未验证 提交 364b0b0a 编写于 作者: W wangzhen38 提交者: GitHub

[remove fluid] under unittesets of linear api (#48564)

* [remove fluid] under unittesets of linear api

* [remove fluid] under unittesets of linear api

* [remove fluid] under unittesets of linear api

* [remove fluid] under unittesets of linear api

* [remove fluid] under unittesets of linear api

* [remove fluid] under unittesets of linear api

* [remove fluid] fluid dygrapn linear api

* [remove fluid] fluid dygrapn linear api

* [remove fluid] fluid dygrapn linear api
上级 33fa2684
...@@ -91,7 +91,7 @@ def group_sharded_parallel( ...@@ -91,7 +91,7 @@ def group_sharded_parallel(
# required: distributed # required: distributed
import paddle import paddle
from paddle.fluid.dygraph.nn import Linear from paddle.nn import Linear
from paddle.distributed import fleet from paddle.distributed import fleet
from paddle.distributed.sharding import group_sharded_parallel from paddle.distributed.sharding import group_sharded_parallel
...@@ -238,7 +238,7 @@ def save_group_sharded_model(model, output, optimizer=None): ...@@ -238,7 +238,7 @@ def save_group_sharded_model(model, output, optimizer=None):
# required: distributed # required: distributed
import paddle import paddle
from paddle.fluid.dygraph.nn import Linear from paddle.nn import Linear
from paddle.distributed import fleet from paddle.distributed import fleet
from paddle.distributed.sharding import group_sharded_parallel, save_group_sharded_model from paddle.distributed.sharding import group_sharded_parallel, save_group_sharded_model
......
...@@ -23,7 +23,7 @@ from paddle.optimizer import Adam ...@@ -23,7 +23,7 @@ from paddle.optimizer import Adam
from paddle.fluid.contrib.slim.quantization import ImperativeQuantAware from paddle.fluid.contrib.slim.quantization import ImperativeQuantAware
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.nn import Sequential from paddle.nn import Sequential
from paddle.fluid.dygraph import Linear from paddle.nn import Linear
from paddle.nn.quant.quant_layers import QuantizedConv2DTranspose from paddle.nn.quant.quant_layers import QuantizedConv2DTranspose
from paddle.fluid.log_helper import get_logger from paddle.fluid.log_helper import get_logger
from paddle.fluid.framework import _test_eager_guard from paddle.fluid.framework import _test_eager_guard
...@@ -111,7 +111,7 @@ class ModelForConv2dT(nn.Layer): ...@@ -111,7 +111,7 @@ class ModelForConv2dT(nn.Layer):
def __init__(self, num_classes=10): def __init__(self, num_classes=10):
super().__init__() super().__init__()
self.features = nn.Conv2DTranspose(4, 6, (3, 3)) self.features = nn.Conv2DTranspose(4, 6, (3, 3))
self.fc = Linear(input_dim=600, output_dim=num_classes) self.fc = Linear(600, num_classes)
def forward(self, inputs): def forward(self, inputs):
x = self.features(inputs) x = self.features(inputs)
...@@ -143,11 +143,9 @@ class ImperativeLenet(paddle.nn.Layer): ...@@ -143,11 +143,9 @@ class ImperativeLenet(paddle.nn.Layer):
) )
self.fc = Sequential( self.fc = Sequential(
Linear(input_dim=400, output_dim=120), Linear(400, 120),
Linear(input_dim=120, output_dim=84), Linear(120, 84),
Linear( Linear(84, num_classes),
input_dim=84, output_dim=num_classes, act=classifier_activation
),
) )
def forward(self, inputs): def forward(self, inputs):
......
...@@ -821,11 +821,12 @@ class ReduceLROnPlateau(LearningRateDecay): ...@@ -821,11 +821,12 @@ class ReduceLROnPlateau(LearningRateDecay):
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle
import numpy as np import numpy as np
with fluid.dygraph.guard(): with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32") x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10) linear = paddle.nn.Linear(10, 10)
input = fluid.dygraph.to_variable(x) input = fluid.dygraph.to_variable(x)
reduce_lr = fluid.dygraph.ReduceLROnPlateau( reduce_lr = fluid.dygraph.ReduceLROnPlateau(
...@@ -842,7 +843,7 @@ class ReduceLROnPlateau(LearningRateDecay): ...@@ -842,7 +843,7 @@ class ReduceLROnPlateau(LearningRateDecay):
total_loss = 0 total_loss = 0
for bath_id in range(5): for bath_id in range(5):
out = linear(input) out = linear(input)
loss = fluid.layers.reduce_mean(out) loss = paddle.mean(out)
total_loss += loss total_loss += loss
adam.minimize(loss) adam.minimize(loss)
...@@ -1090,9 +1091,10 @@ class StepDecay(_LearningRateEpochDecay): ...@@ -1090,9 +1091,10 @@ class StepDecay(_LearningRateEpochDecay):
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
import paddle
with fluid.dygraph.guard(): with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32") x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10) linear = paddle.nn.Linear(10, 10)
input = fluid.dygraph.to_variable(x) input = fluid.dygraph.to_variable(x)
scheduler = fluid.dygraph.StepDecay(0.5, step_size=3) scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters()) adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())
...@@ -1100,7 +1102,7 @@ class StepDecay(_LearningRateEpochDecay): ...@@ -1100,7 +1102,7 @@ class StepDecay(_LearningRateEpochDecay):
for epoch in range(9): for epoch in range(9):
for batch_id in range(5): for batch_id in range(5):
out = linear(input) out = linear(input)
loss = fluid.layers.reduce_mean(out) loss = paddle.mean(out)
adam.minimize(loss) adam.minimize(loss)
scheduler.epoch() scheduler.epoch()
...@@ -1170,9 +1172,10 @@ class MultiStepDecay(_LearningRateEpochDecay): ...@@ -1170,9 +1172,10 @@ class MultiStepDecay(_LearningRateEpochDecay):
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
import paddle
with fluid.dygraph.guard(): with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32") x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10) linear = paddle.nn.Linear(10, 10)
input = fluid.dygraph.to_variable(x) input = fluid.dygraph.to_variable(x)
scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5]) scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5])
adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters()) adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())
...@@ -1180,7 +1183,7 @@ class MultiStepDecay(_LearningRateEpochDecay): ...@@ -1180,7 +1183,7 @@ class MultiStepDecay(_LearningRateEpochDecay):
for epoch in range(6): for epoch in range(6):
for batch_id in range(5): for batch_id in range(5):
out = linear(input) out = linear(input)
loss = fluid.layers.reduce_mean(out) loss = paddle.mean(out)
adam.minimize(loss) adam.minimize(loss)
scheduler.epoch() scheduler.epoch()
...@@ -1255,9 +1258,10 @@ class LambdaDecay(_LearningRateEpochDecay): ...@@ -1255,9 +1258,10 @@ class LambdaDecay(_LearningRateEpochDecay):
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
import paddle
with fluid.dygraph.guard(): with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32") x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10) linear = paddle.nn.Linear(10, 10)
input = fluid.dygraph.to_variable(x) input = fluid.dygraph.to_variable(x)
scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x) scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x)
adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters()) adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())
...@@ -1265,7 +1269,7 @@ class LambdaDecay(_LearningRateEpochDecay): ...@@ -1265,7 +1269,7 @@ class LambdaDecay(_LearningRateEpochDecay):
for epoch in range(6): for epoch in range(6):
for batch_id in range(5): for batch_id in range(5):
out = linear(input) out = linear(input)
loss = fluid.layers.reduce_mean(out) loss = paddle.mean(out)
adam.minimize(loss) adam.minimize(loss)
scheduler.epoch() scheduler.epoch()
......
此差异已折叠。
...@@ -165,12 +165,12 @@ def monkey_patch_varbase(): ...@@ -165,12 +165,12 @@ def monkey_patch_varbase():
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph import Linear from paddle.nn import Linear
import numpy as np import numpy as np
data = np.ones([3, 1024], dtype='float32') data = np.ones([3, 1024], dtype='float32')
with fluid.dygraph.guard(): with fluid.dygraph.guard():
linear = fluid.dygraph.Linear(1024, 4) linear = Linear(1024, 4)
t = to_variable(data) t = to_variable(data)
linear(t) # call with default weight linear(t) # call with default weight
custom_weight = np.random.randn(1024, 4).astype("float32") custom_weight = np.random.randn(1024, 4).astype("float32")
......
...@@ -39,8 +39,10 @@ __all__ = ['run_check'] ...@@ -39,8 +39,10 @@ __all__ = ['run_check']
class SimpleLayer(Layer): class SimpleLayer(Layer):
def __init__(self, input_size): def __init__(self, input_size):
super().__init__() super().__init__()
self._linear1 = nn.Linear( self._linear1 = paddle.nn.Linear(
input_size, 3, param_attr=ParamAttr(initializer=Constant(value=0.1)) input_size,
3,
weight_attr=ParamAttr(initializer=Constant(value=0.1)),
) )
def forward(self, inputs): def forward(self, inputs):
......
...@@ -475,9 +475,10 @@ class Optimizer: ...@@ -475,9 +475,10 @@ class Optimizer:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle
with fluid.dygraph.guard(): with fluid.dygraph.guard():
linear = fluid.dygraph.nn.Linear(10, 10) linear = paddle.nn.Linear(10, 10)
adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters()) adam = fluid.optimizer.Adam(0.1, parameter_list=linear.parameters())
...@@ -576,6 +577,7 @@ class Optimizer: ...@@ -576,6 +577,7 @@ class Optimizer:
import paddle.fluid as fluid import paddle.fluid as fluid
import numpy as np import numpy as np
import paddle
# example1: LearningRateDecay is not used, return value is all the same # example1: LearningRateDecay is not used, return value is all the same
with fluid.dygraph.guard(): with fluid.dygraph.guard():
...@@ -587,10 +589,10 @@ class Optimizer: ...@@ -587,10 +589,10 @@ class Optimizer:
# example2: PiecewiseDecay is used, return the step learning rate # example2: PiecewiseDecay is used, return the step learning rate
with fluid.dygraph.guard(): with fluid.dygraph.guard():
inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32") inp = np.random.uniform(-0.1, 0.1, [10, 10]).astype("float32")
linear = fluid.dygraph.nn.Linear(10, 10) linear = paddle.nn.Linear(10, 10)
inp = fluid.dygraph.to_variable(inp) inp = fluid.dygraph.to_variable(inp)
out = linear(inp) out = linear(inp)
loss = fluid.layers.reduce_mean(out) loss = paddle.mean(out)
bd = [2, 4, 6, 8] bd = [2, 4, 6, 8]
value = [0.2, 0.4, 0.6, 0.8, 1.0] value = [0.2, 0.4, 0.6, 0.8, 1.0]
...@@ -1340,12 +1342,13 @@ class Optimizer: ...@@ -1340,12 +1342,13 @@ class Optimizer:
.. code-block:: python .. code-block:: python
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle
import numpy as np import numpy as np
with fluid.dygraph.guard(): with fluid.dygraph.guard():
value = np.arange(26).reshape(2, 13).astype("float32") value = np.arange(26).reshape(2, 13).astype("float32")
a = fluid.dygraph.to_variable(value) a = fluid.dygraph.to_variable(value)
linear = fluid.Linear(13, 5, dtype="float32") linear = paddle.nn.Linear(13, 5)
# This can be any optimizer supported by dygraph. # This can be any optimizer supported by dygraph.
adam = fluid.optimizer.Adam(learning_rate = 0.01, adam = fluid.optimizer.Adam(learning_rate = 0.01,
parameter_list = linear.parameters()) parameter_list = linear.parameters())
......
...@@ -18,7 +18,7 @@ from test_dist_base import TestParallelDyGraphRunnerBase, runtime_main ...@@ -18,7 +18,7 @@ from test_dist_base import TestParallelDyGraphRunnerBase, runtime_main
import paddle import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.nn.functional as F import paddle.nn.functional as F
from paddle.fluid.dygraph import Embedding, Layer, Linear, to_variable from paddle.fluid.dygraph import Embedding, Layer, to_variable
from paddle.optimizer.lr import NoamDecay from paddle.optimizer.lr import NoamDecay
""" """
...@@ -269,8 +269,8 @@ class PrePostProcessLayer(Layer): ...@@ -269,8 +269,8 @@ class PrePostProcessLayer(Layer):
class PositionwiseFeedForwardLayer(Layer): class PositionwiseFeedForwardLayer(Layer):
def __init__(self, d_inner_hid, d_hid, dropout_rate): def __init__(self, d_inner_hid, d_hid, dropout_rate):
super().__init__() super().__init__()
self._i2h = Linear(d_hid, d_inner_hid, act="relu") self._i2h = paddle.nn.Linear(d_hid, d_inner_hid)
self._h2o = Linear(d_inner_hid, d_hid) self._h2o = paddle.nn.Linear(d_inner_hid, d_hid)
self._dropout_rate = dropout_rate self._dropout_rate = dropout_rate
def forward(self, x): def forward(self, x):
...@@ -304,10 +304,18 @@ class MultiHeadAttentionLayer(Layer): ...@@ -304,10 +304,18 @@ class MultiHeadAttentionLayer(Layer):
self._d_value = d_value self._d_value = d_value
self._d_model = d_model self._d_model = d_model
self._dropout_rate = dropout_rate self._dropout_rate = dropout_rate
self._q_fc = Linear(self._d_model, d_key * n_head, bias_attr=False) self._q_fc = paddle.nn.Linear(
self._k_fc = Linear(self._d_model, d_key * n_head, bias_attr=False) self._d_model, d_key * n_head, bias_attr=False
self._v_fc = Linear(self._d_model, d_value * n_head, bias_attr=False) )
self._proj_fc = Linear(d_value * n_head, self._d_model, bias_attr=False) self._k_fc = paddle.nn.Linear(
self._d_model, d_key * n_head, bias_attr=False
)
self._v_fc = paddle.nn.Linear(
self._d_model, d_value * n_head, bias_attr=False
)
self._proj_fc = paddle.nn.Linear(
d_value * n_head, self._d_model, bias_attr=False
)
def forward(self, queries, keys, values, attn_bias): def forward(self, queries, keys, values, attn_bias):
# compute q ,k ,v # compute q ,k ,v
...@@ -825,7 +833,9 @@ class WrapDecoderLayer(Layer): ...@@ -825,7 +833,9 @@ class WrapDecoderLayer(Layer):
) )
self._weight_sharing = weight_sharing self._weight_sharing = weight_sharing
if not weight_sharing: if not weight_sharing:
self._fc = Linear(d_model, trg_vocab_size, bias_attr=False) self._fc = paddle.nn.Linear(
d_model, trg_vocab_size, bias_attr=False
)
def forward(self, dec_inputs=None, enc_output=None): def forward(self, dec_inputs=None, enc_output=None):
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册