Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
316eb3e9
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
316eb3e9
编写于
6月 15, 2018
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add doc for layers.auc
上级
cafdeb0a
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
37 addition
and
0 deletion
+37
-0
python/paddle/fluid/layers/metric.py
python/paddle/fluid/layers/metric.py
+37
-0
未找到文件。
python/paddle/fluid/layers/metric.py
浏览文件 @
316eb3e9
...
...
@@ -53,6 +53,43 @@ def accuracy(input, label, k=1, correct=None, total=None):
def
auc
(
input
,
label
,
curve
=
'ROC'
,
num_thresholds
=
200
):
"""
**Area Under The Curve (AUC) Layer**
This implementation computes the AUC according to forward output and label.
It is used very widely in binary classification evaluation.
As a note: If input label contains values other than 0 and 1, it will be
cast to bool. You can find the relevant definitions `here
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic
#Area_under_the_curve>`_.
There are two types of possible curves:
1. ROC: Receiver operating characteristic
2. PR: Precision Recall
Args:
input(Variable): A floating-point 2D Variable, values are in the range
[0, 1]. Each row is sorted in descending order. This
input should be the output of topk. Typically, this
Variable indicates the probability of each label.
label(Variable): A 2D int Variable indicating the label of the training
data. The height is batch size and width is always 1.
curve(str): Curve type, can be 'ROC' or 'PR'. Default 'ROC'.
num_thresholds(int): The number of thresholds to use when discretizing
the roc curve. Default 200.
Returns:
Variable: A scalar representing the current AUC.
Examples:
.. code-block:: python
# network is a binary classification model and label the ground truth
prediction = network(image, is_infer=True)
auc_out=fluid.layers.auc(input=prediction, label=label)
"""
warnings
.
warn
(
"This interface not recommended, fluid.layers.auc compute the auc at every minibatch,
\
but can not aggregate them and get the pass AUC, because pass
\
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录