Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
350cc61f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
350cc61f
编写于
11月 20, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into my_maxout_op
上级
4e5c9896
9db4d019
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
187 addition
and
201 deletion
+187
-201
benchmark/paddle/image/googlenet.py
benchmark/paddle/image/googlenet.py
+4
-1
benchmark/paddle/image/run_mkldnn.sh
benchmark/paddle/image/run_mkldnn.sh
+2
-1
paddle/operators/math/pooling.cc
paddle/operators/math/pooling.cc
+30
-30
paddle/operators/math/pooling.cu
paddle/operators/math/pooling.cu
+65
-65
paddle/operators/math/pooling.h
paddle/operators/math/pooling.h
+4
-4
paddle/operators/pool_with_index_op.cc
paddle/operators/pool_with_index_op.cc
+29
-13
paddle/operators/pool_with_index_op.cu.cc
paddle/operators/pool_with_index_op.cu.cc
+8
-8
paddle/operators/pool_with_index_op.h
paddle/operators/pool_with_index_op.h
+9
-9
python/paddle/v2/fluid/layers.py
python/paddle/v2/fluid/layers.py
+1
-1
python/paddle/v2/fluid/tests/test_pool_max_op.py
python/paddle/v2/fluid/tests/test_pool_max_op.py
+35
-69
未找到文件。
benchmark/paddle/image/googlenet.py
浏览文件 @
350cc61f
...
...
@@ -5,6 +5,7 @@ height = 224
width
=
224
num_class
=
1000
batch_size
=
get_config_arg
(
'batch_size'
,
int
,
128
)
use_gpu
=
get_config_arg
(
'use_gpu'
,
bool
,
True
)
args
=
{
'height'
:
height
,
'width'
:
width
,
'color'
:
True
,
'num_class'
:
num_class
}
define_py_data_sources2
(
...
...
@@ -16,6 +17,8 @@ settings(
learning_method
=
MomentumOptimizer
(
0.9
),
regularization
=
L2Regularization
(
0.0005
*
batch_size
))
conv_projection
=
conv_projection
if
use_gpu
else
img_conv_layer
def
inception2
(
name
,
input
,
channels
,
\
filter1
,
filter3R
,
filter3
,
...
...
@@ -138,7 +141,7 @@ def inception(name, input, channels, \
cat
=
concat_layer
(
name
=
name
,
input
=
[
cov1
,
cov3
,
cov5
,
covprj
],
bias_attr
=
True
,
bias_attr
=
True
if
use_gpu
else
False
,
act
=
ReluActivation
())
return
cat
...
...
benchmark/paddle/image/run_mkldnn.sh
浏览文件 @
350cc61f
...
...
@@ -40,6 +40,7 @@ fi
for
use_mkldnn
in
True False
;
do
for
batchsize
in
64 128 256
;
do
train vgg 19
$batchsize
$use_mkldnn
train resnet 50
$batchsize
$use_mkldnn
train resnet 50
$batchsize
$use_mkldnn
train googlenet v1
$batchsize
$use_mkldnn
done
done
paddle/operators/math/pooling.cc
浏览文件 @
350cc61f
...
...
@@ -498,8 +498,8 @@ template class Pool3dGradFunctor<
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
...
...
@@ -520,9 +520,9 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
const
int
input_stride
=
input_height
*
input_width
;
const
int
output_stride
=
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
1
*
input_data
=
input
.
data
<
T1
>
();
T
1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T
2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -535,7 +535,7 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
int
wend
=
std
::
min
(
wstart
+
ksize_width
,
input_width
);
wstart
=
std
::
max
(
wstart
,
0
);
T
ele
=
static_cast
<
T
>
(
-
FLT_MAX
);
T
1
ele
=
static_cast
<
T1
>
(
-
FLT_MAX
);
int
index
=
-
1
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
...
...
@@ -563,8 +563,8 @@ class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
...
...
@@ -580,9 +580,9 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> {
const
int
input_stride
=
input_height
*
input_width
;
const
int
output_stride
=
output_height
*
output_width
;
const
T
*
mask_data
=
mask
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
2
*
mask_data
=
mask
.
data
<
T2
>
();
const
T
1
*
output_grad_data
=
output_grad
.
data
<
T1
>
();
T
1
*
input_grad_data
=
input_grad
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -602,18 +602,18 @@ class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> {
}
};
template
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
float
,
int
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
float
,
int
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
CPUPlace
,
double
,
int
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
CPUPlace
,
double
,
int
>;
/*
* All tensors are in NCDHW format.
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
...
...
@@ -639,9 +639,9 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
1
*
input_data
=
input
.
data
<
T1
>
();
T
1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T
2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -659,7 +659,7 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
wstart
=
std
::
max
(
wstart
,
0
);
int
output_idx
=
(
pd
*
output_height
+
ph
)
*
output_width
+
pw
;
T
ele
=
static_cast
<
T
>
(
-
FLT_MAX
);
T
1
ele
=
static_cast
<
T1
>
(
-
FLT_MAX
);
int
index
=
-
1
;
for
(
int
d
=
dstart
;
d
<
dend
;
++
d
)
{
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
...
...
@@ -691,8 +691,8 @@ class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
...
...
@@ -710,9 +710,9 @@ class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> {
const
int
input_stride
=
input_depth
*
input_height
*
input_width
;
const
int
output_stride
=
output_depth
*
output_height
*
output_width
;
const
T
*
mask_data
=
mask
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
2
*
mask_data
=
mask
.
data
<
T2
>
();
const
T
1
*
output_grad_data
=
output_grad
.
data
<
T1
>
();
T
1
*
input_grad_data
=
input_grad
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
for
(
int
n
=
0
;
n
<
batch_size
;
++
n
)
{
for
(
int
c
=
0
;
c
<
output_channels
;
++
c
)
{
...
...
@@ -735,10 +735,10 @@ class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> {
}
};
template
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
float
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
double
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
float
,
int
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
float
,
int
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
CPUPlace
,
double
,
int
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
CPUPlace
,
double
,
int
>;
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/operators/math/pooling.cu
浏览文件 @
350cc61f
...
...
@@ -658,13 +658,13 @@ template class Pool3dGradFunctor<
template
class
Pool3dGradFunctor
<
platform
::
GPUPlace
,
paddle
::
operators
::
math
::
AvgPoolGrad
<
double
>,
double
>
;
template
<
typename
T
>
template
<
typename
T
1
,
typename
T2
>
__global__
void
KernelMaxPool2dWithIdx
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
const
int
nthreads
,
const
T
1
*
input_data
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
T
*
output_data
,
T
*
mask_data
)
{
const
int
padding_width
,
T
1
*
output_data
,
T2
*
mask_data
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
...
...
@@ -681,7 +681,7 @@ __global__ void KernelMaxPool2dWithIdx(
wstart
=
max
(
wstart
,
0
);
input_data
+=
(
batch_idx
*
channels
+
c
)
*
input_height
*
input_width
;
T
ele
=
-
FLT_MAX
;
T
1
ele
=
-
FLT_MAX
;
int
max_index
=
-
1
;
for
(
int
h
=
hstart
;
h
<
hend
;
++
h
)
{
for
(
int
w
=
wstart
;
w
<
wend
;
++
w
)
{
...
...
@@ -697,13 +697,13 @@ __global__ void KernelMaxPool2dWithIdx(
}
}
template
<
typename
T
>
template
<
typename
T
1
,
typename
T2
>
__global__
void
KernelMaxPool2DWithIdxGrad
(
const
int
nthreads
,
const
T
*
output_grad
,
const
T
*
mask_data
,
const
int
nthreads
,
const
T
1
*
output_grad
,
const
T2
*
mask_data
,
const
int
channels
,
const
int
input_height
,
const
int
input_width
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_height
,
const
int
padding_width
,
T
*
input_grad
)
{
const
int
padding_height
,
const
int
padding_width
,
T
1
*
input_grad
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
w_offset
=
index
%
input_width
;
...
...
@@ -724,7 +724,7 @@ __global__ void KernelMaxPool2DWithIdxGrad(
int
pw_end
=
min
((
w_offset
+
padding_width
)
/
stride_width
+
1
,
output_width
);
T
gradient
=
0
;
T
1
gradient
=
0
;
int
input_current_featuremap_idx
=
h_offset
*
input_width
+
w_offset
;
int
output_idx
=
(
batch_idx
*
channels
+
c_offset
)
*
output_height
*
output_width
;
...
...
@@ -746,8 +746,8 @@ __global__ void KernelMaxPool2DWithIdxGrad(
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
...
...
@@ -767,9 +767,9 @@ class MaxPool2dWithIndexFunctor<platform::GPUPlace, T> {
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
1
*
input_data
=
input
.
data
<
T1
>
();
T
1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T
2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
output_channels
*
output_height
*
output_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
...
...
@@ -777,9 +777,9 @@ class MaxPool2dWithIndexFunctor<platform::GPUPlace, T> {
dim3
grid
(
blocks
,
1
);
KernelMaxPool2dWithIdx
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
T
1
,
T2
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
input_channels
,
input_height
,
input_width
,
output_height
,
output_width
,
ksize_height
,
ksize_width
,
stride_height
,
stride_width
,
padding_height
,
padding_width
,
output_data
,
mask_data
);
...
...
@@ -791,8 +791,8 @@ class MaxPool2dWithIndexFunctor<platform::GPUPlace, T> {
* Ksize, strides, paddings are two elements. These two elements represent
* height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
...
...
@@ -812,9 +812,9 @@ class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, T> {
const
int
padding_height
=
paddings
[
0
];
const
int
padding_width
=
paddings
[
1
];
const
T
*
mask_data
=
mask
.
data
<
T
>
();
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
2
*
mask_data
=
mask
.
data
<
T2
>
();
const
T
1
*
output_grad_data
=
output_grad
.
data
<
T1
>
();
T
1
*
input_grad_data
=
input_grad
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
input_channels
*
input_height
*
input_width
;
int
blocks
=
(
nthreads
+
1024
-
1
)
/
1024
;
...
...
@@ -822,30 +822,30 @@ class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, T> {
dim3
grid
(
blocks
,
1
);
KernelMaxPool2DWithIdxGrad
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
output_grad_data
,
mask_data
,
input_channels
,
input_height
,
input_width
,
output_height
,
output_width
,
ksize_height
,
ksize_width
,
stride_height
,
stride
_width
,
padding_height
,
padding_width
,
input_grad_data
);
T
1
,
T2
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
output_grad_data
,
mask_data
,
input_channels
,
input_height
,
input_width
,
output_height
,
output_width
,
ksize_height
,
ksize_width
,
stride_height
,
stride_width
,
padding_height
,
padding
_width
,
input_grad_data
);
}
};
template
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
float
,
int
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
float
,
int
>;
template
class
MaxPool2dWithIndexFunctor
<
platform
::
GPUPlace
,
double
,
int
>;
template
class
MaxPool2dWithIndexGradFunctor
<
platform
::
GPUPlace
,
double
,
int
>;
template
<
typename
T
>
template
<
typename
T
1
,
typename
T2
>
__global__
void
KernelMaxPool3DWithIdx
(
const
int
nthreads
,
const
T
*
input_data
,
const
int
channels
,
const
int
nthreads
,
const
T
1
*
input_data
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
,
T
*
output_data
,
T
*
mask_data
)
{
T
1
*
output_data
,
T2
*
mask_data
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
pw
=
index
%
output_width
;
...
...
@@ -865,7 +865,7 @@ __global__ void KernelMaxPool3DWithIdx(
hstart
=
max
(
hstart
,
0
);
wstart
=
max
(
wstart
,
0
);
T
ele
=
-
FLT_MAX
;
T
1
ele
=
-
FLT_MAX
;
int
max_index
=
-
1
;
input_data
+=
(
batch_idx
*
channels
+
c
)
*
input_depth
*
input_height
*
input_width
;
...
...
@@ -885,15 +885,15 @@ __global__ void KernelMaxPool3DWithIdx(
}
}
template
<
typename
T
>
template
<
typename
T
1
,
typename
T2
>
__global__
void
KernelMaxPool3DWithIdxGrad
(
const
int
nthreads
,
const
T
*
output_grad
,
const
T
*
mask
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
,
T
*
input_grad
)
{
const
int
nthreads
,
const
T
1
*
output_grad
,
const
T2
*
mask
,
const
int
channels
,
const
int
input_depth
,
const
int
input_height
,
const
int
input_width
,
const
int
output_depth
,
const
int
output_height
,
const
int
output_width
,
const
int
ksize_depth
,
const
int
ksize_height
,
const
int
ksize_width
,
const
int
stride_depth
,
const
int
stride_height
,
const
int
stride_width
,
const
int
padding_depth
,
const
int
padding_height
,
const
int
padding_width
,
T1
*
input_grad
)
{
for
(
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
index
<
nthreads
;
index
+=
blockDim
.
x
*
gridDim
.
x
)
{
int
w_offset
=
index
%
input_width
;
...
...
@@ -922,7 +922,7 @@ __global__ void KernelMaxPool3DWithIdxGrad(
int
pw_end
=
min
((
w_offset
+
padding_width
)
/
stride_width
+
1
,
output_width
);
T
gradient
=
0
;
T
1
gradient
=
0
;
int
input_current_feature_map_idx
=
(
d_offset
*
input_height
+
h_offset
)
*
input_width
+
w_offset
;
int
output_idx
=
(
batch_idx
*
channels
+
c_offset
)
*
output_depth
*
...
...
@@ -949,8 +949,8 @@ __global__ void KernelMaxPool3DWithIdxGrad(
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
,
std
::
vector
<
int
>&
ksize
,
...
...
@@ -975,9 +975,9 @@ class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
const
int
padding_height
=
paddings
[
1
];
const
int
padding_width
=
paddings
[
2
];
const
T
*
input_data
=
input
.
data
<
T
>
();
T
*
output_data
=
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
T
*
mask_data
=
mask
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
1
*
input_data
=
input
.
data
<
T1
>
();
T
1
*
output_data
=
output
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
T
2
*
mask_data
=
mask
->
mutable_data
<
T2
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
output_channels
*
output_depth
*
output_height
*
output_width
;
...
...
@@ -986,9 +986,9 @@ class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
dim3
grid
(
blocks
,
1
);
KernelMaxPool3DWithIdx
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
T
1
,
T2
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
input_data
,
input_channels
,
input_depth
,
input_height
,
input_width
,
output_depth
,
output_height
,
output_width
,
ksize_depth
,
ksize_height
,
ksize_width
,
stride_depth
,
stride_height
,
stride_width
,
...
...
@@ -1001,8 +1001,8 @@ class MaxPool3dWithIndexFunctor<platform::GPUPlace, T> {
* Ksize, strides, paddings are three elements. These three elements represent
* depth, height and width, respectively.
*/
template
<
typename
T
>
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
T
>
{
template
<
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
T
1
,
T2
>
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
const
framework
::
Tensor
&
output_grad
,
...
...
@@ -1027,9 +1027,9 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
const
int
padding_height
=
paddings
[
1
];
const
int
padding_width
=
paddings
[
2
];
const
T
*
output_grad_data
=
output_grad
.
data
<
T
>
();
const
T
*
mask_data
=
mask
.
data
<
T
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
const
T
1
*
output_grad_data
=
output_grad
.
data
<
T1
>
();
const
T
2
*
mask_data
=
mask
.
data
<
T2
>
();
T
1
*
input_grad_data
=
input_grad
->
mutable_data
<
T1
>
(
context
.
GetPlace
());
int
nthreads
=
batch_size
*
input_channels
*
input_depth
*
input_height
*
input_width
;
...
...
@@ -1038,9 +1038,9 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
dim3
grid
(
blocks
,
1
);
KernelMaxPool3DWithIdxGrad
<
T
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
T
1
,
T2
><<<
grid
,
threads
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
)
.
stream
()
>>>
(
nthreads
,
output_grad_data
,
mask_data
,
input_channels
,
input_depth
,
input_height
,
input_width
,
output_depth
,
output_height
,
output_width
,
ksize_depth
,
ksize_height
,
ksize_width
,
stride_depth
,
stride_height
,
...
...
@@ -1049,10 +1049,10 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
}
};
template
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
float
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
double
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
float
,
int
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
float
,
int
>;
template
class
MaxPool3dWithIndexFunctor
<
platform
::
GPUPlace
,
double
,
int
>;
template
class
MaxPool3dWithIndexGradFunctor
<
platform
::
GPUPlace
,
double
,
int
>;
}
// namespace math
}
// namespace operators
...
...
paddle/operators/math/pooling.h
浏览文件 @
350cc61f
...
...
@@ -153,7 +153,7 @@ class MaxPool3dGradFunctor {
* In pool2d, all tensors are in NCHW format. In pool3d, all tensors are in
* NCDHW format.
*/
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
...
...
@@ -162,7 +162,7 @@ class MaxPool2dWithIndexFunctor {
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
);
};
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPool2dWithIndexGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
...
...
@@ -172,7 +172,7 @@ class MaxPool2dWithIndexGradFunctor {
framework
::
Tensor
*
input_grad
);
};
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
...
...
@@ -181,7 +181,7 @@ class MaxPool3dWithIndexFunctor {
framework
::
Tensor
*
output
,
framework
::
Tensor
*
mask
);
};
template
<
typename
Place
,
typename
T
>
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPool3dWithIndexGradFunctor
{
public:
void
operator
()(
const
platform
::
DeviceContext
&
context
,
...
...
paddle/operators/pool_with_index_op.cc
浏览文件 @
350cc61f
...
...
@@ -29,11 +29,11 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"
X(Input
) of Pooling should not be null."
);
"
Input(X
) of Pooling should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Out
(Outp
ut) of Pooling should not be null."
);
"Out
put(O
ut) of Pooling should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Mask"
),
"
Mask(Output
) of Pooling should not be null."
);
"
Output(Mask
) of Pooling should not be null."
);
auto
in_x_dims
=
ctx
->
GetInputDim
(
"X"
);
...
...
@@ -67,6 +67,14 @@ class MaxPoolWithIndexOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_shape
));
ctx
->
SetOutputDim
(
"Mask"
,
framework
::
make_ddim
(
output_shape
));
}
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
MaxPoolWithIndexOpGrad
:
public
framework
::
OperatorWithKernel
{
...
...
@@ -80,6 +88,14 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel {
"Input(X@GRAD) should not be null."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
ctx
->
GetInputDim
(
"X"
));
}
protected:
framework
::
OpKernelType
GetKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
type
()),
ctx
.
device_context
());
}
};
class
MaxPool2dWithIndexOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
@@ -116,7 +132,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
// TypedAttrChecker don't support vector type.)
AddAttr
<
bool
>
(
"global_pooling"
,
"(bool, default
false) Whether to use the global pooling. "
"(bool, default
:
false) Whether to use the global pooling. "
"If global_pooling = true, ksize and paddings will be ignored."
)
.
SetDefault
(
false
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
...
...
@@ -126,7 +142,7 @@ class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker {
// TypedAttrChecker don't support vector type.)
AddAttr
<
std
::
vector
<
int
>>
(
"paddings"
,
"(vector<int>, defalut
{0, 0}), paddings(height, width) of pooling "
"(vector<int>, defalut
:
{0, 0}), paddings(height, width) of pooling "
"operator. "
"If global_pooling = true, paddings and will be ignored."
)
.
SetDefault
({
0
,
0
});
// TODO(Chengduo): Add checker. (Currently,
...
...
@@ -250,12 +266,12 @@ REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp,
REGISTER_OP_CPU_KERNEL
(
max_pool2d_with_index
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
double
,
int
>
);
REGISTER_OP_CPU_KERNEL
(
max_pool2d_with_index_grad
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
)
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
,
int
>
)
REGISTER_OP
(
max_pool3d_with_index
,
ops
::
MaxPoolWithIndexOp
,
ops
::
MaxPool3dWithIndexOpMaker
,
max_pool3d_with_index_grad
,
...
...
@@ -263,9 +279,9 @@ REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp,
REGISTER_OP_CPU_KERNEL
(
max_pool3d_with_index
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
);
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
CPUPlace
,
double
,
int
>
);
REGISTER_OP_CPU_KERNEL
(
max_pool3d_with_index_grad
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
>
)
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
CPUPlace
,
double
,
int
>
)
paddle/operators/pool_with_index_op.cu.cc
浏览文件 @
350cc61f
...
...
@@ -18,18 +18,18 @@ namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL
(
max_pool2d_with_index
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
double
,
int
>
);
REGISTER_OP_GPU_KERNEL
(
max_pool2d_with_index_grad
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
)
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
,
int
>
)
REGISTER_OP_GPU_KERNEL
(
max_pool3d_with_index
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
);
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexKernel
<
paddle
::
platform
::
GPUPlace
,
double
,
int
>
);
REGISTER_OP_GPU_KERNEL
(
max_pool3d_with_index_grad
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
>
)
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
int
>
,
ops
::
MaxPoolWithIndexGradKernel
<
paddle
::
platform
::
GPUPlace
,
double
,
int
>
)
paddle/operators/pool_with_index_op.h
浏览文件 @
350cc61f
...
...
@@ -24,8 +24,8 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
Place
,
typename
T
>
class
MaxPoolWithIndexKernel
:
public
framework
::
OpKernel
<
T
>
{
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPoolWithIndexKernel
:
public
framework
::
OpKernel
<
T
1
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
...
...
@@ -44,13 +44,13 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
switch
(
ksize
.
size
())
{
case
2
:
{
paddle
::
operators
::
math
::
MaxPool2dWithIndexFunctor
<
Place
,
T
>
paddle
::
operators
::
math
::
MaxPool2dWithIndexFunctor
<
Place
,
T
1
,
T2
>
pool2d_forward
;
pool2d_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
out
,
mask
);
}
break
;
case
3
:
{
paddle
::
operators
::
math
::
MaxPool3dWithIndexFunctor
<
Place
,
T
>
paddle
::
operators
::
math
::
MaxPool3dWithIndexFunctor
<
Place
,
T
1
,
T2
>
pool3d_forward
;
pool3d_forward
(
context
.
device_context
(),
*
in_x
,
ksize
,
strides
,
paddings
,
out
,
mask
);
...
...
@@ -60,8 +60,8 @@ class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
}
};
template
<
typename
Place
,
typename
T
>
class
MaxPoolWithIndexGradKernel
:
public
framework
::
OpKernel
<
T
>
{
template
<
typename
Place
,
typename
T
1
,
typename
T2
>
class
MaxPoolWithIndexGradKernel
:
public
framework
::
OpKernel
<
T
1
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
const
Tensor
*
mask
=
context
.
Input
<
Tensor
>
(
"Mask"
);
...
...
@@ -80,19 +80,19 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> {
}
if
(
in_x_grad
)
{
in_x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
in_x_grad
->
mutable_data
<
T
1
>
(
context
.
GetPlace
());
auto
&
device_ctx
=
context
.
device_context
();
math
::
set_constant
(
device_ctx
,
in_x_grad
,
0
);
switch
(
ksize
.
size
())
{
case
2
:
{
paddle
::
operators
::
math
::
MaxPool2dWithIndexGradFunctor
<
Place
,
T
>
paddle
::
operators
::
math
::
MaxPool2dWithIndexGradFunctor
<
Place
,
T
1
,
T2
>
pool2d_backward
;
pool2d_backward
(
device_ctx
,
*
out_grad
,
*
mask
,
ksize
,
strides
,
paddings
,
in_x_grad
);
}
break
;
case
3
:
{
paddle
::
operators
::
math
::
MaxPool3dWithIndexGradFunctor
<
Place
,
T
>
paddle
::
operators
::
math
::
MaxPool3dWithIndexGradFunctor
<
Place
,
T
1
,
T2
>
pool3d_backward
;
pool3d_backward
(
device_ctx
,
*
out_grad
,
*
mask
,
ksize
,
strides
,
paddings
,
in_x_grad
);
...
...
python/paddle/v2/fluid/layers.py
浏览文件 @
350cc61f
...
...
@@ -661,7 +661,7 @@ def conv2d(input,
if
groups
is
None
:
num_filter_channels
=
num_channels
else
:
if
num_channels
%
groups
is
not
0
:
if
num_channels
%
groups
!=
0
:
raise
ValueError
(
"num_channels must be divisible by groups."
)
num_filter_channels
=
num_channels
/
groups
...
...
python/paddle/v2/fluid/tests/test_pool_max_op.py
浏览文件 @
350cc61f
...
...
@@ -3,11 +3,13 @@ import numpy as np
from
op_test
import
OpTest
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
):
def
max_pool3D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
False
):
N
,
C
,
D
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
if
global_pool
:
ksize
=
[
D
,
H
,
W
]
paddings
=
[
0
,
0
,
0
]
D_out
=
(
D
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
H_out
=
(
H
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
W_out
=
(
W
-
ksize
[
2
]
+
2
*
paddings
[
2
])
/
strides
[
2
]
+
1
...
...
@@ -40,11 +42,13 @@ def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=0):
return
out
,
mask
def
max_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
0
):
def
max_pool2D_forward_naive
(
x
,
ksize
,
strides
,
paddings
,
global_pool
=
False
):
N
,
C
,
H
,
W
=
x
.
shape
if
global_pool
==
1
:
if
global_pool
:
ksize
=
[
H
,
W
]
paddings
=
[
0
,
0
]
H_out
=
(
H
-
ksize
[
0
]
+
2
*
paddings
[
0
])
/
strides
[
0
]
+
1
W_out
=
(
W
-
ksize
[
1
]
+
2
*
paddings
[
1
])
/
strides
[
1
]
+
1
out
=
np
.
zeros
((
N
,
C
,
H_out
,
W_out
))
...
...
@@ -74,13 +78,13 @@ def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=0):
class
TestMaxPoolWithIndex_Op
(
OpTest
):
def
setUp
(
self
):
self
.
init_test_case
()
if
self
.
global_pool
:
self
.
paddings
=
[
0
for
_
in
range
(
len
(
self
.
paddings
))]
self
.
init_global
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
"float32"
)
output
,
mask
=
self
.
pool_forward_naive
(
input
,
self
.
ksize
,
self
.
strides
,
self
.
paddings
,
self
.
global_pool
)
output
=
output
.
astype
(
"float32"
)
mask
=
mask
.
astype
(
"
floa
t32"
)
mask
=
mask
.
astype
(
"
in
t32"
)
self
.
attrs
=
{
'strides'
:
self
.
strides
,
...
...
@@ -99,41 +103,24 @@ class TestMaxPoolWithIndex_Op(OpTest):
# self.check_grad(set(['X']), ['Out'], max_relative_error=0.07)
def
init_test_case
(
self
):
self
.
global_pool
=
True
self
.
index
=
"max_pool3d_with_index"
self
.
op_type
=
"%s"
%
self
.
index
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
,
5
]
self
.
ksize
=
[
3
,
3
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
paddings
=
[
1
,
1
,
1
]
def
init_global
(
self
):
self
.
global_pool
=
False
class
TestCase1
(
TestMaxPoolWithIndex_Op
):
def
init_
test_case
(
self
):
def
init_
global
(
self
):
self
.
global_pool
=
True
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
,
5
]
self
.
ksize
=
[
3
,
3
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
paddings
=
[
1
,
1
,
1
]
class
TestCase2
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
global_pool
=
False
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
,
7
]
self
.
ksize
=
[
3
,
3
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
paddings
=
[
1
,
1
,
1
]
class
TestCase3
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
global_pool
=
False
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
,
7
]
...
...
@@ -141,32 +128,18 @@ class TestCase3(TestMaxPoolWithIndex_Op):
self
.
strides
=
[
2
,
2
,
2
]
self
.
paddings
=
[
0
,
0
,
0
]
class
TestCase4
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
def
init_global
(
self
):
self
.
global_pool
=
True
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
,
5
]
self
.
ksize
=
[
3
,
3
,
3
]
self
.
strides
=
[
1
,
1
,
1
]
self
.
paddings
=
[
1
,
1
,
1
]
class
TestCase5
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
global_pool
=
True
self
.
op_type
=
"max_pool3d_with_index"
self
.
pool_forward_naive
=
max_pool3D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
,
5
]
self
.
ksize
=
[
3
,
3
,
3
]
self
.
strides
=
[
2
,
2
,
2
]
self
.
paddings
=
[
0
,
0
,
0
]
class
TestCase3
(
TestCase2
):
def
init_global
(
self
):
self
.
global_pool
=
False
class
TestCase6
(
TestMaxPoolWithIndex_Op
):
#----------------max_pool2d_with_index----------------
class
TestCase4
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
global_pool
=
False
self
.
op_type
=
"max_pool2d_with_index"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
]
...
...
@@ -174,10 +147,17 @@ class TestCase6(TestMaxPoolWithIndex_Op):
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
1
]
def
init_global
(
self
):
self
.
global_pool
=
True
class
TestCase
7
(
TestMaxPoolWithIndex_Op
):
def
init_
test_case
(
self
):
class
TestCase
5
(
TestCase4
):
def
init_
global
(
self
):
self
.
global_pool
=
False
class
TestCase6
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
op_type
=
"max_pool2d_with_index"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
7
,
7
]
...
...
@@ -185,27 +165,13 @@ class TestCase7(TestMaxPoolWithIndex_Op):
self
.
strides
=
[
2
,
2
]
self
.
paddings
=
[
0
,
0
]
class
TestCase8
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
def
init_global
(
self
):
self
.
global_pool
=
True
self
.
op_type
=
"max_pool2d_with_index"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
]
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
1
,
1
]
class
TestCase9
(
TestMaxPoolWithIndex_Op
):
def
init_test_case
(
self
):
self
.
global_pool
=
True
self
.
op_type
=
"max_pool2d_with_index"
self
.
pool_forward_naive
=
max_pool2D_forward_naive
self
.
shape
=
[
2
,
3
,
5
,
5
]
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
2
,
2
]
self
.
paddings
=
[
0
,
0
]
class
TestCase7
(
TestCase6
):
def
init_global
(
self
):
self
.
global_pool
=
False
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录