提交 3693394c 编写于 作者: T tangwei12

hidden slice_vars in distribute transpile, hidden it to users

上级 2c05e37a
......@@ -134,8 +134,6 @@ class CheckpointConfig(object):
self.epoch_id = 0
self.step_id = 0
self.load_serial = None
self.pserver_id = None
self.lookup_table_name = None
def check_and_get_place(place):
......@@ -351,11 +349,9 @@ class Trainer(object):
t.transpile(
self.trainer_id, pservers=pserver_endpoints, trainers=trainers)
if training_role == "PSERVER":
if self.checkpoint_cfg:
pserver_id = eplist.index(current_endpoint)
self.checkpoint_cfg.pserver_id = pserver_id
if t.has_distributed_lookup_table:
self.checkpoint_cfg.lookup_table_name = t.table_name
self.pserver_id = eplist.index(current_endpoint)
self.pserver_endpoints = pserver_endpoints
self.lookup_table_name = t.table_name if t.has_distributed_lookup_table else None
self.train_program = t.get_pserver_program(current_endpoint)
self.startup_program = t.get_startup_program(current_endpoint,
......@@ -417,6 +413,11 @@ class Trainer(object):
def save_params(self, param_path):
"""
Save all parameters into :code:`param_path`.
Only No.0 trainer will save dense params.
In standalone PaddlePaddle, the only existing trainer will save dense params.
In distributed PaddlePaddle, the No.0 trainer will save dense params,
If there have lookup table need to save, No.0 trainer will broadcast notification
to all Parameter Servers to save it on Parameter Servers independent.
Args:
param_path(str): The path to save parameters.
......@@ -424,9 +425,19 @@ class Trainer(object):
Returns:
None
"""
if self.trainer_id != 0:
return
with self._prog_and_scope_guard():
# save params on trainer
exe = executor.Executor(self.place)
io.save_persistables(exe, dirname=param_path)
# save params on pserver
if self.lookup_table_name:
_save_pserver_vars_by_notify(exe, param_path,
self.lookup_table_name,
self.pserver_endpoints)
@contextlib.contextmanager
def _prog_and_scope_guard(self):
......@@ -560,15 +571,16 @@ class Trainer(object):
if epoch_id % self.checkpoint_cfg.epoch_interval == 0 \
and step_id % self.checkpoint_cfg.step_interval == 0:
print("_save_checkpoint ...")
exe = executor.Executor(self.place)
save_checkpoint(
executor=exe,
checkpoint_dir=self.checkpoint_cfg.checkpoint_dir,
trainer_id=self.trainer_id,
trainer_args=self._get_checkpoint_save_args(epoch_id, step_id),
main_program=self.train_program,
trainer_id=self.trainer_id,
save_trainer_args=self._get_checkpoint_save_args(epoch_id,
step_id),
save_lookup_table=self.lookup_table_name,
pserver_endpoints=self.pserver_endpoints,
max_num_checkpoints=self.checkpoint_cfg.max_num_checkpoints)
def _load_checkpoint(self):
......@@ -579,7 +591,7 @@ class Trainer(object):
self.checkpoint_cfg.load_serial)
# Trainer Load
if self.checkpoint_cfg.pserver_id is None:
if self.pserver_id is None:
# load model
load_checkpoint(
executor=exe,
......@@ -608,15 +620,25 @@ class Trainer(object):
# Pserver Load
else:
# load model
load_checkpoint(
executor=exe,
checkpoint_dir=checkpoint_dir,
main_program=self.startup_program,
role_id=self.pserver_id,
is_trainer=False,
load_models=True,
load_lookup_table=self.lookup_table_name)
# load lookup table
if self.checkpoint_cfg.lookup_table_name:
if self.lookup_table_name:
load_checkpoint(
executor=exe,
checkpoint_dir=checkpoint_dir,
main_program=self.startup_program,
role_id=self.checkpoint_cfg.pserver_id,
role_id=self.pserver_id,
is_trainer=False,
load_lookup_table=self.checkpoint_cfg.lookup_table_name)
load_lookup_table=self.lookup_table_name)
def build_feed_var_list(program, feed_order):
......@@ -813,13 +835,21 @@ def load_checkpoint(executor,
if is_trainer:
if load_models:
_load_persistable_vars(executor, checkpoint_dir, main_program, True)
return
if load_trainer_args:
trainer_args_ret = _load_trainer_args(checkpoint_dir, role_id,
load_trainer_args)
return trainer_args_ret
# pserver load
else:
if load_models:
if load_lookup_table:
_load_persistable_vars(executor, checkpoint_dir, main_program,
True, [load_lookup_table])
else:
_load_persistable_vars(executor, checkpoint_dir, main_program,
True)
if load_lookup_table:
_load_lookup_table_vars(executor, checkpoint_dir, main_program,
role_id, load_lookup_table)
......@@ -843,7 +873,11 @@ def clean_checkpoint(checkpoint_dir, delete_dir=False):
os.rmdir(checkpoint_dir)
def _load_persistable_vars(executor, dirname, program, has_model_dir=False):
def _load_persistable_vars(executor,
dirname,
program,
has_model_dir=False,
except_vars=None):
"""
This function filters out all checkpoint variables from the give
program and then trys to load these variables from the given directory.
......@@ -888,7 +922,7 @@ def _load_persistable_vars(executor, dirname, program, has_model_dir=False):
executor,
dirname=dirname,
main_program=program,
predicate=_is_checkpoint_var,
predicate=_is_checkpoint_var(except_vars),
filename=None)
......@@ -983,13 +1017,13 @@ def _save_persistable_vars(executor, dirname, program):
dirname=cur_dir,
main_program=program,
vars=None,
predicate=_is_checkpoint_var,
predicate=_is_checkpoint_var(),
filename=None)
_write_success(cur_dir)
def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
ps_endpoint_list):
pserver_endpoints):
"""
This function will send checkpoint notify message from Trainer 0
to all the pservers.
......@@ -1002,8 +1036,8 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
lookup_table(string): the lookup table name, when use distribute
lookup table, we can get lookup table name by DistributeTranspiler.
table_name
ps_endpoint_list(list): the parameter server ip:port list.
when use distribute lookup table, we can get ps_endpoint_list by
pserver_endpoints(list): the parameter server ip:port list.
when use distribute lookup table, we can get pserver_endpoints by
distribute arguments.
Return:
None
......@@ -1027,7 +1061,7 @@ def _save_pserver_vars_by_notify(executor, dirname, lookup_table,
checkpoint_notify_block = checkpoint_notify_program.global_block()
attrs = {}
attrs['epmap'] = ps_endpoint_list
attrs['epmap'] = pserver_endpoints.split(",")
attrs['dir'] = cur_dir
attrs['lookup_table'] = lookup_table
......@@ -1086,29 +1120,37 @@ def _load_trainer_args(checkpoint_dir, trainer_id, trainer_args):
return ret_values
def _is_checkpoint_var(var):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
def _is_checkpoint_var(except_vars=None):
except_vars = [] if except_vars is None else except_vars
: param var(Variable)
"""
if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
var.desc.type() == core.VarDesc.VarType.RAW:
return False
# @GRAD are named for gradient variables, checkpoint will not save it.
if "@GRAD" in var.name:
return False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if ".trainer_" in var.name:
return False
# .block is named for distribute train variables, checkpoint will not save it.
if ".block" in var.name:
return False
return var.persistable
def _except_vars(var):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
: param var(Variable)
"""
if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
var.desc.type() == core.VarDesc.VarType.RAW:
return False
# @GRAD are named for gradient variables, checkpoint will not save it.
if "@GRAD" in var.name:
return False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if ".trainer_" in var.name:
return False
# .block is named for distribute train variables, checkpoint will not save it.
if ".block" in var.name:
return False
if var in except_vars:
return False
return var.persistable
return _except_vars
def _make_chekcpoint_dirs(dirs):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册