Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
352ac149
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
352ac149
编写于
9月 04, 2020
作者:
Z
Zhou Wei
提交者:
GitHub
9月 04, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update doc of paddle.to_tensor (#26820)
update doc of paddle.to_tensor
上级
72f6e566
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
289 addition
and
485 deletion
+289
-485
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+3
-8
python/paddle/fluid/layers/ops.py
python/paddle/fluid/layers/ops.py
+23
-66
python/paddle/nn/functional/loss.py
python/paddle/nn/functional/loss.py
+9
-17
python/paddle/tensor/creation.py
python/paddle/tensor/creation.py
+5
-8
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+11
-12
python/paddle/tensor/logic.py
python/paddle/tensor/logic.py
+20
-31
python/paddle/tensor/manipulation.py
python/paddle/tensor/manipulation.py
+27
-56
python/paddle/tensor/math.py
python/paddle/tensor/math.py
+67
-126
python/paddle/tensor/random.py
python/paddle/tensor/random.py
+13
-16
python/paddle/tensor/search.py
python/paddle/tensor/search.py
+111
-145
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
352ac149
...
...
@@ -12175,13 +12175,10 @@ def logical_and(x, y, out=None, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([True], dtype=np.bool)
y_data = np.array([True, False, True, False], dtype=np.bool)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
x = paddle.to_tensor([True])
y = paddle.to_tensor([True, False, True, False])
res = paddle.logical_and(x, y)
print(res.numpy()) # [True False True False]
"""
...
...
@@ -12294,11 +12291,9 @@ def logical_not(x, out=None, name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([True, False, True, False], dtype=np.bool)
x = paddle.to_variable(x_data)
x = paddle.to_tensor([True, False, True, False])
res = paddle.logical_not(x)
print(res.numpy()) # [False True False True]
"""
...
...
python/paddle/fluid/layers/ops.py
浏览文件 @
352ac149
...
...
@@ -86,13 +86,11 @@ add_sample_code(globals()["sigmoid"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn.functional as F
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = F.sigmoid(x)
print(out.numpy())
# [0.40131234 0.450166 0.52497919 0.57444252]
...
...
@@ -103,13 +101,11 @@ add_sample_code(globals()["logsigmoid"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.nn.functional as F
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = F.logsigmoid(x)
print(out.numpy())
# [-0.91301525 -0.79813887 -0.64439666 -0.55435524]
...
...
@@ -120,12 +116,10 @@ add_sample_code(globals()["exp"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.exp(x)
print(out.numpy())
# [0.67032005 0.81873075 1.10517092 1.34985881]
...
...
@@ -136,12 +130,10 @@ add_sample_code(globals()["tanh"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.tanh(x)
print(out.numpy())
# [-0.37994896 -0.19737532 0.09966799 0.29131261]
...
...
@@ -152,12 +144,10 @@ add_sample_code(globals()["atan"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.atan(x)
print(out.numpy())
# [-0.38050638 -0.19739556 0.09966865 0.29145679]
...
...
@@ -170,11 +160,10 @@ Examples:
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(
np.array([-0.4, -0.2, 0.1, 0.3])
)
x = paddle.to_tensor(
[-0.4, -0.2, 0.1, 0.3]
)
out = F.tanhshrink(x) # [-0.020051, -0.00262468, 0.000332005, 0.00868739]
"""
)
...
...
@@ -183,12 +172,10 @@ add_sample_code(globals()["sqrt"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([0.1, 0.2, 0.3, 0.4])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4])
out = paddle.sqrt(x)
print(out.numpy())
# [0.31622777 0.4472136 0.54772256 0.63245553]
...
...
@@ -199,12 +186,10 @@ add_sample_code(globals()["rsqrt"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([0.1, 0.2, 0.3, 0.4])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([0.1, 0.2, 0.3, 0.4])
out = paddle.rsqrt(x)
print(out.numpy())
# [3.16227766 2.23606798 1.82574186 1.58113883]
...
...
@@ -215,12 +200,10 @@ add_sample_code(globals()["abs"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.abs(x)
print(out.numpy())
# [0.4 0.2 0.1 0.3]
...
...
@@ -231,12 +214,10 @@ add_sample_code(globals()["ceil"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.ceil(x)
print(out.numpy())
# [-0. -0. 1. 1.]
...
...
@@ -247,12 +228,10 @@ add_sample_code(globals()["floor"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.floor(x)
print(out.numpy())
# [-1. -1. 0. 0.]
...
...
@@ -263,12 +242,10 @@ add_sample_code(globals()["cos"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.cos(x)
print(out.numpy())
# [0.92106099 0.98006658 0.99500417 0.95533649]
...
...
@@ -279,12 +256,10 @@ add_sample_code(globals()["acos"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.acos(x)
print(out.numpy())
# [1.98231317 1.77215425 1.47062891 1.26610367]
...
...
@@ -295,12 +270,10 @@ add_sample_code(globals()["sin"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.sin(x)
print(out.numpy())
# [-0.38941834 -0.19866933 0.09983342 0.29552021]
...
...
@@ -311,12 +284,10 @@ add_sample_code(globals()["asin"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.asin(x)
print(out.numpy())
# [-0.41151685 -0.20135792 0.10016742 0.30469265]
...
...
@@ -327,12 +298,10 @@ add_sample_code(globals()["cosh"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.cosh(x)
print(out.numpy())
# [1.08107237 1.02006676 1.00500417 1.04533851]
...
...
@@ -343,12 +312,10 @@ add_sample_code(globals()["sinh"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.sinh(x)
print(out.numpy())
# [-0.41075233 -0.201336 0.10016675 0.30452029]
...
...
@@ -359,12 +326,10 @@ add_sample_code(globals()["round"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.5, -0.2, 0.6, 1.5])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.5, -0.2, 0.6, 1.5])
out = paddle.round(x)
print(out.numpy())
# [-1. -0. 1. 2.]
...
...
@@ -375,12 +340,10 @@ add_sample_code(globals()["reciprocal"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.reciprocal(x)
print(out.numpy())
# [-2.5 -5. 10. 3.33333333]
...
...
@@ -391,12 +354,10 @@ add_sample_code(globals()["square"], r"""
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_variable(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.square(x)
print(out.numpy())
# [0.16 0.04 0.01 0.09]
...
...
@@ -409,11 +370,10 @@ Examples:
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(
np.array([-0.4, -0.2, 0.1, 0.3])
)
x = paddle.to_tensor(
[-0.4, -0.2, 0.1, 0.3]
)
out = F.softplus(x) # [0.513015, 0.598139, 0.744397, 0.854355]
"""
)
...
...
@@ -424,11 +384,10 @@ Examples:
import paddle
import paddle.nn.functional as F
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(
np.array([-0.4, -0.2, 0.1, 0.3])
)
x = paddle.to_tensor(
[-0.4, -0.2, 0.1, 0.3]
)
out = F.softsign(x) # [-0.285714, -0.166667, 0.0909091, 0.230769]
"""
)
...
...
@@ -761,11 +720,9 @@ Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_tensor(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.erf(x)
print(out.numpy())
# [-0.42839236 -0.22270259 0.11246292 0.32862676]
...
...
python/paddle/nn/functional/loss.py
浏览文件 @
352ac149
...
...
@@ -138,13 +138,10 @@ def binary_cross_entropy(input, label, weight=None, reduction='mean',
.. code-block:: python
import paddle
import numpy as np
input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
paddle.disable_static()
input = paddle.to_tensor(
input_data
)
label = paddle.to_tensor(
label_data
)
input = paddle.to_tensor(
[0.5, 0.6, 0.7], 'float32'
)
label = paddle.to_tensor(
[1.0, 0.0, 1.0], 'float32'
)
output = paddle.nn.functional.binary_cross_entropy(input, label)
print(output.numpy()) # [0.65537095]
...
...
@@ -277,8 +274,8 @@ def binary_cross_entropy_with_logits(logit,
import paddle
paddle.disable_static()
logit = paddle.to_tensor([5.0, 1.0, 3.0]
, dtype="float32"
)
label = paddle.to_tensor([1.0, 0.0, 1.0]
, dtype="float32"
)
logit = paddle.to_tensor([5.0, 1.0, 3.0])
label = paddle.to_tensor([1.0, 0.0, 1.0])
output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
print(output.numpy()) # [0.45618808]
...
...
@@ -569,13 +566,10 @@ def l1_loss(input, label, reduction='mean', name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
input = paddle.to_tensor(input_data)
label = paddle.to_tensor(label_data)
input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
l1_loss = paddle.nn.functional.l1_loss(input, label)
print(l1_loss.numpy())
...
...
@@ -868,7 +862,7 @@ def mse_loss(input, label, reduction='mean', name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
...
...
@@ -878,8 +872,6 @@ def mse_loss(input, label, reduction='mean', name=None):
input = paddle.data(name="input", shape=[1])
label = paddle.data(name="label", shape=[1])
place = paddle.CPUPlace()
input_data = np.array([1.5]).astype("float32")
label_data = np.array([1.7]).astype("float32")
output = mse_loss(input,label)
exe = paddle.static.Executor(place)
...
...
@@ -894,8 +886,8 @@ def mse_loss(input, label, reduction='mean', name=None):
# dynamic graph mode
paddle.disable_static()
input = paddle.to_
variable(input_data
)
label = paddle.to_
variable(label_data
)
input = paddle.to_
tensor(1.5
)
label = paddle.to_
tensor(1.7
)
output = mse_loss(input, label)
print(output.numpy())
# [0.04000002]
...
...
python/paddle/tensor/creation.py
浏览文件 @
352ac149
...
...
@@ -366,11 +366,10 @@ def ones_like(x, dtype=None, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(
np.array([1,2,3], dtype='float32')
)
x = paddle.to_tensor(
[1,2,3]
)
out1 = paddle.zeros_like(x) # [1., 1., 1.]
out2 = paddle.zeros_like(x, dtype='int32') # [1, 1, 1]
...
...
@@ -453,11 +452,10 @@ def zeros_like(x, dtype=None, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = paddle.to_tensor(
np.array([1,2,3], dtype='float32')
)
x = paddle.to_tensor(
[1,2,3]
)
out1 = paddle.zeros_like(x) # [0., 0., 0.]
out2 = paddle.zeros_like(x, dtype='int32') # [0, 0, 0]
...
...
@@ -619,7 +617,6 @@ def arange(start=0, end=None, step=1, dtype=None, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
...
...
@@ -633,7 +630,7 @@ def arange(start=0, end=None, step=1, dtype=None, name=None):
out3 = paddle.arange(4.999, dtype='float32')
# [0., 1., 2., 3., 4.]
start_var = paddle.to_tensor(
np.array([3])
)
start_var = paddle.to_tensor(
[3]
)
out4 = paddle.arange(start_var, 7)
# [3, 4, 5, 6]
...
...
@@ -725,7 +722,7 @@ def tril(x, diagonal=0, name=None):
paddle.disable_static()
x = paddle.to_
variable
(data)
x = paddle.to_
tensor
(data)
tril1 = paddle.tensor.tril(x)
# array([[ 1, 0, 0, 0],
...
...
@@ -797,7 +794,7 @@ def triu(x, diagonal=0, name=None):
paddle.disable_static()
# example 1, default diagonal
x = paddle.to_
variable
(data)
x = paddle.to_
tensor
(data)
triu1 = paddle.tensor.triu(x)
# array([[ 1, 2, 3, 4],
# [ 0, 6, 7, 8],
...
...
python/paddle/tensor/linalg.py
浏览文件 @
352ac149
...
...
@@ -810,7 +810,7 @@ def cholesky(x, upper=False, name=None):
a = np.random.rand(3, 3)
a_t = np.transpose(a, [1, 0])
x_data = np.matmul(a, a_t) + 1e-03
x = paddle.to_
variable
(x_data)
x = paddle.to_
tensor
(x_data)
out = paddle.cholesky(x, upper=False)
print(out.numpy())
# [[1.190523 0. 0. ]
...
...
@@ -855,15 +855,16 @@ def bmm(x, y, name=None):
Examples:
import paddle
# In imperative mode:
# size input1: (2, 2, 3) and input2: (2, 3, 2)
input1 = np.array([[[1.0, 1.0, 1.0],[2.0, 2.0, 2.0]],[[3.0, 3.0, 3.0],[4.0, 4.0, 4.0]]])
input2 = np.array([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],[[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
paddle.disable_static()
x = paddle.to_variable(input1)
y = paddle.to_variable(input2)
# In imperative mode:
# size x: (2, 2, 3) and y: (2, 3, 2)
x = paddle.to_tensor([[[1.0, 1.0, 1.0],
[2.0, 2.0, 2.0]],
[[3.0, 3.0, 3.0],
[4.0, 4.0, 4.0]]])
y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
[[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
out = paddle.bmm(x, y)
#output size: (2, 2, 2)
#output value:
...
...
@@ -924,10 +925,8 @@ def histogram(input, bins=100, min=0, max=0):
Code Example 2:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static(paddle.CPUPlace())
inputs_np = np.array([1, 2, 1]).astype(np.float)
inputs = paddle.to_variable(inputs_np)
inputs = paddle.to_tensor([1, 2, 1])
result = paddle.histogram(inputs, bins=4, min=0, max=3)
print(result) # [0, 2, 1, 0]
paddle.enable_static()
...
...
python/paddle/tensor/logic.py
浏览文件 @
352ac149
...
...
@@ -71,13 +71,12 @@ def equal_all(x, y, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x = paddle.to_
variable(np.array([1, 2, 3])
)
y = paddle.to_
variable(np.array([1, 2, 3])
)
z = paddle.to_
variable(np.array([1, 4, 3])
)
x = paddle.to_
tensor([1, 2, 3]
)
y = paddle.to_
tensor([1, 2, 3]
)
z = paddle.to_
tensor([1, 4, 3]
)
result1 = paddle.equal_all(x, y)
print(result1.numpy()) # result1 = [True ]
result2 = paddle.equal_all(x, z)
...
...
@@ -120,14 +119,11 @@ def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np_x = np.array([10000., 1e-07]).astype("float32")
np_y = np.array([10000.1, 1e-08]).astype("float32")
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
x = paddle.to_tensor([10000., 1e-07])
y = paddle.to_tensor([10000.1, 1e-08])
result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
equal_nan=False, name="ignore_nan")
np_result1 = result1.numpy()
...
...
@@ -137,10 +133,8 @@ def allclose(x, y, rtol=1e-05, atol=1e-08, equal_nan=False, name=None):
np_result2 = result2.numpy()
# [False]
np_x = np.array([1.0, float('nan')]).astype("float32")
np_y = np.array([1.0, float('nan')]).astype("float32")
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
x = paddle.to_tensor([1.0, float('nan')])
y = paddle.to_tensor([1.0, float('nan')])
result1 = paddle.allclose(x, y, rtol=1e-05, atol=1e-08,
equal_nan=False, name="ignore_nan")
np_result1 = result1.numpy()
...
...
@@ -195,12 +189,11 @@ def equal(x, y, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x = paddle.to_
variable(np.array([1, 2, 3])
)
y = paddle.to_
variable(np.array([1, 3, 2])
)
x = paddle.to_
tensor([1, 2, 3]
)
y = paddle.to_
tensor([1, 3, 2]
)
result1 = paddle.equal(x, y)
print(result1.numpy()) # result1 = [True False False]
"""
...
...
@@ -227,12 +220,11 @@ def greater_equal(x, y, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x = paddle.to_
variable(np.array([1, 2, 3])
)
y = paddle.to_
variable(np.array([1, 3, 2])
)
x = paddle.to_
tensor([1, 2, 3]
)
y = paddle.to_
tensor([1, 3, 2]
)
result1 = paddle.greater_equal(x, y)
print(result1.numpy()) # result1 = [True False True]
"""
...
...
@@ -259,12 +251,11 @@ def greater_than(x, y, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x = paddle.to_
variable(np.array([1, 2, 3])
)
y = paddle.to_
variable(np.array([1, 3, 2])
)
x = paddle.to_
tensor([1, 2, 3]
)
y = paddle.to_
tensor([1, 3, 2]
)
result1 = paddle.greater_than(x, y)
print(result1.numpy()) # result1 = [False False True]
"""
...
...
@@ -292,12 +283,11 @@ def less_equal(x, y, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x = paddle.to_
variable(np.array([1, 2, 3])
)
y = paddle.to_
variable(np.array([1, 3, 2])
)
x = paddle.to_
tensor([1, 2, 3]
)
y = paddle.to_
tensor([1, 3, 2]
)
result1 = paddle.less_equal(x, y)
print(result1.numpy()) # result1 = [True True False]
"""
...
...
@@ -325,12 +315,11 @@ def less_than(x, y, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x = paddle.to_
variable(np.array([1, 2, 3])
)
y = paddle.to_
variable(np.array([1, 3, 2])
)
x = paddle.to_
tensor([1, 2, 3]
)
y = paddle.to_
tensor([1, 3, 2]
)
result1 = paddle.less_than(x, y)
print(result1.numpy()) # result1 = [False True False]
"""
...
...
@@ -358,12 +347,12 @@ def not_equal(x, y, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x = paddle.to_
variable(np.array([1, 2, 3])
)
y = paddle.to_
variable(np.array([1, 3, 2])
)
x = paddle.to_
tensor([1, 2, 3]
)
y = paddle.to_
tensor([1, 3, 2]
)
result1 = paddle.not_equal(x, y)
print(result1.numpy()) # result1 = [False True True]
"""
...
...
python/paddle/tensor/manipulation.py
浏览文件 @
352ac149
...
...
@@ -98,18 +98,14 @@ def concat(x, axis=0, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static() # Now we are in imperative mode
in1 = np.array([[1, 2, 3],
[4, 5, 6]])
in2 = np.array([[11, 12, 13],
[14, 15, 16]])
in3 = np.array([[21, 22],
[23, 24]])
x1 = paddle.to_tensor(in1)
x2 = paddle.to_tensor(in2)
x3 = paddle.to_tensor(in3)
x1 = paddle.to_tensor([[1, 2, 3],
[4, 5, 6]])
x2 = paddle.to_tensor([[11, 12, 13],
[14, 15, 16]])
x3 = paddle.to_tensor([[21, 22],
[23, 24]])
zero = paddle.full(shape=[1], dtype='int32', fill_value=0)
# When the axis is negative, the real axis is (axis + Rank(x))
# As follow, axis is -1, Rank(x) is 2, the real axis is 1
...
...
@@ -158,7 +154,7 @@ def flip(x, axis, name=None):
image_shape=(3, 2, 2)
x = np.arange(image_shape[0] * image_shape[1] * image_shape[2]).reshape(image_shape)
x = x.astype('float32')
img = paddle.to_
variable
(x)
img = paddle.to_
tensor
(x)
out = paddle.flip(img, [0,1])
print(out) # [[[10,11][8, 9]],[[6, 7],[4, 5]] [[2, 3],[0, 1]]]
...
...
@@ -250,7 +246,7 @@ def flatten(x, start_axis=0, stop_axis=-1, name=None):
x = np.arange(image_shape[0] * image_shape[1] * image_shape[2] * image_shape[3]).reshape(image_shape) / 100.
x = x.astype('float32')
img = paddle.to_
variable
(x)
img = paddle.to_
tensor
(x)
out = paddle.flatten(img, start_axis=1, stop_axis=2)
# out shape is [2, 12, 4]
"""
...
...
@@ -315,15 +311,13 @@ def roll(x, shifts, axis=None, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
import paddle.fluid as fluid
data = np.array([[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]])
paddle.disable_static()
x = paddle.to_variable(data)
x = paddle.to_tensor([[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0]])
out_z1 = paddle.roll(x, shifts=1)
print(out_z1.numpy())
#[[9. 1. 2.]
...
...
@@ -447,8 +441,7 @@ def stack(x, axis=0, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x1 = paddle.to_tensor([[1.0, 2.0]])
x2 = paddle.to_tensor([[3.0, 4.0]])
...
...
@@ -632,12 +625,10 @@ def unique(x,
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
x_data = np.array([2, 3, 3, 1, 5, 3])
x = paddle.to_tensor(x_data)
x = paddle.to_tensor([2, 3, 3, 1, 5, 3])
unique = paddle.unique(x)
np_unique = unique.numpy() # [1 2 3 5]
_, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
...
...
@@ -645,8 +636,7 @@ def unique(x,
np_inverse = inverse.numpy() # [1 2 2 0 3 2]
np_counts = counts.numpy() # [1 1 3 1]
x_data = np.array([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
x = paddle.to_tensor(x_data)
x = paddle.to_tensor([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
unique = paddle.unique(x)
np_unique = unique.numpy() # [0 1 2 3]
...
...
@@ -815,14 +805,11 @@ def gather(x, index, axis=None, name=None):
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
input_1 = np.array([[1,2],[3,4],[5,6]])
index_1 = np.array([0,1])
input = paddle.to_tensor(input_1)
index = paddle.to_tensor(index_1)
input = paddle.to_tensor([[1,2],[3,4],[5,6]])
index = paddle.to_tensor([0,1])
output = paddle.gather(input, index, axis=0)
# expected output: [[1,2],[3,4]]
"""
...
...
@@ -958,16 +945,11 @@ def scatter(x, index, updates, overwrite=True, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([[1, 1], [2, 2], [3, 3]]).astype(np.float32)
index_data = np.array([2, 1, 0, 1]).astype(np.int64)
updates_data = np.array([[1, 1], [2, 2], [3, 3], [4, 4]]).astype(np.float32)
x = paddle.to_tensor(x_data)
index = paddle.to_tensor(index_data)
updates = paddle.to_tensor(updates_data)
x = paddle.to_tensor([[1, 1], [2, 2], [3, 3]], dtype='float32')
index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
updates = paddle.to_tensor([[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')
output1 = paddle.scatter(x, index, updates, overwrite=False)
# [[3., 3.],
...
...
@@ -1074,11 +1056,9 @@ def tile(x, repeat_times, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np_data = np.array([1, 2, 3]).astype('int32')
data = paddle.to_tensor(np_data)
data = paddle.to_tensor([1, 2, 3], dtype='int32')
out = paddle.tile(data, repeat_times=[2, 1])
np_out = out.numpy()
# [[1, 2, 3], [1, 2, 3]]
...
...
@@ -1087,8 +1067,7 @@ def tile(x, repeat_times, name=None):
np_out = out.numpy()
# [[1, 2, 3, 1, 2, 3], [1, 2, 3, 1, 2, 3]]
np_repeat_times = np.array([2, 1]).astype("int32")
repeat_times = paddle.to_tensor(np_repeat_times)
repeat_times = paddle.to_tensor([2, 1], dtype='int32')
out = paddle.tile(data, repeat_times=repeat_times)
np_out = out.numpy()
# [[1, 2, 3], [1, 2, 3]]
...
...
@@ -1156,15 +1135,12 @@ def expand_as(x, y, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
np_data_x = np.array([1, 2, 3]).astype('int32')
np_data_y = np.array([[1, 2, 3], [4, 5, 6]]).astype('int32')
data_x = paddle.to_tensor(np_data_x)
data_y = paddle.to_tensor(np_data_y)
data_x = paddle.to_tensor([1, 2, 3], 'int32')
data_y = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], 'int32')
out = paddle.expand_as(data_x, data_y)
np_out = out.numpy()
# [[1, 2, 3], [1, 2, 3]]
...
...
@@ -1212,12 +1188,10 @@ def expand(x, shape, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
np_data = np.array([1, 2, 3]).astype('int32')
data = paddle.to_tensor(np_data)
data = paddle.to_tensor([1, 2, 3], dtype='int32')
out = paddle.expand(data, shape=[2, 3])
out = out.numpy()
# [[1, 2, 3], [1, 2, 3]]
...
...
@@ -1416,14 +1390,11 @@ def gather_nd(x, index, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np_x = np.array([[[1, 2], [3, 4], [5, 6]],
[[7, 8], [9, 10], [11, 12]]])
np_index = [[0, 1]]
x = paddle.to_tensor(np_x)
index = paddle.to_tensor(np_index)
x = paddle.to_tensor([[[1, 2], [3, 4], [5, 6]],
[[7, 8], [9, 10], [11, 12]]])
index = paddle.to_tensor([[0, 1]])
output = paddle.gather_nd(x, index) #[[3, 4]]
...
...
python/paddle/tensor/math.py
浏览文件 @
352ac149
...
...
@@ -174,14 +174,12 @@ def pow(x, y, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
# example 1: y is a float
x
_data = np.array
([1, 2, 3])
x
= paddle.to_tensor
([1, 2, 3])
y = 2
x = paddle.to_tensor(x_data)
res = paddle.pow(x, y)
print(res.numpy()) # [1 4 9]
...
...
@@ -291,13 +289,10 @@ Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np_x = np.array([2, 3, 4]).astype('float64')
np_y = np.array([1, 5, 2]).astype('float64')
x = paddle.to_variable(np_x)
y = paddle.to_variable(np_y)
x = paddle.to_tensor([2, 3, 4], 'float64')
y = paddle.to_tensor([1, 5, 2], 'float64')
z = paddle.add(x, y)
np_z = z.numpy()
print(np_z) # [3., 8., 6. ]
...
...
@@ -335,14 +330,11 @@ def divide(x, y, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np_x = np.array([2, 3, 4]).astype('float64')
np_y = np.array([1, 5, 2]).astype('float64')
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
x = paddle.to_tensor([2, 3, 4], dtype='float64')
y = paddle.to_tensor([1, 5, 2], dtype='float64')
z = paddle.divide(x, y)
print(z.numpy()) # [2., 0.6, 2.]
...
...
@@ -440,14 +432,11 @@ def floor_divide(x, y, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np_x = np.array([2, 3, 8, 7])
np_y = np.array([1, 5, 3, 3])
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
x = paddle.to_tensor([2, 3, 8, 7])
y = paddle.to_tensor([1, 5, 3, 3])
z = paddle.floor_divide(x, y)
print(z.numpy()) # [2, 0, 2, 2]
...
...
@@ -530,14 +519,11 @@ def remainder(x, y, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
np_x = np.array([2, 3, 8, 7])
np_y = np.array([1, 5, 3, 3])
x = paddle.to_tensor(np_x)
y = paddle.to_tensor(np_y)
x = paddle.to_tensor([2, 3, 8, 7])
y = paddle.to_tensor([1, 5, 3, 3])
z = paddle.remainder(x, y)
print(z.numpy()) # [0, 3, 2, 1]
...
...
@@ -612,20 +598,15 @@ def multiply(x, y, axis=-1, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
x = paddle.to_tensor([[1, 2], [3, 4]])
y = paddle.to_tensor([[5, 6], [7, 8]])
res = paddle.multiply(x, y)
print(res.numpy()) # [[5, 12], [21, 32]]
x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
y_data = np.array([1, 2], dtype=np.float32)
x = paddle.to_tensor(x_data)
y = paddle.to_tensor(y_data)
x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
y = paddle.to_tensor([1, 2])
res = paddle.multiply(x, y, axis=1)
print(res.numpy()) # [[[1, 2, 3], [2, 4, 6]]]
...
...
@@ -654,36 +635,28 @@ Examples:
paddle.disable_static()
x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
x = paddle.to_tensor([[1, 2], [3, 4]])
y = paddle.to_tensor([[5, 6], [7, 8]])
res = paddle.maximum(x, y)
print(res.numpy())
#[[5. 6.]
# [7. 8.]]
x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
y_data = np.array([1, 2], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
y = paddle.to_tensor([1, 2])
res = paddle.maximum(x, y, axis=1)
print(res.numpy())
#[[[1. 2. 3.]
# [2. 2. 3.]]]
x_data = np.array([2, 3, 5], dtype=np.float32)
y_data = np.array([1, 4, np.nan], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
x = paddle.to_tensor([2, 3, 5], dtype='float32')
y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
res = paddle.maximum(x, y)
print(res.numpy())
#[ 2. 4. nan]
x_data = np.array([5, 3, np.inf], dtype=np.float32)
y_data = np.array([1, 4, 5], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
y = paddle.to_tensor([1, 4, 5], dtype='float32')
res = paddle.maximum(x, y)
print(res.numpy())
#[ 5. 4. inf]
...
...
@@ -703,38 +676,31 @@ Examples:
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([[1, 2], [3, 4]], dtype=np.float32)
y_data = np.array([[5, 6], [7, 8]], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
x = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
y = paddle.to_tensor([[5, 6], [7, 8]], dtype='float32')
res = paddle.minimum(x, y)
print(res.numpy())
#[[1. 2.]
# [3. 4.]]
x_data = np.array([[[1, 2, 3], [1, 2, 3]]], dtype=np.float32)
y_data = np.array([1, 2], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]], dtype='float32')
y = paddle.to_tensor([1, 2], dtype='float32')
res = paddle.minimum(x, y, axis=1)
print(res.numpy())
#[[[1. 1. 1.]
# [2. 2. 2.]]]
x_data = np.array([2, 3, 5], dtype=np.float32)
y_data = np.array([1, 4, np.nan], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
x = paddle.to_tensor([2, 3, 5], dtype='float32')
y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
res = paddle.minimum(x, y)
print(res.numpy())
#[ 1. 3. nan]
x_data = np.array([5, 3, np.inf], dtype=np.float32)
y_data = np.array([1, 4, 5], dtype=np.float32)
x = paddle.to_variable(x_data)
y = paddle.to_variable(y_data)
x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
y = paddle.to_tensor([1, 4, 5], dtype='float32')
res = paddle.minimum(x, y)
print(res.numpy())
#[1. 3. 5.]
...
...
@@ -800,27 +766,26 @@ def sum(x, axis=None, dtype=None, keepdim=False, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
# x is a Tensor
variable
with following elements:
# x is a Tensor with following elements:
# [[0.2, 0.3, 0.5, 0.9]
# [0.1, 0.2, 0.6, 0.7]]
# Each example is followed by the corresponding output tensor.
x
_data = np.array([[0.2, 0.3, 0.5, 0.9],[0.1, 0.2, 0.6, 0.7]]).astype('float32')
x = paddle.to_variable(x_data
)
x
= paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]]
)
out1 = paddle.sum(x) # [3.5]
out2 = paddle.sum(x, axis=0) # [0.3, 0.5, 1.1, 1.6]
out3 = paddle.sum(x, axis=-1) # [1.9, 1.6]
out4 = paddle.sum(x, axis=1, keepdim=True) # [[1.9], [1.6]]
# y is a Tensor
variable
with shape [2, 2, 2] and elements as below:
# y is a Tensor with shape [2, 2, 2] and elements as below:
# [[[1, 2], [3, 4]],
# [[5, 6], [7, 8]]]
# Each example is followed by the corresponding output tensor.
y
_data = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).astype('float32')
y = paddle.to_variable(y_data
)
y
= paddle.to_tensor([[[1, 2], [3, 4]],
[[5, 6], [7, 8]]]
)
out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
"""
...
...
@@ -1121,9 +1086,9 @@ def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
paddle.disable_static()
x = paddle.to_
variable
(data_x)
y = paddle.to_
variable
(data_y)
input = paddle.to_
variable
(data_input)
x = paddle.to_
tensor
(data_x)
y = paddle.to_
tensor
(data_y)
input = paddle.to_
tensor
(data_input)
out = paddle.tensor.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
...
...
@@ -1204,12 +1169,10 @@ def logsumexp(x, axis=None, keepdim=False, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.array([[-1.5, 0., 2.], [3., 1.2, -2.4]])
x = paddle.to_tensor(x)
x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
out1 = paddle.logsumexp(x) # [3.4691226]
out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
...
...
@@ -1260,12 +1223,10 @@ def inverse(x, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
mat_np = np.array([[2, 0], [0, 2]]).astype("float32")
paddle.disable_static()
mat = paddle.to_variable(mat_np)
mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
inv = paddle.inverse(mat)
print(inv) # [[0.5, 0], [0, 0.5]]
...
...
@@ -1316,16 +1277,15 @@ def max(x, axis=None, keepdim=False, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
# data_x is a variable with shape [2, 4]
# the axis is a int element
data_x = np.array([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]])
x = paddle.to_variable(data_x
)
x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]]
)
result1 = paddle.max(x)
print(result1.numpy())
#[0.9]
...
...
@@ -1342,9 +1302,9 @@ def max(x, axis=None, keepdim=False, name=None):
# data_y is a variable with shape [2, 2, 2]
# the axis is list
data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
[[5.0, 6.0], [7.0, 8.0]]])
y = paddle.to_variable(data_y
)
y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
[[5.0, 6.0], [7.0, 8.0]]]
)
result5 = paddle.max(y, axis=[1, 2])
print(result5.numpy())
#[4. 8.]
...
...
@@ -1411,16 +1371,14 @@ def min(x, axis=None, keepdim=False, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
#
data_x is a variable
with shape [2, 4]
#
x is a tensor
with shape [2, 4]
# the axis is a int element
data_x = np.array([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]])
x = paddle.to_variable(data_x)
x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]])
result1 = paddle.min(x)
print(result1.numpy())
#[0.1]
...
...
@@ -1435,11 +1393,10 @@ def min(x, axis=None, keepdim=False, name=None):
#[[0.2]
# [0.1]]
#
data_
y is a variable with shape [2, 2, 2]
# y is a variable with shape [2, 2, 2]
# the axis is list
data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
[[5.0, 6.0], [7.0, 8.0]]])
y = paddle.to_variable(data_y)
y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
[[5.0, 6.0], [7.0, 8.0]]])
result5 = paddle.min(y, axis=[1, 2])
print(result5.numpy())
#[1. 5.]
...
...
@@ -1596,11 +1553,9 @@ def clip(x, min=None, max=None, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x = np.array([[1.2,3.5], [4.5,6.4]]).astype('float32')
x1 = paddle.to_variable(x)
x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
out1 = paddle.clip(x1, min=3.5, max=5.0)
out2 = paddle.clip(x1, min=2.5)
print(out1.numpy())
...
...
@@ -1701,9 +1656,9 @@ def trace(x, offset=0, axis1=0, axis2=1, name=None):
paddle.disable_static()
case1 = paddle.to_
variable
(case1)
case2 = paddle.to_
variable
(case2)
case3 = paddle.to_
variable
(case3)
case1 = paddle.to_
tensor
(case1)
case2 = paddle.to_
tensor
(case2)
case3 = paddle.to_
tensor
(case3)
data1 = paddle.trace(case1) # data1.shape = [1]
data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
...
...
@@ -1894,10 +1849,8 @@ def isfinite(x, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_np = np.array([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
x = paddle.to_tensor(x_np)
x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
out = paddle.tensor.isfinite(x)
print(out.numpy()) # [False True True False True False False]
"""
...
...
@@ -1925,10 +1878,8 @@ def isinf(x, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_np = np.array([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
x = paddle.to_tensor(x_np)
x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
out = paddle.tensor.isinf(x)
print(out.numpy()) # [ True False False True False False False]
"""
...
...
@@ -1956,10 +1907,8 @@ def isnan(x, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_np = np.array([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
x = paddle.to_tensor(x_np)
x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
out = paddle.tensor.isnan(x)
print(out.numpy()) # [False False False False False True True]
"""
...
...
@@ -2002,14 +1951,12 @@ def prod(x, axis=None, keepdim=False, dtype=None, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
# the axis is a int element
data_x = np.array([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]]).astype(np.float32)
x = paddle.to_tensor(data_x)
x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
[0.1, 0.2, 0.6, 0.7]])
out1 = paddle.prod(x)
print(out1.numpy())
# [0.0002268]
...
...
@@ -2035,9 +1982,8 @@ def prod(x, axis=None, keepdim=False, dtype=None, name=None):
# int64
# the axis is list
data_y = np.array([[[1.0, 2.0], [3.0, 4.0]],
[[5.0, 6.0], [7.0, 8.0]]])
y = paddle.to_tensor(data_y)
y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
[[5.0, 6.0], [7.0, 8.0]]])
out6 = paddle.prod(y, [0, 1])
print(out6.numpy())
# [105. 384.]
...
...
@@ -2070,12 +2016,10 @@ def sign(x, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
data = np.array([3.0, 0.0, -2.0, 1.7], dtype='float32')
paddle.disable_static()
x = paddle.to_tensor(
data
)
x = paddle.to_tensor(
[3.0, 0.0, -2.0, 1.7], dtype='float32'
)
out = paddle.sign(x=x)
print(out) # [1.0, 0.0, -1.0, 1.0]
"""
...
...
@@ -2110,12 +2054,9 @@ def tanh(x, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
x_data = np.array([-0.4, -0.2, 0.1, 0.3])
x = paddle.to_tensor(x_data)
x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
out = paddle.tanh(x)
print(out.numpy())
# [-0.37994896 -0.19737532 0.09966799 0.29131261]
...
...
python/paddle/tensor/random.py
浏览文件 @
352ac149
...
...
@@ -60,7 +60,6 @@ def bernoulli(x, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
...
...
@@ -188,7 +187,6 @@ def standard_normal(shape, dtype=None, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
...
...
@@ -209,8 +207,9 @@ def standard_normal(shape, dtype=None, name=None):
# [ 0.8086993 , 0.6868893 ]]] # random
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
shape_tensor = paddle.to_tensor(np.array([2, 3]))
out3 = paddle.standard_normal(shape_tensor)
shape_tensor = paddle.to_tensor([2, 3])
result_3 = paddle.standard_normal(shape_tensor)
# [[-2.878077 , 0.17099959, 0.05111201] # random
# [-0.3761474, -1.044801 , 1.1870178 ]] # random
...
...
@@ -258,7 +257,6 @@ def normal(mean=0.0, std=1.0, shape=None, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
...
...
@@ -266,11 +264,11 @@ def normal(mean=0.0, std=1.0, shape=None, name=None):
# [[ 0.17501129 0.32364586 1.561118 ] # random
# [-1.7232178 1.1545963 -0.76156676]] # random
mean_tensor = paddle.to_tensor(
np.array([1.0, 2.0, 3.0])
)
mean_tensor = paddle.to_tensor(
[1.0, 2.0, 3.0]
)
out2 = paddle.normal(mean=mean_tensor)
# [ 0.18644847 -1.19434458 3.93694787] # random
std_tensor = paddle.to_tensor(
np.array([1.0, 2.0, 3.0])
)
std_tensor = paddle.to_tensor(
[1.0, 2.0, 3.0]
)
out3 = paddle.normal(mean=mean_tensor, std=std_tensor)
# [1.00780561 3.78457445 5.81058198] # random
...
...
@@ -357,7 +355,6 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
...
...
@@ -379,8 +376,7 @@ def uniform(shape, dtype=None, min=-1.0, max=1.0, seed=0, name=None):
# example 3:
# attr shape is a Tensor, the data type must be int64 or int32.
shape = np.array([2, 3])
shape_tensor = paddle.to_tensor(shape)
shape_tensor = paddle.to_tensor([2, 3])
result_3 = paddle.tensor.random.uniform(shape_tensor)
# if shape_tensor's value is [2, 3]
# result_3 is:
...
...
@@ -454,7 +450,6 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
...
...
@@ -473,8 +468,10 @@ def randint(low=0, high=None, shape=[1], dtype=None, name=None):
# example 3:
# attr shape is a Tensor
shape_tensor = paddle.to_tensor(np.array([3]))
out3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
shape_tensor = paddle.to_tensor(3)
result_3 = paddle.randint(low=-5, high=5, shape=shape_tensor)
# [-2, 2, 3] # random
# example 4:
...
...
@@ -604,7 +601,6 @@ def rand(shape, dtype=None, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
# example 1: attr shape is a list which doesn't contain Tensor.
...
...
@@ -624,8 +620,9 @@ def rand(shape, dtype=None, name=None):
# [0.870881 , 0.2984597 ]]] # random
# example 3: attr shape is a Tensor, the data type must be int64 or int32.
shape_tensor = paddle.to_tensor(np.array([2, 3]))
out2 = paddle.rand(shape_tensor)
shape_tensor = paddle.to_tensor([2, 3])
result_3 = paddle.rand(shape_tensor)
# [[0.22920267, 0.841956 , 0.05981819], # random
# [0.4836288 , 0.24573246, 0.7516129 ]] # random
...
...
python/paddle/tensor/search.py
浏览文件 @
352ac149
...
...
@@ -66,16 +66,15 @@ def argsort(x, axis=-1, descending=False, name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
input_array = np.array
([[[5,8,9,5],
[0,0,1,7],
[6,9,2,4]],
[[5,2,4,2],
[4,7,7,9],
[1,7,0,6]]]).astype(np.float32)
x = paddle.to_variable(input_array
)
x = paddle.to_tensor
([[[5,8,9,5],
[0,0,1,7],
[6,9,2,4]],
[[5,2,4,2],
[4,7,7,9],
[1,7,0,6]]],
dtype='float32'
)
out1 = paddle.argsort(x=x, axis=-1)
out2 = paddle.argsort(x=x, axis=0)
out3 = paddle.argsort(x=x, axis=1)
...
...
@@ -148,14 +147,12 @@ def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
data = np.array([[5,8,9,5],
[0,0,1,7],
[6,9,2,4]])
x = paddle.to_variable(data)
x = paddle.to_tensor([[5,8,9,5],
[0,0,1,7],
[6,9,2,4]])
out1 = paddle.argmax(x)
print(out1.numpy()) # 2
out2 = paddle.argmax(x, axis=1)
...
...
@@ -222,14 +219,12 @@ def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
Examples:
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
data = np.array([[5,8,9,5],
[0,0,1,7],
[6,9,2,4]])
x = paddle.to_variable(data)
x = paddle.to_tensor([[5,8,9,5],
[0,0,1,7],
[6,9,2,4]])
out1 = paddle.argmin(x)
print(out1.numpy()) # 4
out2 = paddle.argmin(x, axis=1)
...
...
@@ -300,16 +295,12 @@ def index_select(x, index, axis=0, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static() # Now we are in imperative mode
data = np.array([[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, 10.0, 11.0, 12.0]])
data_index = np.array([0, 1, 1]).astype('int32')
x = paddle.to_tensor(data)
index = paddle.to_tensor(data_index)
x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, 10.0, 11.0, 12.0]])
index = paddle.to_tensor([0, 1, 1], dtype='int32')
out_z1 = paddle.index_select(x=x, index=index)
#[[1. 2. 3. 4.]
# [5. 6. 7. 8.]
...
...
@@ -363,48 +354,44 @@ def nonzero(input, as_tuple=False):
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
data1 = np.array([[1.0, 0.0, 0.0],
[0.0, 2.0, 0.0],
[0.0, 0.0, 3.0]])
data2 = np.array([0.0, 1.0, 0.0, 3.0])
data3 = np.array([0.0, 0.0, 0.0])
with fluid.dygraph.guard():
x1 = fluid.dygraph.to_variable(data1)
x2 = fluid.dygraph.to_variable(data2)
x3 = fluid.dygraph.to_variable(data3)
out_z1 = paddle.nonzero(x1)
print(out_z1.numpy())
#[[0 0]
# [1 1]
# [2 2]]
out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
for out in out_z1_tuple:
print(out.numpy())
#[[0]
# [1]
# [2]]
#[[0]
# [1]
# [2]]
out_z2 = paddle.nonzero(x2)
print(out_z2.numpy())
#[[1]
# [3]]
out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
for out in out_z2_tuple:
print(out.numpy())
#[[1]
# [3]]
out_z3 = paddle.nonzero(x3)
print(out_z3.numpy())
#[]
out_z3_tuple = paddle.nonzero(x3, as_tuple=True)
for out in out_z3_tuple:
print(out.numpy())
#[]
paddle.disable_static()
x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
[0.0, 2.0, 0.0],
[0.0, 0.0, 3.0]])
x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
x3 = paddle.to_tensor([0.0, 0.0, 0.0])
out_z1 = paddle.nonzero(x1)
print(out_z1.numpy())
#[[0 0]
# [1 1]
# [2 2]]
out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
for out in out_z1_tuple:
print(out.numpy())
#[[0]
# [1]
# [2]]
#[[0]
# [1]
# [2]]
out_z2 = paddle.nonzero(x2)
print(out_z2.numpy())
#[[1]
# [3]]
out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
for out in out_z2_tuple:
print(out.numpy())
#[[1]
# [3]]
out_z3 = paddle.nonzero(x3)
print(out_z3.numpy())
#[]
out_z3_tuple = paddle.nonzero(x3, as_tuple=True)
for out in out_z3_tuple:
print(out.numpy())
#[]
"""
list_out
=
[]
shape
=
input
.
shape
...
...
@@ -451,16 +438,15 @@ def sort(x, axis=-1, descending=False, name=None):
Examples:
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
input_array = np.array
([[[5,8,9,5],
[0,0,1,7],
[6,9,2,4]],
[[5,2,4,2],
[4,7,7,9],
[1,7,0,6]]]).astype(np.float32)
x = paddle.to_variable(input_array
)
x = paddle.to_tensor
([[[5,8,9,5],
[0,0,1,7],
[6,9,2,4]],
[[5,2,4,2],
[4,7,7,9],
[1,7,0,6]]],
dtype='float32'
)
out1 = paddle.sort(x=x, axis=-1)
out2 = paddle.sort(x=x, axis=0)
out3 = paddle.sort(x=x, axis=1)
...
...
@@ -536,16 +522,11 @@ def where(condition, x, y, name=None):
.. code-block:: python
import paddle
import numpy as np
import paddle.fluid as fluid
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(x_i
)
y = fluid.dygraph.to_variable(y_i
)
out = paddle.where(x>1, x, y)
paddle.disable_static()
x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2]
)
y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0]
)
out = paddle.where(x>1, x, y)
print(out.numpy())
#out: [1.0, 1.0, 3.2, 1.2]
...
...
@@ -622,50 +603,41 @@ def index_sample(x, index):
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
data = np.array([[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, 10.0, 11.0, 12.0]]).astype('float32')
data_index = np.array([[0, 1, 2],
[1, 2, 3],
[0, 0, 0]]).astype('int32')
target_data = np.array([[100, 200, 300, 400],
[500, 600, 700, 800],
[900, 1000, 1100, 1200]]).astype('int32')
with fluid.dygraph.guard():
x = fluid.dygraph.to_variable(data)
index = fluid.dygraph.to_variable(data_index)
target = fluid.dygraph.to_variable(target_data)
out_z1 = paddle.index_sample(x, index)
print(out_z1.numpy())
#[[1. 2. 3.]
# [6. 7. 8.]
# [9. 9. 9.]]
# Use the index of the maximum value by topk op
# get the value of the element of the corresponding index in other tensors
top_value, top_index = fluid.layers.topk(x, k=2)
out_z2 = paddle.index_sample(target, top_index)
print(top_value.numpy())
#[[ 4. 3.]
# [ 8. 7.]
# [12. 11.]]
print(top_index.numpy())
#[[3 2]
# [3 2]
# [3 2]]
print(out_z2.numpy())
#[[ 400 300]
# [ 800 700]
# [1200 1100]]
paddle.disable_static()
x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, 10.0, 11.0, 12.0]], dtype='float32')
index = paddle.to_tensor([[0, 1, 2],
[1, 2, 3],
[0, 0, 0]], dtype='int32')
target = paddle.to_tensor([[100, 200, 300, 400],
[500, 600, 700, 800],
[900, 1000, 1100, 1200]], dtype='int32')
out_z1 = paddle.index_sample(x, index)
print(out_z1.numpy())
#[[1. 2. 3.]
# [6. 7. 8.]
# [9. 9. 9.]]
# Use the index of the maximum value by topk op
# get the value of the element of the corresponding index in other tensors
top_value, top_index = paddle.topk(x, k=2)
out_z2 = paddle.index_sample(target, top_index)
print(top_value.numpy())
#[[ 4. 3.]
# [ 8. 7.]
# [12. 11.]]
print(top_index.numpy())
#[[3 2]
# [3 2]
# [3 2]]
print(out_z2.numpy())
#[[ 400 300]
# [ 800 700]
# [1200 1100]]
"""
...
...
@@ -707,18 +679,15 @@ def masked_select(x, mask, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.disable_static()
data = np.array([[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, 10.0, 11.0, 12.0]]).astype('float32')
mask_data = np.array([[True, False, False, False],
[True, True, False, False],
[True, False, False, False]]).astype('bool')
x = paddle.to_tensor(data)
mask = paddle.to_tensor(mask_data)
x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, 10.0, 11.0, 12.0]])
mask = paddle.to_tensor([[True, False, False, False],
[True, True, False, False],
[True, False, False, False]])
out = paddle.masked_select(x, mask)
#[1.0 5.0 6.0 9.0]
"""
...
...
@@ -763,20 +732,17 @@ def topk(x, k, axis=None, largest=True, sorted=True, name=None):
.. code-block:: python
import numpy as np
import paddle
paddle.disable_static()
data_1 = np.array([1, 4, 5, 7])
tensor_1 = paddle.to_tensor(data_1)
tensor_1 = paddle.to_tensor([1, 4, 5, 7])
value_1, indices_1 = paddle.topk(tensor_1, k=1)
print(value_1.numpy())
# [7]
print(indices_1.numpy())
# [3]
data_2 = np.array([[1, 4, 5, 7], [2, 6, 2, 5]])
tensor_2 = paddle.to_tensor(data_2)
tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
value_2, indices_2 = paddle.topk(tensor_2, k=1)
print(value_2.numpy())
# [[7]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录