Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2f604064
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2f604064
编写于
2月 27, 2017
作者:
J
jacquesqiao
提交者:
GitHub
2月 27, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1452 from luotao1/layer
implement more layers in v2
上级
d425a5ca
06056fe2
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
358 addition
and
80 deletion
+358
-80
doc/api/trainer_config_helpers/layers.rst
doc/api/trainer_config_helpers/layers.rst
+24
-12
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+92
-19
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+2
-1
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+97
-41
python/paddle/v2/pooling.py
python/paddle/v2/pooling.py
+24
-0
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+119
-7
未找到文件。
doc/api/trainer_config_helpers/layers.rst
浏览文件 @
2f604064
...
@@ -139,24 +139,12 @@ lstmemory
...
@@ -139,24 +139,12 @@ lstmemory
:members: lstmemory
:members: lstmemory
:noindex:
:noindex:
lstm_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: lstm_step_layer
:noindex:
grumemory
grumemory
---------
---------
.. automodule:: paddle.trainer_config_helpers.layers
.. automodule:: paddle.trainer_config_helpers.layers
:members: grumemory
:members: grumemory
:noindex:
:noindex:
gru_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: gru_step_layer
:noindex:
Recurrent Layer Group
Recurrent Layer Group
=====================
=====================
...
@@ -172,6 +160,18 @@ recurrent_group
...
@@ -172,6 +160,18 @@ recurrent_group
:members: recurrent_group
:members: recurrent_group
:noindex:
:noindex:
lstm_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: lstm_step_layer
:noindex:
gru_step_layer
---------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: gru_step_layer
:noindex:
beam_search
beam_search
------------
------------
.. automodule:: paddle.trainer_config_helpers.layers
.. automodule:: paddle.trainer_config_helpers.layers
...
@@ -308,6 +308,12 @@ repeat_layer
...
@@ -308,6 +308,12 @@ repeat_layer
:members: repeat_layer
:members: repeat_layer
:noindex:
:noindex:
rotate_layer
------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: rotate_layer
:noindex:
seq_reshape_layer
seq_reshape_layer
-----------------
-----------------
.. automodule:: paddle.trainer_config_helpers.layers
.. automodule:: paddle.trainer_config_helpers.layers
...
@@ -462,6 +468,12 @@ ctc_layer
...
@@ -462,6 +468,12 @@ ctc_layer
:members: ctc_layer
:members: ctc_layer
:noindex:
:noindex:
warp_ctc_layer
--------------
.. automodule:: paddle.trainer_config_helpers.layers
:members: warp_ctc_layer
:noindex:
nce_layer
nce_layer
-----------
-----------
.. automodule:: paddle.trainer_config_helpers.layers
.. automodule:: paddle.trainer_config_helpers.layers
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
2f604064
...
@@ -112,6 +112,7 @@ __all__ = [
...
@@ -112,6 +112,7 @@ __all__ = [
'priorbox_layer'
,
'priorbox_layer'
,
'spp_layer'
,
'spp_layer'
,
'pad_layer'
,
'pad_layer'
,
'eos_layer'
,
'layer_support'
,
'layer_support'
,
]
]
...
@@ -1289,6 +1290,12 @@ def last_seq(input,
...
@@ -1289,6 +1290,12 @@ def last_seq(input,
"""
"""
Get Last Timestamp Activation of a sequence.
Get Last Timestamp Activation of a sequence.
The simple usage is:
.. code-block:: python
seq = last_seq(input=layer)
:param agg_level: Aggregated level
:param agg_level: Aggregated level
:param name: Layer name.
:param name: Layer name.
:type name: basestring
:type name: basestring
...
@@ -1327,6 +1334,12 @@ def first_seq(input,
...
@@ -1327,6 +1334,12 @@ def first_seq(input,
"""
"""
Get First Timestamp Activation of a sequence.
Get First Timestamp Activation of a sequence.
The simple usage is:
.. code-block:: python
seq = first_seq(input=layer)
:param agg_level: aggregation level
:param agg_level: aggregation level
:param name: Layer name.
:param name: Layer name.
:type name: basestring
:type name: basestring
...
@@ -1427,7 +1440,7 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None):
...
@@ -1427,7 +1440,7 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None):
.. code-block:: python
.. code-block:: python
expand = repeat_layer(
layer,
4)
expand = repeat_layer(
input=layer, num_repeats=
4)
:param input: Input layer
:param input: Input layer
:type input: LayerOutput
:type input: LayerOutput
...
@@ -1799,6 +1812,12 @@ def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
...
@@ -1799,6 +1812,12 @@ def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
Note that the above computation is for one sample. Multiple samples are
Note that the above computation is for one sample. Multiple samples are
processed in one batch.
processed in one batch.
The example usage is:
.. code-block:: python
cos = cos_sim(a=layer1, b=layer2, size=3)
:param name: layer name
:param name: layer name
:type name: basestring
:type name: basestring
:param a: input layer a
:param a: input layer a
...
@@ -1960,6 +1979,16 @@ def img_conv_layer(input,
...
@@ -1960,6 +1979,16 @@ def img_conv_layer(input,
pieces. First 256/4 = 64 channels will process by first 32 filters. The
pieces. First 256/4 = 64 channels will process by first 32 filters. The
rest channels will be processed by rest group of filters.
rest channels will be processed by rest group of filters.
The example usage is:
.. code-block:: python
conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
:param name: Layer name.
:param name: Layer name.
:type name: basestring
:type name: basestring
:param input: Layer Input.
:param input: Layer Input.
...
@@ -2099,6 +2128,34 @@ def img_pool_layer(input,
...
@@ -2099,6 +2128,34 @@ def img_pool_layer(input,
.. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/
.. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))
The example usage is:
.. code-block:: python
maxpool = img_pool_layer(input=conv,
pool_size=3,
pool_size_y=5,
num_channels=8,
stride=1,
stride_y=2,
padding=1,
padding_y=2,
pool_type=MaxPooling())
:param padding: pooling padding width.
:param padding: pooling padding width.
:type padding: int
:type padding: int
:param padding_y: pooling padding height. It's equal to padding by default.
:param padding_y: pooling padding height. It's equal to padding by default.
...
@@ -2125,19 +2182,6 @@ def img_pool_layer(input,
...
@@ -2125,19 +2182,6 @@ def img_pool_layer(input,
:param ceil_mode: Wether to use ceil mode to calculate output height and with.
:param ceil_mode: Wether to use ceil mode to calculate output height and with.
Defalut is True. If set false, Otherwise use floor.
Defalut is True. If set false, Otherwise use floor.
- ceil_mode=True:
.. math::
w = 1 + int(ceil(input_width + 2 * padding - pool_size) / float(stride))
h = 1 + int(ceil(input_height + 2 * padding_y - pool_size_y) / float(stride_y))
- ceil_mode=False:
.. math::
w = 1 + int(floor(input_width + 2 * padding - pool_size) / float(stride))
h = 1 + int(floor(input_height + 2 * padding_y - pool_size_y) / float(stride_y))
:type ceil_mode: bool
:type ceil_mode: bool
:return: LayerOutput object.
:return: LayerOutput object.
:rtype: LayerOutput
:rtype: LayerOutput
...
@@ -2199,6 +2243,15 @@ def spp_layer(input,
...
@@ -2199,6 +2243,15 @@ def spp_layer(input,
The details please refer to
The details please refer to
`Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.
`Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.
The example usage is:
.. code-block:: python
spp = spp_layer(input=data,
pyramid_height=2,
num_channels=16,
pool_type=MaxPooling())
:param name: layer name.
:param name: layer name.
:type name: basestring
:type name: basestring
:param input: layer's input.
:param input: layer's input.
...
@@ -2287,6 +2340,12 @@ def img_cmrnorm_layer(input,
...
@@ -2287,6 +2340,12 @@ def img_cmrnorm_layer(input,
The details please refer to
The details please refer to
`Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
`Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
The example usage is:
.. code-block:: python
norm = img_cmrnorm_layer(input=net, size=5)
:param name: layer name.
:param name: layer name.
:type name: None|basestring
:type name: None|basestring
:param input: layer's input.
:param input: layer's input.
...
@@ -2342,6 +2401,12 @@ def batch_norm_layer(input,
...
@@ -2342,6 +2401,12 @@ def batch_norm_layer(input,
The details of batch normalization please refer to this
The details of batch normalization please refer to this
`paper <http://arxiv.org/abs/1502.03167>`_.
`paper <http://arxiv.org/abs/1502.03167>`_.
The example usage is:
.. code-block:: python
norm = batch_norm_layer(input=net, act=ReluActivation())
:param name: layer name.
:param name: layer name.
:type name: basestring
:type name: basestring
:param input: batch normalization input. Better be linear activation.
:param input: batch normalization input. Better be linear activation.
...
@@ -3905,13 +3970,13 @@ def conv_shift_layer(a, b, name=None, layer_attr=None):
...
@@ -3905,13 +3970,13 @@ def conv_shift_layer(a, b, name=None, layer_attr=None):
.. code-block:: python
.. code-block:: python
conv_shift = conv_shift_layer(
input=[layer1, layer2]
)
conv_shift = conv_shift_layer(
a=layer1, b=layer2
)
:param name: layer name
:param name: layer name
:type name: basestring
:type name: basestring
:param a: Input layer a.
:param a: Input layer a.
:type a: LayerOutput
:type a: LayerOutput
:param b: input layer b
:param b: input layer b
.
:type b: LayerOutput
:type b: LayerOutput
:param layer_attr: layer's extra attribute.
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
:type layer_attr: ExtraLayerAttribute
...
@@ -4003,8 +4068,8 @@ def tensor_layer(a,
...
@@ -4003,8 +4068,8 @@ def tensor_layer(a,
@
wrap_act_default
()
@
wrap_act_default
()
@
layer_support
()
@
layer_support
()
def
selective_fc_layer
(
input
,
def
selective_fc_layer
(
input
,
select
,
size
,
size
,
select
=
None
,
act
=
None
,
act
=
None
,
name
=
None
,
name
=
None
,
pass_generation
=
False
,
pass_generation
=
False
,
...
@@ -4031,6 +4096,7 @@ def selective_fc_layer(input,
...
@@ -4031,6 +4096,7 @@ def selective_fc_layer(input,
:type input: LayerOutput|list|tuple
:type input: LayerOutput|list|tuple
:param select: The select layer. The output of select layer should be a
:param select: The select layer. The output of select layer should be a
sparse binary matrix, and treat as the mask of selective fc.
sparse binary matrix, and treat as the mask of selective fc.
If is None, acts exactly like fc_layer.
:type select: LayerOutput
:type select: LayerOutput
:param size: The layer dimension.
:param size: The layer dimension.
:type size: int
:type size: int
...
@@ -4259,7 +4325,7 @@ def block_expand_layer(input,
...
@@ -4259,7 +4325,7 @@ def block_expand_layer(input,
.. code-block:: python
.. code-block:: python
block_expand = block_expand_layer(input,
block_expand = block_expand_layer(input
=layer
,
num_channels=128,
num_channels=128,
stride_x=1,
stride_x=1,
stride_y=1,
stride_y=1,
...
@@ -4596,6 +4662,13 @@ def crf_decoding_layer(input,
...
@@ -4596,6 +4662,13 @@ def crf_decoding_layer(input,
this layer will also calculate error. output.value[i] is 1 for incorrect
this layer will also calculate error. output.value[i] is 1 for incorrect
decoding or 0 for correct decoding.
decoding or 0 for correct decoding.
The simple usage:
.. code-block:: python
crf_decoding = crf_decoding_layer(input=input,
size=label_dim)
:param input: The first input layer.
:param input: The first input layer.
:type input: LayerOutput
:type input: LayerOutput
:param size: size of this layer.
:param size: size of this layer.
...
...
python/paddle/v2/__init__.py
浏览文件 @
2f604064
...
@@ -20,11 +20,12 @@ import event
...
@@ -20,11 +20,12 @@ import event
import
data_type
import
data_type
import
data_feeder
import
data_feeder
import
attr
import
attr
import
pooling
import
py_paddle.swig_paddle
as
api
import
py_paddle.swig_paddle
as
api
__all__
=
[
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_type'
,
'attr'
,
'data_feeder'
'event'
,
'data_type'
,
'attr'
,
'
pooling'
,
'
data_feeder'
]
]
...
...
python/paddle/v2/layer.py
浏览文件 @
2f604064
...
@@ -82,10 +82,17 @@ import activation
...
@@ -82,10 +82,17 @@ import activation
import
attr
import
attr
__all__
=
[
__all__
=
[
'parse_network'
,
'data'
,
'fc'
,
'max_id'
,
'classification_cost'
,
'parse_network'
,
'data'
,
'fc'
,
'conv_shift'
,
'img_conv'
,
'img_pool'
,
'spp'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'maxout'
,
'img_cmrnorm'
,
'batch_norm'
,
'sum_to_one_norm'
,
'recurrent'
,
'lstmemory'
,
'grumemory'
,
'pool'
,
'last_seq'
,
'first_seq'
,
'concat'
,
'seq_concat'
,
'block_expand'
,
'expand'
,
'repeat'
,
'seq_reshape'
,
'addto'
,
'linear_comb'
,
'interpolation'
,
'bilinear_interp'
,
'power'
,
'scaling'
,
'slope_intercept'
,
'tensor'
,
'cos_sim'
,
'trans'
,
'max_id'
,
'sampling_id'
,
'pad'
,
'classification_cost'
,
'cross_entropy_cost'
,
'cross_entropy_with_selfnorm_cost'
,
'regression_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'multi_binary_label_cross_entropy_cost'
,
'rank_cost'
,
'lambda_cost'
,
'sum_cost'
,
'huber_cost'
'sum_cost'
,
'huber_cost'
,
'crf'
,
'crf_decoding'
,
'ctc'
,
'warp_ctc'
,
'nce'
,
'hsigmoid'
,
'eos'
]
]
__projection_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_projection'
),
__projection_names__
=
filter
(
lambda
x
:
x
.
endswith
(
'_projection'
),
...
@@ -143,9 +150,9 @@ class Layer(object):
...
@@ -143,9 +150,9 @@ class Layer(object):
raise
NotImplementedError
()
raise
NotImplementedError
()
def
__convert_to_v2__
(
method_name
,
name_prefix
=
None
,
parent_names
=
Non
e
):
def
__convert_to_v2__
(
method_name
,
parent_names
,
is_default_name
=
Tru
e
):
if
name_prefix
is
not
Non
e
:
if
is_default_nam
e
:
wrapper
=
wrap_name_default
(
name_prefix
=
name_prefix
)
wrapper
=
wrap_name_default
(
name_prefix
=
method_name
)
else
:
else
:
wrapper
=
None
wrapper
=
None
...
@@ -278,43 +285,91 @@ def mixed(size=0,
...
@@ -278,43 +285,91 @@ def mixed(size=0,
data
=
DataLayerV2
data
=
DataLayerV2
fc
=
__convert_to_v2__
(
'fc_layer'
,
name_prefix
=
'fc'
,
parent_names
=
[
'input'
])
AggregateLevel
=
conf_helps
.
layers
.
AggregateLevel
max_id
=
__convert_to_v2__
(
ExpandLevel
=
conf_helps
.
layers
.
ExpandLevel
'maxid_layer'
,
name_prefix
=
'maxid'
,
parent_names
=
[
'input'
])
classification_cost
=
__convert_to_v2__
(
layer_list
=
[
'classification_cost'
,
# [V2LayerImpl, V1_method_name, parent_names]
name_prefix
=
'classification_cost'
,
# fully connected layers
parent_names
=
[
'input'
,
'label'
,
'weight'
])
[
'fc'
,
'fc_layer'
,
[
'input'
]],
regression_cost
=
__convert_to_v2__
(
# conv layers
'regression_cost'
,
[
'conv_shift'
,
'conv_shift_layer'
,
[
'a'
,
'b'
]],
name_prefix
=
'regression_cost'
,
[
'img_conv'
,
'img_conv_layer'
,
[
'input'
]],
parent_names
=
[
'input'
,
'label'
,
'weight'
])
# image pooling layers
cross_entropy_cost
=
__convert_to_v2__
(
[
'img_pool'
,
'img_pool_layer'
,
[
'input'
]],
'cross_entropy'
,
[
'spp'
,
'spp_layer'
,
[
'input'
]],
name_prefix
=
'cross_entropy'
,
[
'maxout'
,
'maxout_layer'
,
[
'input'
]],
parent_names
=
[
'input'
,
'label'
])
# norm layers
cross_entropy_with_selfnorm_cost
=
__convert_to_v2__
(
[
'img_cmrnorm'
,
'img_cmrnorm_layer'
,
[
'input'
]],
'cross_entropy_with_selfnorm'
,
[
'batch_norm'
,
'batch_norm_layer'
,
[
'input'
]],
name_prefix
=
'cross_entropy_with_selfnorm'
,
[
'sum_to_one_norm'
,
'sum_to_one_norm_layer'
,
[
'input'
]],
parent_names
=
[
'input'
,
'label'
])
# recurrent layers
multi_binary_label_cross_entropy_cost
=
__convert_to_v2__
(
[
'recurrent'
,
'recurrent_layer'
,
[
'input'
]],
'multi_binary_label_cross_entropy'
,
[
'lstmemory'
,
'lstmemory'
,
[
'input'
]],
name_prefix
=
'multi_binary_label_cross_entropy'
,
[
'grumemory'
,
'grumemory'
,
[
'input'
]],
parent_names
=
[
'input'
,
'label'
])
# aggregate layers
rank_cost
=
__convert_to_v2__
(
[
'pool'
,
'pooling_layer'
,
[
'input'
]],
'rank_cost'
,
[
'last_seq'
,
'last_seq'
,
[
'input'
]],
name_prefix
=
'rank_cost'
,
[
'first_seq'
,
'first_seq'
,
[
'input'
]],
parent_names
=
[
'left'
,
'right'
,
'label'
,
'weight'
])
[
'concat'
,
'concat_layer'
,
[
'input'
]],
lambda_cost
=
__convert_to_v2__
(
[
'seq_concat'
,
'seq_concat_layer'
,
[
'a'
,
'b'
]],
'lambda_cost'
,
name_prefix
=
'lambda_cost'
,
parent_names
=
[
'input'
,
'score'
])
# reshaping layers
sum_cost
=
__convert_to_v2__
(
[
'block_expand'
,
'block_expand_layer'
,
[
'input'
]],
'sum_cost'
,
name_prefix
=
'sum_cost'
,
parent_names
=
[
'input'
])
[
'expand'
,
'expand_layer'
,
[
'input'
,
'expand_as'
]],
huber_cost
=
__convert_to_v2__
(
[
'repeat'
,
'repeat_layer'
,
[
'input'
]],
'huber_cost'
,
name_prefix
=
'huber_cost'
,
parent_names
=
[
'input'
,
'label'
])
[
'rotate'
,
'rotate_layer'
,
[
'input'
]],
[
'seq_reshape'
,
'seq_reshape_layer'
,
[
'input'
]],
# math layers
[
'addto'
,
'addto_layer'
,
[
'input'
]],
[
'linear_comb'
,
'linear_comb_layer'
,
[
'weights'
,
'vectors'
]],
[
'interpolation'
,
'interpolation_layer'
,
[
'input'
,
'weight'
]],
[
'bilinear_interp'
,
'bilinear_interp_layer'
,
[
'input'
]],
[
'power'
,
'power_layer'
,
[
'input'
,
'weight'
]],
[
'scaling'
,
'scaling_layer'
,
[
'input'
,
'weight'
]],
[
'slope_intercept'
,
'slope_intercept_layer'
,
[
'input'
]],
[
'tensor'
,
'tensor_layer'
,
[
'a'
,
'b'
]],
[
'cos_sim'
,
'cos_sim'
,
[
'a'
,
'b'
]],
[
'trans'
,
'trans_layer'
,
[
'input'
]],
# sampling layers
[
'max_id'
,
'maxid_layer'
,
[
'input'
]],
[
'sampling_id'
,
'sampling_id_layer'
,
[
'input'
]],
# slicing and joining layers
[
'pad'
,
'pad_layer'
,
[
'input'
]],
# cost layers
[
'classification_cost'
,
'classification_cost'
,
[
'input'
,
'label'
,
'weight'
]
],
[
'regression_cost'
,
'regression_cost'
,
[
'input'
,
'label'
,
'weight'
]],
[
'cross_entropy_cost'
,
'cross_entropy'
,
[
'input'
,
'label'
]],
[
'cross_entropy_with_selfnorm_cost'
,
'cross_entropy_with_selfnorm'
,
[
'input'
,
'label'
]
],
[
'multi_binary_label_cross_entropy_cost'
,
'multi_binary_label_cross_entropy'
,
[
'input'
,
'label'
]
],
[
'rank_cost'
,
'rank_cost'
,
[
'left'
,
'right'
,
'label'
,
'weight'
]],
[
'lambda_cost'
,
'lambda_cost'
,
[
'input'
,
'score'
]],
[
'sum_cost'
,
'sum_cost'
,
[
'input'
]],
[
'huber_cost'
,
'huber_cost'
,
[
'input'
,
'label'
]],
[
'crf'
,
'crf_layer'
,
[
'input'
,
'label'
]],
[
'crf_decoding'
,
'crf_decoding_layer'
,
[
'input'
]],
[
'ctc'
,
'ctc_layer'
,
[
'input'
,
'label'
]],
[
'warp_ctc'
,
'warp_ctc_layer'
,
[
'input'
,
'label'
]],
[
'nce'
,
'nce_layer'
,
[
'input'
,
'label'
]],
[
'hsigmoid'
,
'hsigmoid'
,
[
'input'
,
'label'
]],
# check layers
[
'eos'
,
'eos_layer'
,
[
'input'
]]
]
for
l
in
layer_list
:
globals
()[
l
[
0
]]
=
__convert_to_v2__
(
l
[
1
],
l
[
2
])
# convert projection
# convert projection
for
prj
in
__projection_names__
:
for
prj
in
__projection_names__
:
globals
()[
prj
]
=
__convert_to_v2__
(
prj
,
parent_names
=
[
'input'
])
globals
()[
prj
]
=
__convert_to_v2__
(
prj
,
parent_names
=
[
'input'
],
is_default_name
=
False
)
# convert operator
# convert operator
operator_list
=
[
operator_list
=
[
...
@@ -323,4 +378,5 @@ operator_list = [
...
@@ -323,4 +378,5 @@ operator_list = [
[
'conv_operator'
,
[
'img'
,
'filter'
]]
[
'conv_operator'
,
[
'img'
,
'filter'
]]
]
]
for
op
in
operator_list
:
for
op
in
operator_list
:
globals
()[
op
[
0
]]
=
__convert_to_v2__
(
op
[
0
],
parent_names
=
op
[
1
])
globals
()[
op
[
0
]]
=
__convert_to_v2__
(
op
[
0
],
parent_names
=
op
[
1
],
is_default_name
=
False
)
python/paddle/v2/pooling.py
0 → 100644
浏览文件 @
2f604064
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle.trainer_config_helpers.poolings
import
*
__all__
=
[
"Max"
,
"CudnnMax"
,
"Avg"
,
"CudnnAvg"
,
"Sum"
,
"SquareRootN"
]
Max
=
MaxPooling
CudnnMax
=
CudnnMaxPooling
Avg
=
AvgPooling
CudnnAvg
=
CudnnAvgPooling
Sum
=
SumPooling
SquareRootN
=
SquareRootNPooling
python/paddle/v2/tests/test_layer.py
浏览文件 @
2f604064
...
@@ -19,16 +19,106 @@ import paddle.v2.activation as activation
...
@@ -19,16 +19,106 @@ import paddle.v2.activation as activation
import
paddle.v2.attr
as
attr
import
paddle.v2.attr
as
attr
import
paddle.v2.data_type
as
data_type
import
paddle.v2.data_type
as
data_type
import
paddle.v2.layer
as
layer
import
paddle.v2.layer
as
layer
import
paddle.v2.pooling
as
pooling
from
paddle.trainer_config_helpers.config_parser_utils
import
\
parse_network_config
as
parse_network
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
128
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
weight
=
layer
.
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
weight
=
layer
.
data
(
name
=
'weight'
,
type
=
data_type
.
dense_vector
(
10
))
score
=
layer
.
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
score
=
layer
.
data
(
name
=
'score'
,
type
=
data_type
.
dense_vector
(
1
))
hidden
=
layer
.
fc
(
input
=
pixel
,
hidden
=
layer
.
fc
(
input
=
pixel
,
size
=
100
,
size
=
100
,
act
=
activation
.
Sigmoid
(),
act
=
activation
.
Sigmoid
(),
param_attr
=
attr
.
Param
(
name
=
'hidden'
))
param_attr
=
attr
.
Param
(
name
=
'hidden'
))
inference
=
layer
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
activation
.
Softmax
())
inference
=
layer
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
activation
.
Softmax
())
conv
=
layer
.
img_conv
(
input
=
pixel
,
filter_size
=
1
,
filter_size_y
=
1
,
num_channels
=
8
,
num_filters
=
16
,
act
=
activation
.
Linear
())
class
ImageLayerTest
(
unittest
.
TestCase
):
def
test_conv_layer
(
self
):
conv_shift
=
layer
.
conv_shift
(
a
=
pixel
,
b
=
score
)
print
layer
.
parse_network
(
conv
,
conv_shift
)
def
test_pooling_layer
(
self
):
maxpool
=
layer
.
img_pool
(
input
=
conv
,
pool_size
=
2
,
num_channels
=
16
,
padding
=
1
,
pool_type
=
pooling
.
Max
())
spp
=
layer
.
spp
(
input
=
conv
,
pyramid_height
=
2
,
num_channels
=
16
,
pool_type
=
pooling
.
Max
())
maxout
=
layer
.
maxout
(
input
=
conv
,
num_channels
=
16
,
groups
=
4
)
print
layer
.
parse_network
(
maxpool
,
spp
,
maxout
)
def
test_norm_layer
(
self
):
norm1
=
layer
.
img_cmrnorm
(
input
=
conv
,
size
=
5
)
norm2
=
layer
.
batch_norm
(
input
=
conv
)
norm3
=
layer
.
sum_to_one_norm
(
input
=
conv
)
print
layer
.
parse_network
(
norm1
,
norm2
,
norm3
)
class
AggregateLayerTest
(
unittest
.
TestCase
):
def
test_aggregate_layer
(
self
):
pool
=
layer
.
pool
(
input
=
pixel
,
pooling_type
=
pooling
.
Avg
(),
agg_level
=
layer
.
AggregateLevel
.
EACH_SEQUENCE
)
last_seq
=
layer
.
last_seq
(
input
=
pixel
)
first_seq
=
layer
.
first_seq
(
input
=
pixel
)
concat
=
layer
.
concat
(
input
=
[
last_seq
,
first_seq
])
seq_concat
=
layer
.
seq_concat
(
a
=
last_seq
,
b
=
first_seq
)
print
layer
.
parse_network
(
pool
,
last_seq
,
first_seq
,
concat
,
seq_concat
)
class
MathLayerTest
(
unittest
.
TestCase
):
def
test_math_layer
(
self
):
addto
=
layer
.
addto
(
input
=
[
pixel
,
pixel
])
linear_comb
=
layer
.
linear_comb
(
weights
=
weight
,
vectors
=
hidden
,
size
=
10
)
interpolation
=
layer
.
interpolation
(
input
=
[
hidden
,
hidden
],
weight
=
score
)
bilinear
=
layer
.
bilinear_interp
(
input
=
conv
,
out_size_x
=
4
,
out_size_y
=
4
)
power
=
layer
.
power
(
input
=
pixel
,
weight
=
score
)
scaling
=
layer
.
scaling
(
input
=
pixel
,
weight
=
score
)
slope
=
layer
.
slope_intercept
(
input
=
pixel
)
tensor
=
layer
.
tensor
(
a
=
pixel
,
b
=
pixel
,
size
=
1000
)
cos_sim
=
layer
.
cos_sim
(
a
=
pixel
,
b
=
pixel
)
trans
=
layer
.
trans
(
input
=
tensor
)
print
layer
.
parse_network
(
addto
,
linear_comb
,
interpolation
,
power
,
scaling
,
slope
,
tensor
,
cos_sim
,
trans
)
class
ReshapeLayerTest
(
unittest
.
TestCase
):
def
test_reshape_layer
(
self
):
block_expand
=
layer
.
block_expand
(
input
=
conv
,
num_channels
=
4
,
stride_x
=
1
,
block_x
=
1
)
expand
=
layer
.
expand
(
input
=
weight
,
expand_as
=
pixel
,
expand_level
=
layer
.
ExpandLevel
.
FROM_TIMESTEP
)
repeat
=
layer
.
repeat
(
input
=
pixel
,
num_repeats
=
4
)
reshape
=
layer
.
seq_reshape
(
input
=
pixel
,
reshape_size
=
4
)
rotate
=
layer
.
rotate
(
input
=
pixel
,
height
=
16
,
width
=
49
)
print
layer
.
parse_network
(
block_expand
,
expand
,
repeat
,
reshape
,
rotate
)
class
RecurrentLayerTest
(
unittest
.
TestCase
):
def
test_recurrent_layer
(
self
):
word
=
layer
.
data
(
name
=
'word'
,
type
=
data_type
.
integer_value
(
12
))
recurrent
=
layer
.
recurrent
(
input
=
word
)
lstm
=
layer
.
lstmemory
(
input
=
word
)
gru
=
layer
.
grumemory
(
input
=
word
)
print
layer
.
parse_network
(
recurrent
,
lstm
,
gru
)
class
CostLayerTest
(
unittest
.
TestCase
):
class
CostLayerTest
(
unittest
.
TestCase
):
...
@@ -49,13 +139,35 @@ class CostLayerTest(unittest.TestCase):
...
@@ -49,13 +139,35 @@ class CostLayerTest(unittest.TestCase):
cost10
=
layer
.
sum_cost
(
input
=
inference
)
cost10
=
layer
.
sum_cost
(
input
=
inference
)
cost11
=
layer
.
huber_cost
(
input
=
score
,
label
=
label
)
cost11
=
layer
.
huber_cost
(
input
=
score
,
label
=
label
)
print
dir
(
layer
)
print
layer
.
parse_network
(
cost1
,
cost2
)
layer
.
parse_network
(
cost1
,
cost2
)
print
layer
.
parse_network
(
cost3
,
cost4
)
print
dir
(
layer
)
print
layer
.
parse_network
(
cost5
,
cost6
)
#print layer.parse_network(cost3, cost4)
print
layer
.
parse_network
(
cost7
,
cost8
,
cost9
,
cost10
,
cost11
)
#print layer.parse_network(cost5, cost6)
#print layer.parse_network(cost7, cost8, cost9, cost10, cost11)
crf
=
layer
.
crf
(
input
=
inference
,
label
=
label
)
crf_decoding
=
layer
.
crf_decoding
(
input
=
inference
,
size
=
3
)
ctc
=
layer
.
ctc
(
input
=
inference
,
label
=
label
)
warp_ctc
=
layer
.
warp_ctc
(
input
=
pixel
,
label
=
label
)
nce
=
layer
.
nce
(
input
=
inference
,
label
=
label
,
num_classes
=
3
)
hsigmoid
=
layer
.
hsigmoid
(
input
=
inference
,
label
=
label
,
num_classes
=
3
)
print
layer
.
parse_network
(
crf
,
crf_decoding
,
ctc
,
warp_ctc
,
nce
,
hsigmoid
)
class
OtherLayerTest
(
unittest
.
TestCase
):
def
test_sampling_layer
(
self
):
maxid
=
layer
.
max_id
(
input
=
inference
)
sampling_id
=
layer
.
sampling_id
(
input
=
inference
)
eos
=
layer
.
eos
(
input
=
maxid
,
eos_id
=
5
)
print
layer
.
parse_network
(
maxid
,
sampling_id
,
eos
)
def
test_slicing_joining_layer
(
self
):
pad
=
layer
.
pad
(
input
=
conv
,
pad_c
=
[
2
,
3
],
pad_h
=
[
1
,
2
],
pad_w
=
[
3
,
1
])
print
layer
.
parse_network
(
pad
)
class
ProjOpTest
(
unittest
.
TestCase
):
def
test_projection
(
self
):
def
test_projection
(
self
):
input
=
layer
.
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
input
=
layer
.
data
(
name
=
'data'
,
type
=
data_type
.
dense_vector
(
784
))
word
=
layer
.
data
(
word
=
layer
.
data
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录