>* graph, const ProgramDesc& prog,
tensor
.
Resize
({
1
});
auto
*
ptr
=
tensor
.
mutable_data
<
double
>
(
place
);
ptr
[
0
]
=
2.0
;
(
*
scales
)[
v
]
=
std
::
make_pair
(
false
,
std
::
move
(
tensor
));
(
*
scales
)[
v
]
=
std
::
make_pair
(
v
==
var_signed
,
std
::
move
(
tensor
));
}
(
*
graph
)
->
SetNotOwned
(
kParamScopeAttr
,
&
scope
);
...
...
@@ -387,7 +396,7 @@ static const std::initializer_list<std::string> variable_names_reshape = {
// c->Dropout->d
ProgramDesc
BuildProgramDescReshape
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names_
transpos
e
)
{
for
(
auto
&
v
:
variable_names_
reshap
e
)
{
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
}
SetOp
(
&
prog
,
"dequantize"
,
"Dequantize1"
,
{
"a"
},
{
"b"
},
true
);
...
...
@@ -402,7 +411,7 @@ ProgramDesc BuildProgramDescReshape() {
// c->Dropout->d
ProgramDesc
BuildProgramDescReshapeBetweenNonQuantizedOp
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names_
transpos
e
)
{
for
(
auto
&
v
:
variable_names_
reshap
e
)
{
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
}
...
...
@@ -491,7 +500,7 @@ static const std::initializer_list<std::string> variable_names_matmul = {
ProgramDesc
BuildProgramDescMatmul
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names_
transpose
)
{
for
(
auto
&
v
:
variable_names_
matmul
)
{
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
}
SetOp
(
&
prog
,
"dequantize"
,
"Dequantize1"
,
{
"a"
},
{
"b"
},
true
);
...
...
@@ -504,7 +513,7 @@ ProgramDesc BuildProgramDescMatmul() {
ProgramDesc
BuildProgramDescMatmulNotQuantized
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names_
transpose
)
{
for
(
auto
&
v
:
variable_names_
matmul
)
{
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
}
SetOp
(
&
prog
,
"dropout"
,
"Dropout"
,
{
"a"
},
{
"b"
},
false
);
...
...
@@ -569,6 +578,97 @@ TEST(CpuQuantizePass, matmul_not_quantized) {
MainTestMatmul
(
BuildProgramDescMatmulNotQuantized
(),
matmul_count
,
quant_count
,
dequant_count
,
added_nodes_count
,
1.0
f
);
}
static
const
std
::
initializer_list
<
std
::
string
>
variable_names_elementwise_add
=
{
"a"
,
"b"
,
"c"
,
"d"
,
"e"
,
"f"
};
ProgramDesc
BuildProgramDescElementwiseAdd
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
variable_names_elementwise_add
)
{
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
}
SetOp
(
&
prog
,
"dequantize"
,
"Dequantize1"
,
{
"a"
},
{
"b"
},
true
);
SetOp
(
&
prog
,
"dequantize"
,
"Dequantize2"
,
{
"c"
},
{
"d"
},
true
);
SetOp
(
&
prog
,
"elementwise_add"
,
"ElementwiseAdd"
,
{
"b"
,
"d"
},
{
"e"
},
true
,
true
);
SetOp
(
&
prog
,
"dropout"
,
"Dropout"
,
{
"e"
},
{
"f"
},
true
,
false
);
return
prog
;
}
void
MainTestElementwiseAdd
(
const
ProgramDesc
&
prog
,
int
elementwise_add_count
,
int
quant_count
,
int
dequant_count
,
int
added_nodes_count
,
float
scale
,
bool
output_scale_missing
=
false
,
bool
unsigned_and_signed_input
=
false
)
{
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
prog
));
int
original_nodes_num
,
current_nodes_num
;
PreparePass
(
&
graph
,
prog
,
variable_names_elementwise_add
,
&
original_nodes_num
,
&
current_nodes_num
,
output_scale_missing
?
"e"
:
""
,
unsigned_and_signed_input
?
"b"
:
""
);
int
quantize_nodes_count
=
0
;
int
dequantize_nodes_count
=
0
;
int
elementwise_add_nodes_count
=
0
;
for
(
auto
*
node
:
graph
->
Nodes
())
{
if
(
node
->
IsOp
())
{
auto
*
op
=
node
->
Op
();
if
(
op
->
Type
()
==
"elementwise_add"
)
{
elementwise_add_nodes_count
++
;
if
(
unsigned_and_signed_input
)
scale
=
1.0
f
;
auto
op_name
=
BOOST_GET_CONST
(
std
::
string
,
op
->
GetAttr
(
"name"
));
EXPECT_EQ
(
BOOST_GET_CONST
(
float
,
op
->
GetAttr
(
"Scale_x"
)),
scale
)
<<
"Scale_x for node '"
+
op_name
+
"'."
;
EXPECT_EQ
(
BOOST_GET_CONST
(
float
,
op
->
GetAttr
(
"Scale_y"
)),
scale
)
<<
"Scale_y for node '"
+
op_name
+
"'."
;
if
(
output_scale_missing
)
scale
=
1.0
;
EXPECT_EQ
(
BOOST_GET_CONST
(
float
,
op
->
GetAttr
(
"Scale_out"
)),
scale
)
<<
"Scale_out for node '"
+
op_name
+
"'."
;
}
else
if
(
op
->
Type
()
==
"quantize"
)
{
quantize_nodes_count
++
;
}
else
if
(
op
->
Type
()
==
"dequantize"
)
{
dequantize_nodes_count
++
;
}
}
}
EXPECT_EQ
(
elementwise_add_nodes_count
,
elementwise_add_count
);
EXPECT_EQ
(
quantize_nodes_count
,
quant_count
);
EXPECT_EQ
(
dequantize_nodes_count
,
dequant_count
);
EXPECT_EQ
(
original_nodes_num
+
added_nodes_count
,
current_nodes_num
);
}
TEST
(
CpuQuantizePass
,
elementwise_add
)
{
int
elementwise_add_count
=
1
;
int
quant_count
=
2
;
int
dequant_count
=
3
;
// 2 Quant + 2 IN + 1 DeQuant + 1 OUT
int
added_nodes_count
=
6
;
MainTestElementwiseAdd
(
BuildProgramDescElementwiseAdd
(),
elementwise_add_count
,
quant_count
,
dequant_count
,
added_nodes_count
,
2.0
f
*
127
);
}
TEST
(
CpuQuantizePass
,
elementwise_add_output_scale_missing
)
{
int
elementwise_add_count
=
1
;
int
quant_count
=
2
;
int
dequant_count
=
2
;
// 2 Quant + 2 IN
int
added_nodes_count
=
4
;
MainTestElementwiseAdd
(
BuildProgramDescElementwiseAdd
(),
elementwise_add_count
,
quant_count
,
dequant_count
,
added_nodes_count
,
2.0
f
*
127
,
true
);
}
TEST
(
CpuQuantizePass
,
elementwise_add_unsigned_and_signed_input
)
{
int
elementwise_add_count
=
1
;
int
quant_count
=
0
;
int
dequant_count
=
2
;
int
added_nodes_count
=
0
;
MainTestElementwiseAdd
(
BuildProgramDescElementwiseAdd
(),
elementwise_add_count
,
quant_count
,
dequant_count
,
added_nodes_count
,
2.0
f
*
127
,
false
,
true
);
}
}
// namespace
}
// namespace ir
...
...
paddle/fluid/inference/api/mkldnn_quantizer_config.cc
浏览文件 @
36abeff4
...
...
@@ -49,6 +49,10 @@ MkldnnQuantizerConfig::MkldnnQuantizerConfig() {
rules_
[
"matmul"
][
"Y"
]
=
ScaleAlgo
::
KL
;
rules_
[
"matmul"
][
"Out"
]
=
ScaleAlgo
::
KL
;
rules_
[
"elementwise_add"
][
"X"
]
=
ScaleAlgo
::
KL
;
rules_
[
"elementwise_add"
][
"Y"
]
=
ScaleAlgo
::
KL
;
rules_
[
"elementwise_add"
][
"Out"
]
=
ScaleAlgo
::
KL
;
// Reshape2 does not perform calculation on the data and shapes are not
// changed. Scale is calculated on input data and assign to Quantize and
// Dequantize scale.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录