Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
36915474
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
36915474
编写于
9月 10, 2022
作者:
Q
qipengh
提交者:
GitHub
9月 10, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] fix compute error of dropout op (#45923)
上级
3576e49c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
151 addition
and
135 deletion
+151
-135
paddle/fluid/operators/dropout_op_mlu.cc
paddle/fluid/operators/dropout_op_mlu.cc
+37
-34
paddle/fluid/operators/pool_op_mlu.cc
paddle/fluid/operators/pool_op_mlu.cc
+3
-4
python/paddle/fluid/tests/unittests/mlu/test_dropout_op_mlu.py
...n/paddle/fluid/tests/unittests/mlu/test_dropout_op_mlu.py
+111
-97
未找到文件。
paddle/fluid/operators/dropout_op_mlu.cc
浏览文件 @
36915474
...
...
@@ -39,8 +39,17 @@ class DropoutMLUKernel : public framework::OpKernel<T> {
MLUCnnlTensorDesc
x_desc
(
*
x
);
MLUCnnlTensorDesc
out_desc
(
*
out
);
if
(
!
is_test
)
{
// exec dropout op for training only.
if
(
is_test
&&
is_upscale
)
{
// dropout op for inference: out = input.
framework
::
TensorCopy
(
*
x
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
out
);
return
;
}
else
if
(
!
is_test
)
{
// dropout op for training: out = input * mask / ( 1.0 - dropout_prob ) or
// out = input * mask.
int
seed_data
=
0
;
if
(
seed_tensor
)
{
if
(
platform
::
is_mlu_place
(
seed_tensor
->
place
()))
{
...
...
@@ -79,50 +88,44 @@ class DropoutMLUKernel : public framework::OpKernel<T> {
const
int
device_id
=
ctx
.
GetPlace
().
GetDeviceId
();
auto
mlu_gen_random
=
GetMLURandomGenerator
(
ctx
,
device_id
,
seed_data
);
const
float
prob
=
is_upscale
?
dropout_prob
:
0.0
f
;
// compute out = input * mask / ( 1.0 - dropout_prob )
MLUCnnl
::
FusedDropout
(
ctx
,
mlu_gen_random
->
get
(),
x_desc
.
get
(),
GetBasePtr
(
x
),
prob
,
dropout_
prob
,
GetBasePtr
(
&
(
mlu_gen_random
->
get_state
())),
mask_desc
.
get
(),
GetBasePtr
(
mask
),
out_desc
.
get
(),
GetBasePtr
(
out
));
}
else
{
// exec dropout op for inference only.
if
(
is_upscale
)
{
framework
::
TensorCopy
(
*
x
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
MLUDeviceContext
>(),
out
);
}
else
{
auto
scale
=
static_cast
<
T
>
(
1.0
f
-
dropout_prob
);
Tensor
scale_tensor
(
x
->
dtype
());
scale_tensor
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
scale_desc
(
scale_tensor
);
MLUCnnl
::
Fill
(
ctx
,
CNNL_POINTER_MODE_HOST
,
&
scale
,
scale_desc
.
get
(),
GetBasePtr
(
&
scale_tensor
));
auto
data_type
=
ToCnnlDataType
<
T
>
();
MLUCnnlOpTensorDesc
op_tensor_desc
(
CNNL_OP_TENSOR_MUL
,
data_type
,
CNNL_NOT_PROPAGATE_NAN
);
MLUCnnl
::
OpTensor
(
ctx
,
op_tensor_desc
.
get
(),
x_desc
.
get
(),
GetBasePtr
(
x
),
scale_desc
.
get
(),
GetBasePtr
(
&
scale_tensor
),
out_desc
.
get
(),
GetBasePtr
(
out
),
data_type
);
return
;
}
}
// In downgrade_in_infer mode, need to multiply (1.0f - dropout_prob).
Tensor
scale_tensor
(
x
->
dtype
());
Tensor
bias_tensor
(
x
->
dtype
());
scale_tensor
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
bias_tensor
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
MLUCnnlTensorDesc
scale_desc
(
scale_tensor
);
MLUCnnlTensorDesc
bias_desc
(
bias_tensor
);
FillMLUTensorWithHostValue
(
ctx
,
static_cast
<
T
>
(
1.0
f
-
dropout_prob
),
&
scale_tensor
);
FillMLUTensorWithHostValue
(
ctx
,
static_cast
<
T
>
(
0.0
f
),
&
bias_tensor
);
MLUCnnl
::
Scale
(
ctx
,
0
,
is_test
?
x_desc
.
get
()
:
out_desc
.
get
(),
is_test
?
GetBasePtr
(
x
)
:
GetBasePtr
(
out
),
scale_desc
.
get
(),
GetBasePtr
(
&
scale_tensor
),
bias_desc
.
get
(),
GetBasePtr
(
&
bias_tensor
),
out_desc
.
get
(),
GetBasePtr
(
out
));
}
};
...
...
paddle/fluid/operators/pool_op_mlu.cc
浏览文件 @
36915474
...
...
@@ -141,10 +141,9 @@ class MLUPoolOpKernel : public framework::OpKernel<T> {
handle
,
pool_mode
,
out_w
,
out_h
,
&
extra_input_size
);
if
(
extra_input_size
>
0
)
{
phi
::
CPUContext
cpu_ctx
;
framework
::
Tensor
extra_host_tensor
=
ctx
.
AllocateTmpTensor
<
int8_t
,
phi
::
CPUContext
>
(
{
static_cast
<
int64_t
>
(
extra_input_size
)},
cpu_ctx
);
framework
::
Tensor
extra_host_tensor
;
extra_host_tensor
.
mutable_data
<
int8_t
>
(
{
static_cast
<
int64_t
>
(
extra_input_size
)},
platform
::
CPUPlace
());
cnnlInitPoolingExtraInput
(
handle
,
pool_desc
.
get
(),
trans_in_x_desc
.
get
(),
...
...
python/paddle/fluid/tests/unittests/mlu/test_dropout_op_mlu.py
浏览文件 @
36915474
...
...
@@ -31,24 +31,43 @@ SEED = 2022
class
TestDropoutOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
self
.
dtype
)}
self
.
init_inputs_shape
()
self
.
init_attrs
()
self
.
op_type
=
'dropout'
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
)).
astype
(
'uint8'
)
'dropout_prob'
:
self
.
dropout_prob
,
'fix_seed'
:
self
.
fix_seed
,
'is_test'
:
self
.
is_test
,
'dropout_implementation'
:
self
.
dropout_implementation
}
out
=
self
.
inputs
[
'X'
]
*
(
1.0
-
self
.
dropout_prob
)
if
self
.
is_test
==
False
:
mask
=
None
if
self
.
dropout_prob
==
0.0
:
mask
=
np
.
ones
(
self
.
shape
).
astype
(
'uint8'
)
elif
self
.
dropout_prob
==
1.0
:
mask
=
np
.
zeros
(
self
.
shape
).
astype
(
'uint8'
)
self
.
outputs
=
{
'Out'
:
out
,
'Mask'
:
mask
}
else
:
self
.
outputs
=
{
'Out'
:
out
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
init_inputs_shape
(
self
):
self
.
shape
=
[
32
,
64
]
def
init_attrs
(
self
):
self
.
__class__
.
no_need_check_grad
=
False
self
.
dropout_prob
=
0.0
self
.
fix_seed
=
True
self
.
is_test
=
False
self
.
dropout_implementation
=
"upscale_in_train"
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
...
...
@@ -57,84 +76,111 @@ class TestDropoutOp(OpTest):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
if
hasattr
(
self
.
__class__
,
"no_need_check_grad"
)
and
self
.
__class__
.
no_need_check_grad
==
True
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
class
TestDropoutOpInput1d
(
TestDropoutOp
):
# change input shape
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
3
,
62
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
3
,
62
)).
astype
(
'uint8'
)
}
class
TestDropoutOpInput1d_1
(
TestDropoutOp
):
# the input is 1-D
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2000
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
2000
)).
astype
(
'uint8'
)
}
def
init_inputs_shape
(
self
):
self
.
shape
=
[
2000
]
class
TestDropoutOp2
(
TestDropoutOp
):
# the dropout_prob is 1.0
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
1.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
np
.
zeros
((
32
,
64
)).
astype
(
'float32'
),
'Mask'
:
np
.
zeros
((
32
,
64
)).
astype
(
'uint8'
)
}
def
init_inputs_shape
(
self
):
self
.
shape
=
[
32
,
64
]
def
init_attrs
(
self
):
self
.
dropout_prob
=
1.0
self
.
fix_seed
=
True
self
.
is_test
=
False
self
.
dropout_implementation
=
"upscale_in_train"
class
TestDropoutOp3
(
TestDropoutOp
):
# the input dim is 3
def
init_inputs_shape
(
self
):
self
.
shape
=
[
32
,
64
,
2
]
class
TestDropoutOp4
(
TestDropoutOp
):
def
init_attrs
(
self
):
self
.
__class__
.
no_need_check_grad
=
True
self
.
dropout_prob
=
0.35
self
.
fix_seed
=
True
self
.
is_test
=
True
self
.
dropout_implementation
=
"downgrade_in_infer"
class
TestDropoutOp5
(
TestDropoutOp
):
def
init_inputs_shape
(
self
):
self
.
shape
=
[
32
,
64
,
3
]
def
init_attrs
(
self
):
self
.
__class__
.
no_need_check_grad
=
True
self
.
dropout_prob
=
0.75
self
.
fix_seed
=
True
self
.
is_test
=
True
self
.
dropout_implementation
=
"downgrade_in_infer"
class
TestDropoutOp6
(
TestDropoutOp
):
def
init_attrs
(
self
):
self
.
__class__
.
no_need_check_grad
=
True
self
.
dropout_prob
=
0.0
self
.
fix_seed
=
True
self
.
is_test
=
False
self
.
dropout_implementation
=
"downgrade_in_infer"
class
TestDropoutOpWithSeed
(
TestDropoutOp
):
# the seed is a Tensor
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
2
)).
astype
(
self
.
dtype
)}
self
.
dtype
=
np
.
float32
self
.
inputs
=
{
"X"
:
np
.
random
.
random
((
32
,
64
)).
astype
(
self
.
dtype
),
"Seed"
:
np
.
asarray
([
125
],
dtype
=
"int32"
)
}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
,
2
)).
astype
(
'uint8'
)
'Mask'
:
np
.
ones
((
32
,
64
)).
astype
(
'uint8'
)
}
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad_normal
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
)
class
TestDropoutOpFp16
(
TestDropoutOp
):
# float16
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
no_need_check_grad
=
True
@
skip_check_grad_ci
(
reason
=
"For inference, check_grad is not required."
)
class
TestDropoutOpInference
(
OpTest
):
...
...
@@ -179,38 +225,6 @@ class TestDropoutOpInference2(TestDropoutOpInference):
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]}
class
TestDropoutOpWithSeed
(
TestDropoutOp
):
# the seed is a Tensor
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_mlu
()
self
.
init_dtype
()
self
.
inputs
=
{
"X"
:
np
.
random
.
random
((
32
,
64
)).
astype
(
self
.
dtype
),
"Seed"
:
np
.
asarray
([
125
],
dtype
=
"int32"
)
}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
)).
astype
(
'uint8'
)
}
class
TestDropoutOpFp16
(
TestDropoutOp
):
# float16
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
set_mlu
(
self
):
self
.
__class__
.
use_mlu
=
True
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
no_need_check_grad
=
True
class
TestDropoutAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录