Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2fd7675c
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2fd7675c
编写于
1月 11, 2018
作者:
Y
yangyaming
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add lod checking for forward.
上级
6f79bbc9
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
15 addition
and
11 deletion
+15
-11
python/paddle/v2/fluid/tests/test_dynrnn_static_input.py
python/paddle/v2/fluid/tests/test_dynrnn_static_input.py
+15
-11
未找到文件。
python/paddle/v2/fluid/tests/test_dynrnn_static_input.py
浏览文件 @
2fd7675c
...
@@ -56,7 +56,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
...
@@ -56,7 +56,7 @@ class TestDyRnnStaticInput(unittest.TestCase):
ndarray
=
np
.
zeros
(
shape
=
dims
).
astype
(
'float32'
)
ndarray
=
np
.
zeros
(
shape
=
dims
).
astype
(
'float32'
)
for
i
in
xrange
(
np
.
product
(
dims
)):
for
i
in
xrange
(
np
.
product
(
dims
)):
ndarray
.
ravel
()[
i
]
=
lod_tensor
.
get_float_element
(
i
)
ndarray
.
ravel
()[
i
]
=
lod_tensor
.
get_float_element
(
i
)
return
ndarray
return
ndarray
,
lod_tensor
.
lod
()
def
build_graph
(
self
,
only_forward
=
False
):
def
build_graph
(
self
,
only_forward
=
False
):
x_tensor
=
fluid
.
layers
.
data
(
x_tensor
=
fluid
.
layers
.
data
(
...
@@ -142,22 +142,28 @@ class TestDyRnnStaticInput(unittest.TestCase):
...
@@ -142,22 +142,28 @@ class TestDyRnnStaticInput(unittest.TestCase):
]
]
static_step_outs
=
[]
static_step_outs
=
[]
static_step_lods
=
[]
for
i
in
xrange
(
self
.
_max_sequence_len
):
for
i
in
xrange
(
self
.
_max_sequence_len
):
end
=
len
(
x_seq_len
)
-
bisect
.
bisect_left
(
x_seq_len_sorted
,
i
+
1
)
end
=
len
(
x_seq_len
)
-
bisect
.
bisect_left
(
x_seq_len_sorted
,
i
+
1
)
end
=
sum
(
static_seq_len_reordered
[:
end
])
lod
=
[
0
]
for
i
in
xrange
(
end
):
lod
.
append
(
static_seq_len_reordered
[
i
]
+
lod
[
-
1
])
static_step_lods
.
append
([
lod
])
end
=
lod
[
-
1
]
static_step_outs
.
append
(
static_step_outs
.
append
(
np
.
array
(
static_reordered
[:
end
]).
astype
(
'float32'
))
np
.
array
(
static_reordered
[:
end
]).
astype
(
'float32'
))
return
static_step_outs
return
static_step_outs
,
static_step_lods
def
test_step_out
(
self
):
def
test_step_out
(
self
):
static_step_outs
=
self
.
build_graph
(
only_forward
=
True
)
static_step_outs
=
self
.
build_graph
(
only_forward
=
True
)
self
.
exe
.
run
(
framework
.
default_startup_program
())
self
.
exe
.
run
(
framework
.
default_startup_program
())
expected_
step_out
s
=
self
.
get_expected_static_step_outs
()
expected_
outs
,
expected_lod
s
=
self
.
get_expected_static_step_outs
()
for
i
in
xrange
(
self
.
_max_sequence_len
):
for
i
in
xrange
(
self
.
_max_sequence_len
):
step_out
=
self
.
fetch_value
(
static_step_outs
[
i
])
step_out
,
lod
=
self
.
fetch_value
(
static_step_outs
[
i
])
self
.
assertTrue
(
np
.
allclose
(
step_out
,
expected_step_outs
[
i
]))
self
.
assertTrue
(
np
.
allclose
(
step_out
,
expected_outs
[
i
]))
self
.
assertTrue
(
np
.
allclose
(
lod
,
expected_lods
[
i
]))
def
test_network_gradient
(
self
):
def
test_network_gradient
(
self
):
pass
#still have bug (seed doesn't work)
pass
#still have bug (seed doesn't work)
...
@@ -165,11 +171,10 @@ class TestDyRnnStaticInput(unittest.TestCase):
...
@@ -165,11 +171,10 @@ class TestDyRnnStaticInput(unittest.TestCase):
static_input_grad, loss = self.build_graph()
static_input_grad, loss = self.build_graph()
self.exe.run(framework.default_startup_program())
self.exe.run(framework.default_startup_program())
actual_gradients = self.fetch_value(static_input_grad)
actual_gradients
, actual_lod
= self.fetch_value(static_input_grad)
static_input_shape = self.static_input_tensor.get_dims()
static_input_shape = self.static_input_tensor.get_dims()
numeric_gradients = np.zeros(shape=static_input_shape).astype('float32')
numeric_gradients = np.zeros(shape=static_input_shape).astype('float32')
#print(actual_gradient)
print(actual_gradients)
print(actual_gradients)
# calculate numeric gradients
# calculate numeric gradients
tensor_size = np.product(static_input_shape)
tensor_size = np.product(static_input_shape)
...
@@ -177,13 +182,12 @@ class TestDyRnnStaticInput(unittest.TestCase):
...
@@ -177,13 +182,12 @@ class TestDyRnnStaticInput(unittest.TestCase):
origin = self.static_input_tensor.get_float_element(i)
origin = self.static_input_tensor.get_float_element(i)
x_pos = origin + self._delta
x_pos = origin + self._delta
self.static_input_tensor.set_float_element(i, x_pos)
self.static_input_tensor.set_float_element(i, x_pos)
y_pos = self.fetch_value(loss)[0]
y_pos = self.fetch_value(loss)[0]
[0]
x_neg = origin - self._delta
x_neg = origin - self._delta
self.static_input_tensor.set_float_element(i, x_neg)
self.static_input_tensor.set_float_element(i, x_neg)
y_neg = self.fetch_value(loss)[0]
y_neg = self.fetch_value(loss)[0]
[0]
self.static_input_tensor.set_float_element(i, origin)
self.static_input_tensor.set_float_element(i, origin)
numeric_gradients.ravel()[i] = (y_pos - y_neg) / self._delta / 2
numeric_gradients.ravel()[i] = (y_pos - y_neg) / self._delta / 2
print(numeric_gradients)
print(numeric_gradients)
'''
'''
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录