Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
340ffbb0
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
340ffbb0
编写于
5月 26, 2017
作者:
T
Travis CI
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Deploy to GitHub Pages:
1220f385
上级
8077aaa4
变更
4
展开全部
隐藏空白更改
内联
并排
Showing
4 changed file
with
84 addition
and
8 deletion
+84
-8
develop/doc/api/v2/data.html
develop/doc/api/v2/data.html
+41
-3
develop/doc/searchindex.js
develop/doc/searchindex.js
+1
-1
develop/doc_cn/api/v2/data.html
develop/doc_cn/api/v2/data.html
+41
-3
develop/doc_cn/searchindex.js
develop/doc_cn/searchindex.js
+1
-1
未找到文件。
develop/doc/api/v2/data.html
浏览文件 @
340ffbb0
...
...
@@ -185,12 +185,50 @@
<h1>
Data Reader Interface and DataSets
<a
class=
"headerlink"
href=
"#data-reader-interface-and-datasets"
title=
"Permalink to this headline"
>
¶
</a></h1>
<div
class=
"section"
id=
"datatypes"
>
<h2>
DataTypes
<a
class=
"headerlink"
href=
"#datatypes"
title=
"Permalink to this headline"
>
¶
</a></h2>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.data_type.
</code><code
class=
"descname"
>
dense_array
</code><span
class=
"sig-paren"
>
(
</span><em>
dim
</em>
,
<em>
seq_type=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
</p>
<p>
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Parameters:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
dim
</strong>
(
<em>
int
</em>
)
–
dimension of this vector.
</li>
<li><strong>
seq_type
</strong>
(
<em>
int
</em>
)
–
sequence type of input.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
Returns:
</th><td
class=
"field-body"
><p
class=
"first"
>
An input type object.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
Return type:
</th><td
class=
"field-body"
><p
class=
"first last"
>
InputType
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.data_type.
</code><code
class=
"descname"
>
dense_vector
</code><span
class=
"sig-paren"
>
(
</span><em>
dim
</em>
,
<em>
seq_type=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.
</p>
<dd><p>
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
</p>
<p>
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
...
...
develop/doc/searchindex.js
浏览文件 @
340ffbb0
因为 它太大了无法显示 source diff 。你可以改为
查看blob
。
develop/doc_cn/api/v2/data.html
浏览文件 @
340ffbb0
...
...
@@ -192,12 +192,50 @@
<h1>
Data Reader Interface and DataSets
<a
class=
"headerlink"
href=
"#data-reader-interface-and-datasets"
title=
"永久链接至标题"
>
¶
</a></h1>
<div
class=
"section"
id=
"datatypes"
>
<h2>
DataTypes
<a
class=
"headerlink"
href=
"#datatypes"
title=
"永久链接至标题"
>
¶
</a></h2>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.data_type.
</code><code
class=
"descname"
>
dense_array
</code><span
class=
"sig-paren"
>
(
</span><em>
dim
</em>
,
<em>
seq_type=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
</p>
<p>
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
<tbody
valign=
"top"
>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
参数:
</th><td
class=
"field-body"
><ul
class=
"first simple"
>
<li><strong>
dim
</strong>
(
<em>
int
</em>
)
–
dimension of this vector.
</li>
<li><strong>
seq_type
</strong>
(
<em>
int
</em>
)
–
sequence type of input.
</li>
</ul>
</td>
</tr>
<tr
class=
"field-even field"
><th
class=
"field-name"
>
返回:
</th><td
class=
"field-body"
><p
class=
"first"
>
An input type object.
</p>
</td>
</tr>
<tr
class=
"field-odd field"
><th
class=
"field-name"
>
返回类型:
</th><td
class=
"field-body"
><p
class=
"first last"
>
InputType
</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>
<dl
class=
"function"
>
<dt>
<code
class=
"descclassname"
>
paddle.v2.data_type.
</code><code
class=
"descname"
>
dense_vector
</code><span
class=
"sig-paren"
>
(
</span><em>
dim
</em>
,
<em>
seq_type=0
</em><span
class=
"sig-paren"
>
)
</span></dt>
<dd><p>
Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.
</p>
<dd><p>
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
</p>
<p>
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
</p>
<table
class=
"docutils field-list"
frame=
"void"
rules=
"none"
>
<col
class=
"field-name"
/>
<col
class=
"field-body"
/>
...
...
develop/doc_cn/searchindex.js
浏览文件 @
340ffbb0
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录