未验证 提交 2f188341 编写于 作者: Y Yuang Liu 提交者: GitHub

[fleet_executor] Remove runtime graph, all scheduler on python side (#38261)

上级 8c9c81cc
......@@ -240,13 +240,12 @@ void Carrier::CreateInterceptors() {
task_node->run_at_offset(), task_node->run_per_steps()));
std::unique_ptr<Interceptor> interceptor;
if (task_node->type().empty()) {
// TODO(wangxi): delete this in future
interceptor.reset(new Interceptor(interceptor_id, task_node));
} else {
interceptor = InterceptorFactory::Create(task_node->type(),
interceptor_id, task_node);
}
PADDLE_ENFORCE_NE(task_node->type().empty(), true,
platform::errors::NotFound(
"Cannot found type for task node with id %lld",
task_node->task_id()));
interceptor = InterceptorFactory::Create(task_node->type(), interceptor_id,
task_node);
interceptor->SetPlace(place_);
interceptor->SetMiniBatchScope(minibatch_scope_);
interceptor->SetMicroBatchScope(microbatch_scopes_);
......
......@@ -48,32 +48,29 @@ void FleetExecutor::Init(
const framework::ProgramDesc& program_desc, framework::Scope* scope,
const platform::Place& place, const std::vector<TaskNode*>& task_nodes,
const std::unordered_map<int64_t, int64_t>& task_id_to_rank) {
if (task_nodes.size() == 0) {
LOG(INFO) << "fleet executor will use c++ side scheduler construction.";
runtime_graph_ = std::make_shared<RuntimeGraph>(program_desc, exe_desc_);
} else {
LOG(INFO) << "fleet executor has been set dependency on python side.";
// TODO(fleet_exe devs): the unused_vars should be got from run time graph
std::vector<std::unique_ptr<framework::OperatorBase>> ops;
for (auto task_node : task_nodes) {
for (auto op : task_node->ops()) {
ops.emplace_back(std::unique_ptr<framework::OperatorBase>(op));
}
}
auto unused_vars = framework::GetUnusedVars(program_desc.Block(0), ops, {});
runtime_graph_ = std::make_shared<RuntimeGraph>();
std::unordered_map<int64_t, TaskNode*> interceptor_id_to_task;
for (auto task_node : task_nodes) {
task_node->SetUnusedVars(unused_vars);
int64_t interceptor_id = task_node->task_id();
interceptor_id_to_task.emplace(interceptor_id, task_node);
}
runtime_graph_->SetInterceptorIdToRank(task_id_to_rank);
runtime_graph_->SetInterceptorIdToNode(interceptor_id_to_task);
for (auto& unique_op : ops) {
unique_op.release();
PADDLE_ENFORCE_GT(task_nodes.size(), 0,
platform::errors::InvalidArgument(
"Fleet executor is inited with empty task node"));
// TODO(fleet_exe devs): the unused_vars should be got from run time graph
std::vector<std::unique_ptr<framework::OperatorBase>> ops;
for (auto task_node : task_nodes) {
for (auto op : task_node->ops()) {
ops.emplace_back(std::unique_ptr<framework::OperatorBase>(op));
}
}
auto unused_vars = framework::GetUnusedVars(program_desc.Block(0), ops, {});
runtime_graph_ = std::make_shared<RuntimeGraph>();
std::unordered_map<int64_t, TaskNode*> interceptor_id_to_task;
for (auto task_node : task_nodes) {
task_node->SetUnusedVars(unused_vars);
int64_t interceptor_id = task_node->task_id();
interceptor_id_to_task.emplace(interceptor_id, task_node);
}
runtime_graph_->SetInterceptorIdToRank(task_id_to_rank);
runtime_graph_->SetInterceptorIdToNode(interceptor_id_to_task);
for (auto& unique_op : ops) {
unique_op.release();
}
root_scope_ = scope;
place_ = place;
PADDLE_ENFORCE_NOT_NULL(root_scope_, platform::errors::InvalidArgument(
......
......@@ -23,9 +23,5 @@ message RankInfo {
message FleetExecutorDesc {
optional int64 cur_rank = 1 [ default = 0 ]; // Rank id of current processor
repeated RankInfo cluster_info = 2;
optional int32 dp_degree = 3 [ default = 1 ];
optional int32 mp_degree = 4 [ default = 1 ];
optional int32 pp_degree = 5 [ default = 1 ];
optional int64 num_micro_batches = 6 [ default = 1 ];
optional int64 num_slots = 7 [ default = 1 ];
optional int64 num_micro_batches = 3 [ default = 1 ];
}
......@@ -14,300 +14,15 @@
#include "paddle/fluid/distributed/fleet_executor/runtime_graph.h"
#include "paddle/fluid/distributed/fleet_executor/task_node.h"
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
namespace paddle {
namespace distributed {
namespace {
using OperatorBase = RuntimeGraph::OperatorBase;
using OpRole = paddle::framework::OpRole;
using OpRegistry = paddle::framework::OpRegistry;
using ProgramDesc = paddle::framework::ProgramDesc;
bool IsForward(int32_t op_role) {
return (op_role == static_cast<int32_t>(OpRole::kForward)) ||
(op_role == (static_cast<int32_t>(OpRole::kForward) |
static_cast<int32_t>(OpRole::kLoss)));
}
bool IsLRSched(int32_t op_role) {
return op_role == static_cast<int32_t>(OpRole::kLRSched);
}
bool IsBackward(int32_t op_role) {
return (op_role == static_cast<int32_t>(OpRole::kBackward)) ||
(op_role == (static_cast<int32_t>(OpRole::kBackward) |
static_cast<int32_t>(OpRole::kLoss)));
}
bool IsOptimize(int32_t op_role) {
return op_role == static_cast<int32_t>(OpRole::kOptimize);
}
struct DistCoord {
int32_t dp_idx;
int32_t pp_idx;
int32_t mp_idx;
};
class DistCoordSys final {
public:
DistCoordSys(int32_t dp_degree, int32_t pp_degree, int32_t mp_degree)
: dp_degree_(dp_degree), pp_degree_(pp_degree), mp_degree_(mp_degree) {}
DistCoord RankToCoord(int64_t rank) const;
int64_t CoordToRank(const DistCoord& coord) const;
private:
DISABLE_COPY_AND_ASSIGN(DistCoordSys);
bool InvalidCoord(const DistCoord& coord) const;
int32_t dp_degree_;
int32_t pp_degree_;
int32_t mp_degree_;
};
DistCoord DistCoordSys::RankToCoord(int64_t rank) const {
DistCoord coord;
coord.mp_idx = rank % mp_degree_;
rank /= mp_degree_;
coord.pp_idx = rank % pp_degree_;
rank /= pp_degree_;
coord.dp_idx = rank % dp_degree_;
return coord;
}
int64_t DistCoordSys::CoordToRank(const DistCoord& coord) const {
if (InvalidCoord(coord)) {
return -1;
}
return coord.dp_idx * pp_degree_ * mp_degree_ + coord.pp_idx * mp_degree_ +
coord.mp_idx;
}
bool DistCoordSys::InvalidCoord(const DistCoord& coord) const {
return coord.mp_idx < 0 || coord.mp_idx >= mp_degree_ || coord.pp_idx < 0 ||
coord.pp_idx >= pp_degree_ || coord.dp_idx < 0 ||
coord.dp_idx >= dp_degree_;
}
} // namespace
std::vector<OpRole> RuntimeGraph::functionality_order = {
OpRole::kLRSched, OpRole::kForward, OpRole::kBackward, OpRole::kOptimize};
RuntimeGraph::RuntimeGraph(const ProgramDesc& program,
const FleetExecutorDesc& exe_desc)
: exe_desc_(exe_desc) {
if (exe_desc.pp_degree() == 1) {
OriginProgramCompile(program);
} else {
SplitProgramBasedFunctionality(program);
AssignTaskToIntercepter();
FakeDependence();
FakeRuntimeInfo();
}
}
void RuntimeGraph::OriginProgramCompile(const ProgramDesc& program) {
int64_t cur_rank = exe_desc_.cur_rank();
int64_t max_run_times = exe_desc_.num_micro_batches();
int64_t max_slot_nums = exe_desc_.num_slots();
auto task_node = std::make_unique<TaskNode>(program, cur_rank, max_run_times,
max_slot_nums);
// TODO(wangxi): add skip vars
auto unused_vars =
framework::GetUnusedVars(program.Block(0), task_node->unique_ops(), {});
task_node->SetType("Compute");
task_node->SetUnusedVars(unused_vars);
task_nodes_.emplace_back(std::move(task_node));
int64_t task_id = task_nodes_[0]->task_id();
intercepter_id_to_rank_.insert({task_id, cur_rank});
intercepter_id_to_node_.insert({task_id, task_nodes_[0].get()});
}
void RuntimeGraph::SplitProgramBasedFunctionality(const ProgramDesc& program) {
for (const auto& op_desc : program.Block(0).AllOps()) {
ops_.emplace_back(OpRegistry::CreateOp(*op_desc));
}
// TODO(wangxi): how to gc pipeline backward send
auto unused_vars = framework::GetUnusedVars(program.Block(0), ops_, {});
std::unordered_map<int32_t, std::vector<OperatorBase*>> role_to_ops;
for (const auto& op : ops_) {
int32_t op_role = op->Attr<int32_t>("op_role");
OpRole new_op_role;
if (IsLRSched(op_role)) {
new_op_role = OpRole::kLRSched;
} else if (IsForward(op_role)) {
new_op_role = OpRole::kForward;
} else if (IsBackward(op_role)) {
new_op_role = OpRole::kBackward;
} else if (IsOptimize(op_role)) {
new_op_role = OpRole::kOptimize;
} else {
PADDLE_THROW(platform::errors::PreconditionNotMet(
"The op %s is None of LRSched, Forward, Backward or Optimize.",
op->Type()));
}
int32_t new_op_role_id = static_cast<int32_t>(new_op_role);
if (role_to_ops.find(new_op_role_id) == role_to_ops.end()) {
role_to_ops.insert({new_op_role_id, {}});
}
role_to_ops.at(new_op_role_id).emplace_back(op.get());
}
int64_t cur_rank = exe_desc_.cur_rank();
DistCoordSys coord_sys(exe_desc_.dp_degree(), exe_desc_.pp_degree(),
exe_desc_.mp_degree());
const auto& coord = coord_sys.RankToCoord(cur_rank);
int pipeline_stage = coord.pp_idx;
int64_t num_pipeline_stages = exe_desc_.pp_degree();
// TODO(fleet_executor dev): start up steps should be a config `num_slots`
int64_t start_up_steps = num_pipeline_stages - pipeline_stage;
int64_t num_micro_batches = exe_desc_.num_micro_batches();
int64_t task_id = cur_rank * functionality_order.size();
for (std::size_t i = 0; i < functionality_order.size(); ++i) {
VLOG(3) << "Runtime graph is creating task node for: " << task_id << ".";
OpRole role = functionality_order[i];
int32_t role_id = static_cast<int64_t>(role);
int64_t max_run_times = num_micro_batches;
int64_t max_slot_nums = start_up_steps;
// NOTE: use short path, each interceptor should run for max_run_times
std::vector<OperatorBase*> task_ops{};
if (role_to_ops.find(role_id) != role_to_ops.end()) {
task_ops = role_to_ops.at(role_id);
}
std::unique_ptr<TaskNode> task_node = std::make_unique<TaskNode>(
role_id, task_ops, cur_rank, task_id, max_run_times, max_slot_nums);
if (IsLRSched(role_id) || IsOptimize(role_id)) {
task_node->SetType("Amplifier");
if (IsLRSched(role_id)) {
task_node->SetRunPerSteps(max_run_times);
} else {
task_node->SetRunAtOffset(max_run_times - 1);
task_node->SetRunPerSteps(max_run_times);
}
} else {
task_node->SetType("Compute");
}
task_node->SetUnusedVars(unused_vars);
task_nodes_.emplace_back(std::move(task_node));
++task_id;
}
}
void RuntimeGraph::FakeDependence() {
int64_t cur_rank = exe_desc_.cur_rank();
DistCoordSys coord_sys(exe_desc_.dp_degree(), exe_desc_.pp_degree(),
exe_desc_.mp_degree());
const auto& coord = coord_sys.RankToCoord(cur_rank);
DistCoord upstream_coord = coord, downstream_coord = coord;
upstream_coord.pp_idx -= 1;
downstream_coord.pp_idx += 1;
int64_t pp_upstream = coord_sys.CoordToRank(upstream_coord);
int64_t pp_downstream = coord_sys.CoordToRank(downstream_coord);
bool is_first_stage = (pp_upstream == -1);
bool is_last_stage = (pp_downstream == -1);
int32_t num_of_functionality = functionality_order.size();
// lr(1:m) -> forward -> backward -> (m:1)optimize
// ↑ ↓
// lr(1:m) -> forward -> backward -> (m:1)optimize
// ↑ ↓
// lr(1:m) -> forward -> backward -> (m:1)optimize
for (std::size_t i = 0; i < task_nodes_.size(); ++i) {
auto& node = task_nodes_[i];
bool is_forward = IsForward(node->role());
bool is_backward = IsBackward(node->role());
int64_t cur_id = cur_rank * num_of_functionality + i;
int64_t prev_id = cur_id - 1;
int64_t next_id = cur_id + 1;
int64_t upstream_id = pp_upstream * num_of_functionality + i;
int64_t downstream_id = pp_downstream * num_of_functionality + i;
// 1F1B, last stage pp_buff_size should be 1, while first stage
// pp_buff_size should be pp_degree
int64_t pp_buff_size = exe_desc_.pp_degree() - coord.pp_idx;
std::vector<std::pair<int64_t, int64_t>> ups;
std::vector<std::pair<int64_t, int64_t>> downs;
if (i != 0) { // not lr
int64_t buff_size = is_backward ? pp_buff_size : 2;
ups.emplace_back(prev_id, buff_size);
}
if (i != task_nodes_.size() - 1) { // not optimize
int64_t buff_size = is_forward ? pp_buff_size : 2;
downs.emplace_back(next_id, buff_size);
}
if (is_forward) {
if (!is_first_stage) {
ups.emplace_back(upstream_id, 2);
}
if (!is_last_stage) {
downs.emplace_back(downstream_id, 2);
}
} else if (is_backward) {
if (!is_last_stage) {
ups.emplace_back(downstream_id, 2);
}
if (!is_first_stage) {
downs.emplace_back(upstream_id, 2);
}
}
for (auto up : ups) {
VLOG(3) << "Task(" << cur_id << ") AddUpstream Task(" << up.first
<< ") with buff_size=" << up.second;
node->AddUpstreamTask(up.first, up.second);
}
for (auto down : downs) {
VLOG(3) << "Task(" << cur_id << ") AddDownstream Task(" << down.first
<< ") with buff_size=" << down.second;
node->AddDownstreamTask(down.first, down.second);
}
}
}
void RuntimeGraph::AssignTaskToIntercepter() {
for (const auto& task : task_nodes_) {
int64_t intercepter_id = task->task_id();
VLOG(3) << "Runtime graph is assigning task to interceptor: "
<< intercepter_id << " with type: " << task->type() << ".";
if (intercepter_id_to_node_.find(intercepter_id) !=
intercepter_id_to_node_.end()) {
PADDLE_THROW(platform::errors::PreconditionNotMet(
"Repeated intercepter id: %d", intercepter_id));
}
intercepter_id_to_node_.insert({intercepter_id, task.get()});
}
}
void RuntimeGraph::FakeRuntimeInfo() {
int64_t nrank = exe_desc_.cluster_info().size();
int32_t num_of_functionality = functionality_order.size();
for (int64_t i = 0; i < nrank; ++i) {
for (int32_t j = 0; j < num_of_functionality; ++j) {
int64_t intercepter_id = i * num_of_functionality + j;
intercepter_id_to_rank_.insert({intercepter_id, i});
}
}
}
std::string RuntimeGraph::DebugString() const {
std::ostringstream os;
os << "\nRuntime Graph Debug: \n";
for (const auto& task : task_nodes_) {
os << task->DebugString();
for (const auto& pair : intercepter_id_to_node_) {
os << pair.second->DebugString();
os << "\n";
}
return os.str();
......
......@@ -22,21 +22,12 @@
#include "paddle/fluid/platform/macros.h"
namespace paddle {
namespace framework {
class ProgramDesc;
class OperatorBase;
}
namespace distributed {
class TaskNode;
class RuntimeGraph final {
public:
using ProgramDesc = paddle::framework::ProgramDesc;
using OperatorBase = paddle::framework::OperatorBase;
RuntimeGraph() = default;
explicit RuntimeGraph(const ProgramDesc& program,
const FleetExecutorDesc& exe_desc);
~RuntimeGraph() = default;
const std::unordered_map<int64_t, TaskNode*>& intercepter_id_to_node() const {
return intercepter_id_to_node_;
......@@ -56,18 +47,8 @@ class RuntimeGraph final {
private:
DISABLE_COPY_AND_ASSIGN(RuntimeGraph);
void SplitProgramBasedFunctionality(const ProgramDesc& program);
void FakeDependence();
void AssignTaskToIntercepter();
void FakeRuntimeInfo();
void OriginProgramCompile(const ProgramDesc& program);
// LRSched, Forward, Backward, Optimize
static std::vector<paddle::framework::OpRole> functionality_order;
std::vector<std::unique_ptr<TaskNode>> task_nodes_;
std::vector<std::unique_ptr<OperatorBase>> ops_;
std::unordered_map<int64_t, TaskNode*> intercepter_id_to_node_;
std::unordered_map<int64_t, int64_t> intercepter_id_to_rank_;
FleetExecutorDesc exe_desc_;
};
} // namespace distributed
......
......@@ -89,7 +89,7 @@ def is_backward_op(op_role):
(op_role == (int(OpRole.Backward) ^ int(OpRole.Loss)))
def one_f_one_b(program, cur_rank, max_run_times, dist_opt, nrank):
def run1f1b(program, cur_rank, max_run_times, dist_opt, nrank):
"""
Split the program to support 1f1b pipeline scheduler.
This funct will split the program based on the op_role.
......@@ -201,3 +201,20 @@ def one_f_one_b(program, cur_rank, max_run_times, dist_opt, nrank):
for j in range(num_of_functionality):
task_id_to_rank[int(i * num_of_functionality + j)] = i
return task_nodes, task_id_to_rank
def origin(program, cur_rank):
"""
Origin scheduler for fleet executor, supports non-pp mode
:param program: The origin program.
:param cur_rank: Current rank (can be got from fleet.worker_index()).
:return:
task_nodes (list): four task nodes for current rank
task_id_to_rank (dict): a fake dict, since there is no upstream or downstream, this dict won't be used
"""
print("fleet executor will use python side origin scheduler.")
task_node = core.TaskNode(program.desc, cur_rank, 1, 1)
task_node.set_type("Compute")
task_id = task_node.task_id()
task_id_to_rank = {task_id: cur_rank}
return [task_node], task_id_to_rank
......@@ -1972,31 +1972,37 @@ class Executor(object):
rank_info.rank = rank
rank_info.ip_port = endpoint
fleet_exe_desc.cluster_info.append(rank_info)
if "dist_strategy" in fleet_opt:
fleet_exe_desc.dp_degree = fleet_opt["dist_strategy"]["dp_degree"]
fleet_exe_desc.mp_degree = fleet_opt["dist_strategy"]["mp_degree"]
fleet_exe_desc.pp_degree = fleet_opt["dist_strategy"]["pp_degree"]
if "num_micro_batches" in fleet_opt:
fleet_exe_desc.num_micro_batches = fleet_opt["num_micro_batches"]
num_of_gpu = fleet_exe_desc.dp_degree * fleet_exe_desc.mp_degree * fleet_exe_desc.pp_degree
assert nrank == num_of_gpu, "The number of rank is not equal to the number of gpu."
if 'python_side' in fleet_opt:
strategy = fleet_opt['python_side']
if strategy == '1F1B':
from paddle.distributed.fleet.fleet_executor_utils import one_f_one_b
tasks, task_id_to_rank = one_f_one_b(
program, cur_rank,
fleet_opt.get('num_micro_batches', 1),
fleet_opt.get('dist_strategy', {}), nrank)
# NOTE: have to hold these vars, otherwise will be destructed
fleet_opt['tasks'] = tasks
fleet_opt['task_id_to_rank'] = task_id_to_rank
else:
raise "Fleet_executor only supports 1F1B scheduler if you choose python side split, " \
"but received " + str(strategy) + "."
assert 'scheduler' in fleet_opt, \
"Fleet executor need configuration for scheduler, you can choose from 1F1B or Origin."
scheduler = fleet_opt['scheduler']
if scheduler == '1F1B':
from paddle.distributed.fleet.fleet_executor_utils import run1f1b
if "dist_strategy" not in fleet_opt or \
"pp_degree" not in fleet_opt["dist_strategy"] or \
fleet_opt["dist_strategy"]["pp_degree"] == 1:
warnings.warn("Using 1F1B scheduler with pp_degree == 1.")
tasks, task_id_to_rank = run1f1b(
program, cur_rank,
fleet_opt.get('num_micro_batches', 1),
fleet_opt.get('dist_strategy', {}), nrank)
elif scheduler == 'Origin':
from paddle.distributed.fleet.fleet_executor_utils import origin
if "dist_strategy" in fleet_opt and \
"pp_degree" in fleet_opt["dist_strategy"]:
assert fleet_opt["dist_strategy"]["pp_degree"] == 1, \
"For pipeline mode, the scheduler should be 1F1B instead of Origin."
if "num_micro_batches" in fleet_opt:
assert fleet_opt["num_micro_batches"] == 1, \
"For origin scheduler mode, the num micro batches should be 1."
tasks, task_id_to_rank = origin(program, cur_rank)
else:
task_id_to_rank = fleet_opt.get("task_id_to_rank", {})
tasks = fleet_opt.get("tasks", [])
raise "Fleet_executor only supports 1F1B and Origin scheduler, " \
"but received " + str(scheduler) + "."
# NOTE: have to hold these vars, otherwise will be destructed
fleet_opt['tasks'] = tasks
fleet_opt['task_id_to_rank'] = task_id_to_rank
fleet_exe = core.FleetExecutor(fleet_exe_desc.SerializeToString())
place = core.Place()
place.set_place(self.place)
......
......@@ -146,6 +146,7 @@ if(((NOT WITH_ROCM) AND (NOT WITH_GPU)) OR WIN32)
LIST(REMOVE_ITEM TEST_OPS test_disable_signal_handler)
LIST(REMOVE_ITEM TEST_OPS test_fleet_executor)
LIST(REMOVE_ITEM TEST_OPS test_fleet_executor_multi_devices)
LIST(REMOVE_ITEM TEST_OPS test_fleet_executor_origin_scheduler)
LIST(REMOVE_ITEM TEST_OPS test_auto_parallel_mapper)
LIST(REMOVE_ITEM TEST_OPS test_fleet_executor_task_node)
endif()
......
......@@ -34,7 +34,7 @@ class TestFleetExecutor(unittest.TestCase):
fleet_opt = {
"dist_strategy": strategy.sharding_configs,
"num_micro_batches": strategy.pipeline_configs["accumulate_steps"],
"python_side": "1F1B"
"scheduler": "1F1B"
}
return fleet_opt
......
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
paddle.enable_static()
class TestFleetExecutor(unittest.TestCase):
def fake_fleet_opt(self):
# TODO: Fake for coverage will be removed in the future
import paddle.distributed.fleet as fleet
strategy = fleet.DistributedStrategy()
strategy.sharding_configs = {
"dp_degree": 1,
"mp_degree": 1,
"pp_degree": 1
}
strategy.pipeline_configs = {"accumulate_steps": 1}
fleet_opt = {
"dist_strategy": strategy.sharding_configs,
"num_micro_batches": strategy.pipeline_configs["accumulate_steps"],
"scheduler": "Origin"
}
return fleet_opt
def run_fleet_executor(self, place, x_data, y_data):
exe = paddle.static.Executor(place)
empty_program = paddle.static.Program()
with fluid.program_guard(empty_program, empty_program):
x = fluid.layers.data(
name='x', shape=x_data.shape, dtype=x_data.dtype)
y = fluid.layers.data(
name='y', shape=y_data.shape, dtype=y_data.dtype)
z = x + y
a = 2 * x + 3 * y
loss = paddle.mean(a)
base_lr = 0.1
passes = [30, 60, 80, 90]
steps_per_pass = 10
bd = [steps_per_pass * p for p in passes]
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
lr_val = paddle.optimizer.lr.PiecewiseDecay(
boundaries=bd, values=lr)
opt = paddle.optimizer.AdamW(
learning_rate=lr_val,
grad_clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=1.0))
opt.minimize(loss)
# TODO: section_program will be removed in the future
empty_program._pipeline_opt = {
"fleet_opt": self.fake_fleet_opt(),
"section_program": empty_program
}
res = exe.run(empty_program,
feed={'x': x_data,
'y': y_data},
fetch_list=[z.name, a.name])
return res
def test_executor_on_single_device(self):
if fluid.is_compiled_with_cuda():
shape = (10000, 3462)
x_data = np.random.rand(*shape)
y_data = np.random.rand(*shape)
z_data = x_data + y_data
a_data = 2 * x_data + 3 * y_data
res = self.run_fleet_executor(fluid.CUDAPlace(0), x_data, y_data)
self.assertTrue(np.allclose(res[0], z_data))
self.assertTrue(np.allclose(res[1], a_data))
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册