Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
351d37d9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
351d37d9
编写于
1月 05, 2023
作者:
J
Jianghai
提交者:
GitHub
1月 05, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Auto Parallel] Add conv2d and pool flops (#48084)
* add pool flops * add annotations and tests
上级
35f3c258
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
116 addition
and
1 deletion
+116
-1
python/paddle/fluid/tests/unittests/test_profiler.py
python/paddle/fluid/tests/unittests/test_profiler.py
+26
-0
python/paddle/utils/flops.py
python/paddle/utils/flops.py
+90
-1
未找到文件。
python/paddle/fluid/tests/unittests/test_profiler.py
浏览文件 @
351d37d9
...
...
@@ -356,6 +356,32 @@ class TestFLOPSAPI(unittest.TestCase):
)
==
144
)
self
.
assertTrue
(
flops
(
'pool'
,
{
'X'
:
[[
12
,
12
]]},
{},
)
==
12
*
12
)
self
.
assertTrue
(
flops
(
'conv2d'
,
{
'Bias'
:
[],
'Filter'
:
[[
3
,
3
,
2
,
2
]],
'Input'
:
[[
8
,
3
,
4
,
4
]],
'ResidualData'
:
[],
},
{
'dilations'
:
[
1
,
1
],
'groups'
:
1
,
'paddings'
:
[
1
,
1
],
'strides'
:
[
1
,
1
],
},
)
==
14400
)
if
__name__
==
'__main__'
:
...
...
python/paddle/utils/flops.py
浏览文件 @
351d37d9
...
...
@@ -69,6 +69,85 @@ def _c_embedding_flops(input_shapes, attrs):
return
0
@
register_flops
(
"conv2d"
)
def
_conv2d_flops
(
input_shapes
,
attrs
):
"""FLOPs computation for conv2d op.
For conv2d(input,filter):
active_elements = batch_size * numel(output)
conv_flops = 2 * macs_per_position_conv * active_elements
bias_flops = out_channels * active_elements
equation: flops = conv_flops + bias_flops
"""
bias
=
(
input_shapes
.
get
(
'Bias'
)[
0
]
if
len
(
input_shapes
.
get
(
'Bias'
))
>
0
else
None
)
input
=
input_shapes
.
get
(
'Input'
)[
0
]
weight
=
input_shapes
.
get
(
'Filter'
)[
0
]
padding
=
attrs
.
get
(
'paddings'
)
stride
=
attrs
.
get
(
'strides'
)
dilation
=
attrs
.
get
(
'dilations'
)
groups
=
attrs
.
get
(
'groups'
)
batch_size
=
input
[
0
]
in_channels
=
input
[
1
]
out_channels
=
weight
[
0
]
kernel_dims
=
list
(
weight
[
2
:])
input_dims
=
list
(
input
[
2
:])
length
=
len
(
input_dims
)
paddings
=
(
padding
if
isinstance
(
padding
,
list
)
else
[
padding
,
]
*
length
)
strides
=
(
stride
if
isinstance
(
stride
,
list
)
else
[
stride
,
]
*
length
)
dilations
=
(
dilation
if
isinstance
(
dilation
,
list
)
else
[
dilation
,
]
*
length
)
output_dims
=
[]
for
idx
,
input_dim
in
enumerate
(
input_dims
):
output_dim
=
(
input_dim
+
2
*
paddings
[
idx
]
-
(
dilations
[
idx
]
*
(
kernel_dims
[
idx
]
-
1
)
+
1
)
)
//
strides
[
idx
]
+
1
output_dims
.
append
(
output_dim
)
filters_per_channel
=
out_channels
//
groups
macs_conv_per_position
=
(
prod
(
kernel_dims
)
*
in_channels
*
filters_per_channel
)
active_elements
=
batch_size
*
prod
(
output_dims
)
overall_conv_macs
=
macs_conv_per_position
*
active_elements
overall_conv_flops
=
2
*
overall_conv_macs
overall_bias_flops
=
0
if
bias
is
not
None
:
overall_bias_flops
=
out_channels
*
active_elements
return
overall_conv_flops
+
overall_bias_flops
@
register_flops
(
"dropout"
)
def
_dropout_flops
(
input_shapes
,
attrs
):
"""FLOPs computation for dropout op.
...
...
@@ -195,7 +274,7 @@ def _matmul_v2_flops(input_shapes, attrs):
shape_of_other = [odim1, odim2 ... odim(n-m) ... odim_m_1, dim_m] length:m
suppose n > m and dim_n = odim_m_1:
shape_of_output = [dim1, dim2 ... max(dim(n-m), odim(n-m)), max(dim(n-m+1), odim(n-m+1))...dim_n_1, dim_m]
equation: flops = 2 * numel(output) * dim_n
equation: flops = 2 * numel(output
s
) * dim_n
"""
x_shape
=
input_shapes
.
get
(
'X'
)[
0
]
y_shape
=
input_shapes
.
get
(
'Y'
)[
0
]
...
...
@@ -281,3 +360,13 @@ def _transpose2_flops(input_shapes, attrs):
equation: flops = 0
"""
return
0
@
register_flops
(
"pool"
)
def
_pool_flops
(
input_shapes
,
attrs
):
"""FLOPs computation for pool op.
For pool(input):
equation: flops = (numel)total number of elements in the input tensor.
"""
input
=
input_shapes
.
get
(
'X'
)[
0
]
return
prod
(
input
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录