Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
358e657f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
358e657f
编写于
1月 11, 2019
作者:
C
chengduozh
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Revert "Remove workspace_handle in conv_cudnn (#15186)"
test=develop This reverts commit
064512aa
.
上级
5d9edb41
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
107 addition
and
208 deletion
+107
-208
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+1
-1
paddle/fluid/operators/conv_cudnn_op.cu.cc
paddle/fluid/operators/conv_cudnn_op.cu.cc
+64
-85
paddle/fluid/platform/device_context.cc
paddle/fluid/platform/device_context.cc
+15
-13
paddle/fluid/platform/device_context.h
paddle/fluid/platform/device_context.h
+1
-1
paddle/fluid/platform/temporary_allocator.cc
paddle/fluid/platform/temporary_allocator.cc
+14
-49
paddle/fluid/platform/temporary_allocator.h
paddle/fluid/platform/temporary_allocator.h
+5
-5
paddle/fluid/platform/temporary_allocator_test.cc
paddle/fluid/platform/temporary_allocator_test.cc
+6
-52
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-2
未找到文件。
paddle/fluid/framework/operator.h
浏览文件 @
358e657f
...
@@ -391,7 +391,7 @@ class ExecutionContext {
...
@@ -391,7 +391,7 @@ class ExecutionContext {
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
dynamic_cast
<
platform
::
TemporaryAllocation
*>
(
allocation_ptr
)
!=
nullptr
,
dynamic_cast
<
platform
::
TemporaryAllocation
*>
(
allocation_ptr
)
!=
nullptr
,
"The AllocationPtr must be TemporaryAllocation."
);
"The AllocationPtr must be TemporaryAllocation."
);
PADDLE_ENFORCE_
GE
(
allocation_ptr
->
size
(),
PADDLE_ENFORCE_
EQ
(
allocation_ptr
->
size
(),
framework
::
product
(
dim
)
*
sizeof
(
T
));
framework
::
product
(
dim
)
*
sizeof
(
T
));
paddle
::
framework
::
Tensor
temp_tensor
(
paddle
::
framework
::
Tensor
temp_tensor
(
...
...
paddle/fluid/operators/conv_cudnn_op.cu.cc
浏览文件 @
358e657f
...
@@ -137,6 +137,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -137,6 +137,7 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
// ------------------- cudnn conv algorithm ---------------------
// ------------------- cudnn conv algorithm ---------------------
cudnnConvolutionFwdAlgo_t
algo
;
cudnnConvolutionFwdAlgo_t
algo
;
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
bool
half_float
=
false
;
bool
half_float
=
false
;
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
...
@@ -157,8 +158,6 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -157,8 +158,6 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
VLOG
(
5
)
<<
"NOT use cudnn_tensor_op_math"
;
VLOG
(
5
)
<<
"NOT use cudnn_tensor_op_math"
;
}
}
#endif
#endif
Tensor
cudnn_workspace
;
void
*
cudnn_workspace_ptr
=
nullptr
;
auto
x_dims
=
framework
::
vectorize
(
input
->
dims
());
auto
x_dims
=
framework
::
vectorize
(
input
->
dims
());
auto
f_dims
=
framework
::
vectorize
(
filter
->
dims
());
auto
f_dims
=
framework
::
vectorize
(
filter
->
dims
());
...
@@ -181,26 +180,21 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -181,26 +180,21 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
.
Var
(
kCUDNNFwdAlgoCache
)
.
Var
(
kCUDNNFwdAlgoCache
)
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
();
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionFwdAlgo_t
>>
();
}
}
cudnn_workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
platform
::
CUDADeviceContext
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
workspace_size_limit
)}),
dev_ctx
);
cudnn_workspace_ptr
=
static_cast
<
void
*>
(
cudnn_workspace
.
data
<
int8_t
>
());
algo
=
algo_cache
->
GetAlgorithm
(
algo
=
algo_cache
->
GetAlgorithm
(
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
[
&
]()
{
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
[
&
]()
{
int
returned_algo_count
;
int
returned_algo_count
;
std
::
array
<
cudnnConvolutionFwdAlgoPerf_t
,
kNUM_CUDNN_FWD_ALGS
>
std
::
array
<
cudnnConvolutionFwdAlgoPerf_t
,
kNUM_CUDNN_FWD_ALGS
>
fwd_perf_stat
;
fwd_perf_stat
;
auto
cudnn_find_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnFindConvolutionForwardAlgorithmEx
(
platform
::
dynload
::
cudnnFindConvolutionForwardAlgorithmEx
(
handle
,
cudnn_input_desc
,
input_data
,
cudnn_filter_desc
,
handle
,
cudnn_input_desc
,
input_data
,
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
cudnn_output_desc
,
filter_data
,
cudnn_conv_desc
,
cudnn_output_desc
,
output_data
,
kNUM_CUDNN_FWD_ALGS
,
&
returned_algo_count
,
output_data
,
kNUM_CUDNN_FWD_ALGS
,
&
returned_algo_count
,
fwd_perf_stat
.
data
(),
cudnn_workspace_ptr
,
fwd_perf_stat
.
data
(),
cudnn_workspace
,
workspace_size_limit
));
workspace_size_limit
));
};
workspace_handle
.
RunFunc
(
cudnn_find_func
,
workspace_size_limit
);
VLOG
(
3
)
<<
"Perf result: (algo: stat, time, memory)"
;
VLOG
(
3
)
<<
"Perf result: (algo: stat, time, memory)"
;
for
(
int
i
=
0
;
i
<
returned_algo_count
;
++
i
)
{
for
(
int
i
=
0
;
i
<
returned_algo_count
;
++
i
)
{
...
@@ -225,23 +219,17 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
...
@@ -225,23 +219,17 @@ class CUDNNConvOpKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_LE
(
workspace_size_in_bytes
,
workspace_size_limit
,
PADDLE_ENFORCE_LE
(
workspace_size_in_bytes
,
workspace_size_limit
,
"workspace_size to be allocated exceeds the limit"
);
"workspace_size to be allocated exceeds the limit"
);
// Allocate on GPU memory
if
(
!
cudnn_workspace_ptr
)
{
cudnn_workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
platform
::
CUDADeviceContext
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
workspace_size_in_bytes
)}),
dev_ctx
);
cudnn_workspace_ptr
=
static_cast
<
void
*>
(
cudnn_workspace
.
data
<
int8_t
>
());
}
// ------------------- cudnn conv forward ---------------------
// ------------------- cudnn conv forward ---------------------
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionForward
(
cudnn_filter_desc
,
filter_data
+
i
*
group_offset_filter
,
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
cudnn_conv_desc
,
algo
,
cudnn_workspace_ptr
,
workspace_size_in_bytes
,
cudnn_filter_desc
,
filter_data
+
i
*
group_offset_filter
,
&
beta
,
cudnn_output_desc
,
output_data
+
i
*
group_offset_out
));
cudnn_conv_desc
,
algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_output_desc
,
output_data
+
i
*
group_offset_out
));
};
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
};
};
...
@@ -365,20 +353,10 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -365,20 +353,10 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
workspace_size_limit
=
max_user_size
*
1024
*
1024
;
workspace_size_limit
=
max_user_size
*
1024
*
1024
;
}
}
Tensor
cudnn_workspace
;
void
*
cudnn_workspace_ptr
=
nullptr
;
if
((
input_data
||
filter_data
)
&&
exhaustive_search
)
{
cudnn_workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
platform
::
CUDADeviceContext
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
workspace_size_limit
)}),
dev_ctx
);
cudnn_workspace_ptr
=
static_cast
<
void
*>
(
cudnn_workspace
.
data
<
int8_t
>
());
}
auto
x_dims
=
framework
::
vectorize
(
input
->
dims
());
auto
x_dims
=
framework
::
vectorize
(
input
->
dims
());
auto
f_dims
=
framework
::
vectorize
(
filter
->
dims
());
auto
f_dims
=
framework
::
vectorize
(
filter
->
dims
());
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
handle
=
dev_ctx
.
cudnn_handle
();
auto
workspace_handle
=
dev_ctx
.
cudnn_workspace_handle
();
if
(
input_grad
)
{
if
(
input_grad
)
{
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
if
(
exhaustive_search
)
{
if
(
exhaustive_search
)
{
...
@@ -396,22 +374,25 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -396,22 +374,25 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
->
GetMutable
<
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>>
();
AlgorithmsCache
<
cudnnConvolutionBwdDataAlgo_t
>>
();
}
}
data_algo
=
data_algo_cache
->
GetAlgorithm
(
data_algo
=
data_algo_cache
->
GetAlgorithm
(
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
[
&
]()
{
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
[
&
]()
{
int
returned_algo_count
;
int
returned_algo_count
;
std
::
array
<
cudnnConvolutionBwdDataAlgoPerf_t
,
std
::
array
<
cudnnConvolutionBwdDataAlgoPerf_t
,
kNUM_CUDNN_BWD_DATA_ALGS
>
kNUM_CUDNN_BWD_DATA_ALGS
>
data_perf_stat
;
data_perf_stat
;
auto
cudnn_find_bd_data_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
CUDNN_ENFORCE
(
cudnnFindConvolutionBackwardDataAlgorithmEx
(
platform
::
dynload
::
handle
,
cudnn_filter_desc
,
filter_data
,
cudnnFindConvolutionBackwardDataAlgorithmEx
(
cudnn_output_grad_desc
,
output_grad_data
,
handle
,
cudnn_filter_desc
,
filter_data
,
cudnn_conv_desc
,
cudnn_input_desc
,
cudnn_output_grad_desc
,
output_grad_data
,
input_grad_data
,
kNUM_CUDNN_BWD_DATA_ALGS
,
cudnn_conv_desc
,
cudnn_input_desc
,
input_grad_data
,
&
returned_algo_count
,
data_perf_stat
.
data
(),
kNUM_CUDNN_BWD_DATA_ALGS
,
&
returned_algo_count
,
cudnn_workspace_ptr
,
workspace_size_limit
));
data_perf_stat
.
data
(),
cudnn_workspace
,
workspace_size_limit
));
};
workspace_handle
.
RunFunc
(
cudnn_find_bd_data_func
,
workspace_size_limit
);
VLOG
(
3
)
<<
"Perf result: (algo: stat, time, memory)"
;
VLOG
(
3
)
<<
"Perf result: (algo: stat, time, memory)"
;
for
(
int
i
=
0
;
i
<
returned_algo_count
;
++
i
)
{
for
(
int
i
=
0
;
i
<
returned_algo_count
;
++
i
)
{
...
@@ -462,23 +443,25 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -462,23 +443,25 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
->
GetMutable
<
->
GetMutable
<
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>>
();
AlgorithmsCache
<
cudnnConvolutionBwdFilterAlgo_t
>>
();
}
}
filter_algo
=
f_algo_cache
->
GetAlgorithm
(
filter_algo
=
f_algo_cache
->
GetAlgorithm
(
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
[
&
]()
{
x_dims
,
f_dims
,
strides
,
paddings
,
dilations
,
0
,
[
&
]()
{
int
returned_algo_count
;
int
returned_algo_count
;
std
::
array
<
cudnnConvolutionBwdFilterAlgoPerf_t
,
std
::
array
<
cudnnConvolutionBwdFilterAlgoPerf_t
,
kNUM_CUDNN_BWD_FILTER_ALGS
>
kNUM_CUDNN_BWD_FILTER_ALGS
>
filter_perf_stat
;
filter_perf_stat
;
auto
cudnn_find_bd_f_func
=
[
&
](
void
*
cudnn_workspace
)
{
CUDNN_ENFORCE
(
CUDNN_ENFORCE
(
platform
::
dynload
::
platform
::
dynload
::
cudnnFindConvolutionBackwardFilterAlgorithmEx
(
cudnnFindConvolutionBackwardFilterAlgorithmEx
(
handle
,
cudnn_input_desc
,
input_data
,
handle
,
cudnn_input_desc
,
input_data
,
cudnn_output_grad_desc
,
output_grad_data
,
cudnn_output_grad_desc
,
output_grad_data
,
cudnn_conv_desc
,
cudnn_filter_desc
,
filter_grad_data
,
cudnn_conv_desc
,
cudnn_filter_desc
,
kNUM_CUDNN_BWD_FILTER_ALGS
,
&
returned_algo_count
,
filter_grad_data
,
kNUM_CUDNN_BWD_FILTER_ALGS
,
filter_perf_stat
.
data
(),
cudnn_workspace_ptr
,
&
returned_algo_count
,
filter_perf_stat
.
data
(),
workspace_size_limit
));
cudnn_workspace
,
workspace_size_limit
));
};
workspace_handle
.
RunFunc
(
cudnn_find_bd_f_func
,
workspace_size_limit
);
return
filter_perf_stat
[
0
].
algo
;
return
filter_perf_stat
[
0
].
algo
;
});
});
VLOG
(
3
)
<<
"cuDNN backward filter algo "
<<
filter_algo
;
VLOG
(
3
)
<<
"cuDNN backward filter algo "
<<
filter_algo
;
...
@@ -499,16 +482,6 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -499,16 +482,6 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
workspace_size_in_bytes
=
std
::
max
(
workspace_size_in_bytes
,
tmp_size
);
workspace_size_in_bytes
=
std
::
max
(
workspace_size_in_bytes
,
tmp_size
);
}
}
// ------------------- cudnn conv workspace ---------------------
if
(
!
cudnn_workspace_ptr
)
{
cudnn_workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
platform
::
CUDADeviceContext
>
(
framework
::
make_ddim
(
{
static_cast
<
int64_t
>
(
workspace_size_in_bytes
)}),
dev_ctx
);
cudnn_workspace_ptr
=
static_cast
<
void
*>
(
cudnn_workspace
.
data
<
int8_t
>
());
}
// ------------------- cudnn conv backward data ---------------------
// ------------------- cudnn conv backward data ---------------------
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
ScalingParamType
<
T
>
alpha
=
1.0
f
,
beta
=
0.0
f
;
if
(
input_grad
)
{
if
(
input_grad
)
{
...
@@ -516,12 +489,15 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -516,12 +489,15 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
// Because beta is zero, it is unnecessary to reset input_grad.
// Because beta is zero, it is unnecessary to reset input_grad.
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
handle
,
&
alpha
,
cudnn_filter_desc
,
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardData
(
filter_data
+
i
*
group_offset_filter
,
cudnn_output_grad_desc
,
handle
,
&
alpha
,
cudnn_filter_desc
,
output_grad_data
+
i
*
group_offset_out
,
cudnn_conv_desc
,
data_algo
,
filter_data
+
i
*
group_offset_filter
,
cudnn_output_grad_desc
,
cudnn_workspace_ptr
,
workspace_size_in_bytes
,
&
beta
,
output_grad_data
+
i
*
group_offset_out
,
cudnn_conv_desc
,
cudnn_input_desc
,
input_grad_data
+
i
*
group_offset_in
));
data_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_input_desc
,
input_grad_data
+
i
*
group_offset_in
));
};
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
// ------------------- cudnn conv backward filter ---------------------
// ------------------- cudnn conv backward filter ---------------------
...
@@ -529,12 +505,15 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
...
@@ -529,12 +505,15 @@ class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
T
*
filter_grad_data
=
filter_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
// Because beta is zero, it is unnecessary to reset filter_grad.
// Because beta is zero, it is unnecessary to reset filter_grad.
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
for
(
int
i
=
0
;
i
<
groups
;
i
++
)
{
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
auto
cudnn_func
=
[
&
](
void
*
cudnn_workspace
)
{
handle
,
&
alpha
,
cudnn_input_desc
,
input_data
+
i
*
group_offset_in
,
CUDNN_ENFORCE
(
platform
::
dynload
::
cudnnConvolutionBackwardFilter
(
cudnn_output_grad_desc
,
output_grad_data
+
i
*
group_offset_out
,
handle
,
&
alpha
,
cudnn_input_desc
,
cudnn_conv_desc
,
filter_algo
,
cudnn_workspace_ptr
,
input_data
+
i
*
group_offset_in
,
cudnn_output_grad_desc
,
workspace_size_in_bytes
,
&
beta
,
cudnn_filter_desc
,
output_grad_data
+
i
*
group_offset_out
,
cudnn_conv_desc
,
filter_grad_data
+
i
*
group_offset_filter
));
filter_algo
,
cudnn_workspace
,
workspace_size_in_bytes
,
&
beta
,
cudnn_filter_desc
,
filter_grad_data
+
i
*
group_offset_filter
));
};
workspace_handle
.
RunFunc
(
cudnn_func
,
workspace_size_in_bytes
);
}
}
}
}
}
}
...
...
paddle/fluid/platform/device_context.cc
浏览文件 @
358e657f
...
@@ -92,24 +92,26 @@ platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
...
@@ -92,24 +92,26 @@ platform::TemporaryAllocator& DeviceTemporaryAllocator::Get(
const
platform
::
Place
&
place
,
const
cudaStream_t
&
stream
)
{
const
platform
::
Place
&
place
,
const
cudaStream_t
&
stream
)
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
place
));
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
place
));
auto
place_stream
=
std
::
make_pair
(
place
,
stream
);
auto
place_stream
=
std
::
make_pair
(
place
,
stream
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mtx_
);
{
auto
it
=
device_allocator_
.
find
(
place_stream
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mtx_
);
if
(
it
==
device_allocator_
.
end
())
{
if
(
!
device_allocator_
.
count
(
place_stream
))
{
auto
tmp_allocator
=
new
TemporaryAllocator
(
place
);
device_allocator_
[
place_stream
].
reset
(
new
TemporaryAllocator
(
place
));
tmp_allocator
->
SetCallback
([
stream
]()
{
device_allocator_
[
place_stream
]
->
SetCallback
([
stream
]()
{
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream
));
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream
));
PADDLE_ENFORCE
(
cudaGetLastError
());
PADDLE_ENFORCE
(
cudaGetLastError
());
});
});
device_allocator_
[
place_stream
].
reset
(
tmp_allocator
);
}
return
*
tmp_allocator
;
}
else
{
return
*
it
->
second
;
}
}
return
*
device_allocator_
.
at
(
place_stream
);
}
}
template
<
>
template
<
>
platform
::
TemporaryAllocator
&
DeviceTemporaryAllocator
::
Get
(
platform
::
TemporaryAllocator
&
DeviceTemporaryAllocator
::
Get
(
const
platform
::
CUDADeviceContext
&
dev_ctx
)
{
const
platform
::
CUDADeviceContext
&
dev_ctx
)
{
auto
place_stream
=
std
::
make_pair
(
dev_ctx
.
GetPlace
(),
dev_ctx
.
stream
());
if
(
device_allocator_
.
count
(
place_stream
))
{
return
*
device_allocator_
.
at
(
place_stream
);
}
return
Get
(
dev_ctx
.
GetPlace
(),
dev_ctx
.
stream
());
return
Get
(
dev_ctx
.
GetPlace
(),
dev_ctx
.
stream
());
}
}
#endif
#endif
...
@@ -323,7 +325,7 @@ Place CUDADeviceContext::GetPlace() const { return place_; }
...
@@ -323,7 +325,7 @@ Place CUDADeviceContext::GetPlace() const { return place_; }
void
CUDADeviceContext
::
Wait
()
const
{
void
CUDADeviceContext
::
Wait
()
const
{
auto
&
allocator
=
auto
&
allocator
=
DeviceTemporaryAllocator
::
Instance
().
Get
<
CUDADeviceContext
>
(
*
this
);
DeviceTemporaryAllocator
::
Instance
().
Get
<
CUDADeviceContext
>
(
*
this
);
allocator
.
Release
([
this
]()
{
allocator
.
Release
([
=
]()
{
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
PADDLE_ENFORCE
(
cudaStreamSynchronize
(
stream_
));
PADDLE_ENFORCE
(
cudaGetLastError
());
PADDLE_ENFORCE
(
cudaGetLastError
());
});
});
...
...
paddle/fluid/platform/device_context.h
浏览文件 @
358e657f
...
@@ -61,7 +61,7 @@ namespace platform {
...
@@ -61,7 +61,7 @@ namespace platform {
* the allocations of temp_allocation_queue:
* the allocations of temp_allocation_queue:
* - when the Stream calls cudaStreamSynchronize;
* - when the Stream calls cudaStreamSynchronize;
* - when the allocation size of opportunities exceeds a certain threshold
* - when the allocation size of opportunities exceeds a certain threshold
* (defined by FLAGS_limit_of_t
mp
_allocation).
* (defined by FLAGS_limit_of_t
emporary
_allocation).
*
*
* */
* */
class
DeviceTemporaryAllocator
{
class
DeviceTemporaryAllocator
{
...
...
paddle/fluid/platform/temporary_allocator.cc
浏览文件 @
358e657f
...
@@ -15,15 +15,8 @@
...
@@ -15,15 +15,8 @@
#include "paddle/fluid/platform/temporary_allocator.h"
#include "paddle/fluid/platform/temporary_allocator.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
DEFINE_int64
(
limit_of_tmp_allocation
,
-
1
,
DEFINE_double
(
limit_of_temporary_allocation
,
-
1
,
"The up limit of temporary_allocation size."
);
"The up limit of temporary_allocation size."
);
DEFINE_double
(
times_excess_than_required_tmp_allocation
,
2
,
"times_excess_than_required_tmp_allocation indicates the "
"max size the TemporaryAllocator can return. For example, "
"if the required memory size is N, and "
"times_excess_than_required_tmp_allocation is 2.0, "
"the TemporaryAllocator will return the available allocation "
"that the range of size is N ~ 2*N."
);
namespace
paddle
{
namespace
paddle
{
namespace
platform
{
namespace
platform
{
...
@@ -36,25 +29,24 @@ TemporaryAllocation::TemporaryAllocation(
...
@@ -36,25 +29,24 @@ TemporaryAllocation::TemporaryAllocation(
underlying_allocation_
(
std
::
move
(
underlying_allocation
))
{}
underlying_allocation_
(
std
::
move
(
underlying_allocation
))
{}
TemporaryAllocator
::
TemporaryAllocator
(
platform
::
Place
place
)
:
place_
(
place
)
{
TemporaryAllocator
::
TemporaryAllocator
(
platform
::
Place
place
)
:
place_
(
place
)
{
temp_mem_
map_
.
reset
(
new
std
::
multimap
<
size_t
,
TemporaryAllocation
*>
());
temp_mem_
queue_
.
reset
(
new
std
::
deque
<
TemporaryAllocation
*>
());
}
}
bool
TemporaryAllocator
::
IsAllocThreadSafe
()
const
{
return
true
;
}
bool
TemporaryAllocator
::
IsAllocThreadSafe
()
const
{
return
true
;
}
void
TemporaryAllocator
::
Release
(
const
std
::
function
<
void
()
>
&
callback
)
{
void
TemporaryAllocator
::
Release
(
const
std
::
function
<
void
()
>
&
callback
)
{
std
::
unique_ptr
<
std
::
multimap
<
size_t
,
TemporaryAllocation
*>>
t_allocations
;
std
::
shared_ptr
<
std
::
deque
<
TemporaryAllocation
*>>
t_allocations
;
{
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mtx_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mtx_
);
callback
();
callback
();
t_allocations
.
swap
(
temp_mem_map_
)
;
t_allocations
=
temp_mem_queue_
;
temp_mem_
map_
.
reset
(
new
std
::
multimap
<
size_t
,
TemporaryAllocation
*>
());
temp_mem_
queue_
.
reset
(
new
std
::
deque
<
TemporaryAllocation
*>
());
wait_delete_mem_
=
0
;
wait_delete_mem_
=
0
;
}
}
for
(
auto
tmp
:
*
t_allocations
)
{
for
(
auto
tmp
:
*
t_allocations
)
{
VLOG
(
10
)
<<
"Delete temporary allocation "
<<
tmp
.
second
->
ptr
()
VLOG
(
10
)
<<
"Delete temporary allocation "
<<
tmp
->
ptr
()
<<
" size: "
<<
tmp
.
second
->
size
();
<<
" size: "
<<
tmp
->
size
();
delete
tmp
.
second
;
delete
tmp
;
}
}
}
}
...
@@ -62,34 +54,28 @@ void TemporaryAllocator::Free(alloc::Allocation *allocation) {
...
@@ -62,34 +54,28 @@ void TemporaryAllocator::Free(alloc::Allocation *allocation) {
auto
*
temp_allocation
=
dynamic_cast
<
TemporaryAllocation
*>
(
allocation
);
auto
*
temp_allocation
=
dynamic_cast
<
TemporaryAllocation
*>
(
allocation
);
PADDLE_ENFORCE_NOT_NULL
(
temp_allocation
);
PADDLE_ENFORCE_NOT_NULL
(
temp_allocation
);
if
(
platform
::
is_gpu_place
(
temp_allocation
->
place
()))
{
if
(
platform
::
is_gpu_place
(
temp_allocation
->
place
()))
{
PADDLE_ENFORCE
(
platform
::
is_same_place
(
temp_allocation
->
place
(),
place_
),
"The place should be the same."
);
size_t
wait_delete_mem
=
0
;
size_t
wait_delete_mem
=
0
;
{
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mtx_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mtx_
);
temp_mem_
map_
->
emplace
(
temp_allocation
->
size
(),
temp_allocation
);
temp_mem_
queue_
->
emplace_back
(
temp_allocation
);
wait_delete_mem_
+=
temp_allocation
->
size
();
wait_delete_mem_
+=
temp_allocation
->
size
();
wait_delete_mem
=
wait_delete_mem_
;
wait_delete_mem
=
wait_delete_mem_
;
VLOG
(
10
)
<<
"Move temporary allocation: "
<<
temp_allocation
->
ptr
()
VLOG
(
10
)
<<
"Move temporary allocation: "
<<
temp_allocation
->
ptr
()
<<
" to delete queue: "
<<
temp_allocation
->
size
()
<<
"; "
<<
" to delete queue: "
<<
temp_allocation
->
size
()
<<
"; "
<<
"wait_delete_mem: "
<<
wait_delete_mem
;
<<
"wait_delete_mem: "
<<
wait_delete_mem
_
;
}
}
if
(
FLAGS_limit_of_temporary_allocation
>
0
&&
if
(
FLAGS_limit_of_tmp_allocation
>
0
&&
wait_delete_mem
>
FLAGS_limit_of_temporary_allocation
)
{
wait_delete_mem
>
static_cast
<
size_t
>
(
FLAGS_limit_of_tmp_allocation
))
{
PADDLE_ENFORCE
(
callback_
!=
nullptr
,
"The callback is non-initialized."
);
Release
(
callback_
);
Release
(
callback_
);
}
}
return
;
return
;
}
}
VLOG
(
10
)
<<
"Delete temporary allocation "
<<
temp_allocation
->
ptr
()
<<
" size: "
<<
temp_allocation
->
size
();
delete
temp_allocation
;
delete
temp_allocation
;
}
}
size_t
TemporaryAllocator
::
TemporaryAllocationQueueSize
()
{
size_t
TemporaryAllocator
::
TemporaryAllocationQueueSize
()
{
std
::
unique_lock
<
std
::
mutex
>
lock
(
mtx_
);
std
::
unique_lock
<
std
::
mutex
>
lock
(
mtx_
);
return
temp_mem_
map_
?
temp_mem_map
_
->
size
()
:
0
;
return
temp_mem_
queue_
?
temp_mem_queue
_
->
size
()
:
0
;
}
}
void
TemporaryAllocator
::
SetCallback
(
const
std
::
function
<
void
()
>
&
callback
)
{
void
TemporaryAllocator
::
SetCallback
(
const
std
::
function
<
void
()
>
&
callback
)
{
...
@@ -98,27 +84,6 @@ void TemporaryAllocator::SetCallback(const std::function<void()> &callback) {
...
@@ -98,27 +84,6 @@ void TemporaryAllocator::SetCallback(const std::function<void()> &callback) {
alloc
::
Allocation
*
TemporaryAllocator
::
AllocateImpl
(
alloc
::
Allocation
*
TemporaryAllocator
::
AllocateImpl
(
size_t
size
,
alloc
::
Allocator
::
Attr
attr
)
{
size_t
size
,
alloc
::
Allocator
::
Attr
attr
)
{
{
// Find available allocation in temp_mem_map.
std
::
unique_lock
<
std
::
mutex
>
lock
(
mtx_
);
if
(
temp_mem_map_
->
size
())
{
auto
it
=
temp_mem_map_
->
lower_bound
(
size
);
// FIXME(zcd): Not sure the best value of excess fraction.
if
(
it
!=
temp_mem_map_
->
end
()
&&
it
->
first
<
static_cast
<
size_t
>
(
size
*
FLAGS_times_excess_than_required_tmp_allocation
))
{
auto
tmp_ptr
=
it
->
second
;
temp_mem_map_
->
erase
(
it
);
wait_delete_mem_
-=
tmp_ptr
->
size
();
VLOG
(
10
)
<<
"Reuse temporary allocation: "
<<
tmp_ptr
->
ptr
()
<<
": "
<<
tmp_ptr
->
size
();
return
tmp_ptr
;
}
}
}
// If not find the the available allocation, get allocation from
// AllocatorFacadeInstance.
auto
raw_allocation
=
auto
raw_allocation
=
alloc
::
AllocatorFacade
::
Instance
().
Alloc
(
place_
,
size
,
attr
);
alloc
::
AllocatorFacade
::
Instance
().
Alloc
(
place_
,
size
,
attr
);
auto
temp_mem
=
new
TemporaryAllocation
(
std
::
move
(
raw_allocation
));
auto
temp_mem
=
new
TemporaryAllocation
(
std
::
move
(
raw_allocation
));
...
...
paddle/fluid/platform/temporary_allocator.h
浏览文件 @
358e657f
...
@@ -15,7 +15,6 @@
...
@@ -15,7 +15,6 @@
#pragma once
#pragma once
#include <condition_variable> // NOLINT
#include <condition_variable> // NOLINT
#include <deque>
#include <deque>
#include <map>
#include <mutex> // NOLINT
#include <mutex> // NOLINT
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/lock_guard_ptr.h"
...
@@ -40,7 +39,7 @@ class TemporaryAllocation : public memory::allocation::Allocation {
...
@@ -40,7 +39,7 @@ class TemporaryAllocation : public memory::allocation::Allocation {
*
*
* There is one opportunity to free the allocations of temp_allocation_queue:
* There is one opportunity to free the allocations of temp_allocation_queue:
* - when the allocation size of opportunities exceeds a certain threshold
* - when the allocation size of opportunities exceeds a certain threshold
* (defined by FLAGS_limit_of_t
mp
_allocation).
* (defined by FLAGS_limit_of_t
emporary
_allocation).
*
*
* */
* */
class
TemporaryAllocator
:
public
memory
::
allocation
::
Allocator
{
class
TemporaryAllocator
:
public
memory
::
allocation
::
Allocator
{
...
@@ -63,10 +62,11 @@ class TemporaryAllocator : public memory::allocation::Allocator {
...
@@ -63,10 +62,11 @@ class TemporaryAllocator : public memory::allocation::Allocator {
private:
private:
platform
::
Place
place_
;
platform
::
Place
place_
;
// When the allocation is not held by any variable, it should be placed
// When the allocation is not held by any variable, it should be placed
// to temp_mem_
map
immediately.
// to temp_mem_
queue
immediately.
std
::
unique_ptr
<
std
::
multimap
<
size_t
,
TemporaryAllocation
*>>
temp_mem_map_
{
std
::
shared_ptr
<
std
::
deque
<
TemporaryAllocation
*>>
temp_mem_queue_
{
nullptr
};
nullptr
};
std
::
mutex
mtx_
;
std
::
mutex
mtx_
;
size_t
wait_delete_mem_
{
0
};
size_t
wait_delete_mem_
{
0
};
std
::
function
<
void
()
>
callback_
;
std
::
function
<
void
()
>
callback_
;
...
...
paddle/fluid/platform/temporary_allocator_test.cc
浏览文件 @
358e657f
...
@@ -18,8 +18,7 @@
...
@@ -18,8 +18,7 @@
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/framework/tensor_util.h"
DECLARE_int64
(
limit_of_tmp_allocation
);
DECLARE_double
(
limit_of_temporary_allocation
);
DECLARE_double
(
times_excess_than_required_tmp_allocation
);
namespace
paddle
{
namespace
paddle
{
namespace
platform
{
namespace
platform
{
...
@@ -36,7 +35,7 @@ class DummyOp : public framework::OperatorBase {
...
@@ -36,7 +35,7 @@ class DummyOp : public framework::OperatorBase {
const
platform
::
Place
&
place
)
const
override
{}
const
platform
::
Place
&
place
)
const
override
{}
};
};
TEST
(
temporary_allocator
,
te
st_base_function
)
{
TEST
(
temporary_allocator
,
te
mporary_allocator
)
{
platform
::
CPUPlace
cpu_place
;
platform
::
CPUPlace
cpu_place
;
TemporaryAllocator
alloc
(
cpu_place
);
TemporaryAllocator
alloc
(
cpu_place
);
alloc
.
Allocate
(
100
);
alloc
.
Allocate
(
100
);
...
@@ -60,10 +59,10 @@ TEST(temporary_allocator, test_base_function) {
...
@@ -60,10 +59,10 @@ TEST(temporary_allocator, test_base_function) {
#endif
#endif
}
}
TEST
(
temporary_allocator
,
test_flags_function
)
{
TEST
(
temporary_allocator
,
add_callback
)
{
#ifdef PADDLE_WITH_CUDA
#ifdef PADDLE_WITH_CUDA
const
int64_t
limit
=
FLAGS_limit_of_tmp
_allocation
;
const
double
limit
=
FLAGS_limit_of_temporary
_allocation
;
FLAGS_limit_of_t
mp
_allocation
=
10
;
FLAGS_limit_of_t
emporary
_allocation
=
10
;
platform
::
CUDAPlace
gpu_place
(
0
);
platform
::
CUDAPlace
gpu_place
(
0
);
TemporaryAllocator
gpu_alloc
(
gpu_place
);
TemporaryAllocator
gpu_alloc
(
gpu_place
);
...
@@ -79,52 +78,7 @@ TEST(temporary_allocator, test_flags_function) {
...
@@ -79,52 +78,7 @@ TEST(temporary_allocator, test_flags_function) {
});
});
{
gpu_alloc
.
Allocate
(
100
);
}
{
gpu_alloc
.
Allocate
(
100
);
}
PADDLE_ENFORCE
(
deleted
);
PADDLE_ENFORCE
(
deleted
);
FLAGS_limit_of_tmp_allocation
=
limit
;
FLAGS_limit_of_temporary_allocation
=
limit
;
#endif
}
TEST
(
temporary_allocator
,
test_reuse_tmp_allocation
)
{
#ifdef PADDLE_WITH_CUDA
platform
::
CUDAPlace
gpu_place
(
0
);
TemporaryAllocator
gpu_alloc
(
gpu_place
);
gpu_alloc
.
SetCallback
([]()
{});
void
*
tmp_allocation_ptr1
=
nullptr
;
{
PADDLE_ENFORCE_EQ
(
gpu_alloc
.
TemporaryAllocationQueueSize
(),
0
);
auto
tmp_allocation1
=
gpu_alloc
.
Allocate
(
100
);
tmp_allocation_ptr1
=
tmp_allocation1
->
ptr
();
}
PADDLE_ENFORCE_EQ
(
gpu_alloc
.
TemporaryAllocationQueueSize
(),
1
);
auto
tmp_allocation2
=
gpu_alloc
.
Allocate
(
100
);
void
*
tmp_allocation_ptr2
=
tmp_allocation2
->
ptr
();
PADDLE_ENFORCE_EQ
(
gpu_alloc
.
TemporaryAllocationQueueSize
(),
0
);
PADDLE_ENFORCE_EQ
(
tmp_allocation_ptr1
,
tmp_allocation_ptr2
);
auto
tmp_allocation3
=
gpu_alloc
.
Allocate
(
100
);
void
*
tmp_allocation_ptr3
=
tmp_allocation2
->
ptr
();
PADDLE_ENFORCE_EQ
(
tmp_allocation_ptr1
,
tmp_allocation_ptr3
);
#endif
}
TEST
(
temporary_allocator
,
test_times_excess_than_required_tmp_allocation
)
{
#ifdef PADDLE_WITH_CUDA
platform
::
CUDAPlace
gpu_place
(
0
);
TemporaryAllocator
gpu_alloc
(
gpu_place
);
gpu_alloc
.
SetCallback
([]()
{});
double
excess_fraction
=
FLAGS_times_excess_than_required_tmp_allocation
;
void
*
tmp_allocation_ptr1
=
nullptr
;
{
PADDLE_ENFORCE_EQ
(
gpu_alloc
.
TemporaryAllocationQueueSize
(),
0
);
auto
tmp_allocation1
=
gpu_alloc
.
Allocate
(
static_cast
<
size_t
>
(
100
*
excess_fraction
-
1
));
tmp_allocation_ptr1
=
tmp_allocation1
->
ptr
();
}
PADDLE_ENFORCE_EQ
(
gpu_alloc
.
TemporaryAllocationQueueSize
(),
1
);
auto
tmp_allocation2
=
gpu_alloc
.
Allocate
(
100
);
void
*
tmp_allocation_ptr2
=
tmp_allocation2
->
ptr
();
PADDLE_ENFORCE_EQ
(
gpu_alloc
.
TemporaryAllocationQueueSize
(),
0
);
PADDLE_ENFORCE_EQ
(
tmp_allocation_ptr1
,
tmp_allocation_ptr2
);
#endif
#endif
}
}
...
...
python/paddle/fluid/__init__.py
浏览文件 @
358e657f
...
@@ -155,8 +155,7 @@ def __bootstrap__():
...
@@ -155,8 +155,7 @@ def __bootstrap__():
'fraction_of_gpu_memory_to_use'
,
'cudnn_deterministic'
,
'fraction_of_gpu_memory_to_use'
,
'cudnn_deterministic'
,
'enable_cublas_tensor_op_math'
,
'conv_workspace_size_limit'
,
'enable_cublas_tensor_op_math'
,
'conv_workspace_size_limit'
,
'cudnn_exhaustive_search'
,
'memory_optimize_debug'
,
'selected_gpus'
,
'cudnn_exhaustive_search'
,
'memory_optimize_debug'
,
'selected_gpus'
,
'sync_nccl_allreduce'
,
'limit_of_tmp_allocation'
,
'sync_nccl_allreduce'
'times_excess_than_required_tmp_allocation'
]
]
core
.
init_gflags
([
sys
.
argv
[
0
]]
+
core
.
init_gflags
([
sys
.
argv
[
0
]]
+
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录