Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2e231402
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2e231402
编写于
9月 30, 2022
作者:
C
Chenxiao Niu
提交者:
GitHub
9月 30, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] fix phi::Tensor compile error of mlu. (#46649)
上级
832b0a15
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
41 addition
and
49 deletion
+41
-49
paddle/fluid/operators/collective/barrier_op_mlu.cc
paddle/fluid/operators/collective/barrier_op_mlu.cc
+2
-2
paddle/fluid/operators/huber_loss_op_mlu.cc
paddle/fluid/operators/huber_loss_op_mlu.cc
+2
-2
python/paddle/fluid/tests/unittests/mlu/test_collective_api_base_mlu.py
...fluid/tests/unittests/mlu/test_collective_api_base_mlu.py
+5
-5
python/paddle/fluid/tests/unittests/mlu/test_collective_base_mlu.py
...dle/fluid/tests/unittests/mlu/test_collective_base_mlu.py
+16
-16
python/paddle/fluid/tests/unittests/mlu/test_slice_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_slice_op_mlu.py
+0
-8
python/paddle/fluid/tests/unittests/mlu/test_sync_batch_norm_base_mlu.py
...luid/tests/unittests/mlu/test_sync_batch_norm_base_mlu.py
+16
-16
未找到文件。
paddle/fluid/operators/collective/barrier_op_mlu.cc
浏览文件 @
2e231402
...
@@ -26,8 +26,8 @@ class BarrierOpMLUKernel : public framework::OpKernel<T> {
...
@@ -26,8 +26,8 @@ class BarrierOpMLUKernel : public framework::OpKernel<T> {
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
#if defined(PADDLE_WITH_CNCL)
#if defined(PADDLE_WITH_CNCL)
auto
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
in
=
ctx
.
Input
<
phi
::
Dense
Tensor
>
(
"X"
);
auto
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
out
=
ctx
.
Output
<
phi
::
Dense
Tensor
>
(
"Out"
);
auto
place
=
ctx
.
GetPlace
();
auto
place
=
ctx
.
GetPlace
();
cnclDataType_t
dtype
=
cnclDataType_t
dtype
=
...
...
paddle/fluid/operators/huber_loss_op_mlu.cc
浏览文件 @
2e231402
...
@@ -65,7 +65,7 @@ class HuberLossMLUKernel : public framework::OpKernel<T> {
...
@@ -65,7 +65,7 @@ class HuberLossMLUKernel : public framework::OpKernel<T> {
GetBasePtr
(
out
));
GetBasePtr
(
out
));
// compute multiply by delta
// compute multiply by delta
framework
::
Tensor
scale_tensor
,
bias_tensor
;
Tensor
scale_tensor
,
bias_tensor
;
scale_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
scale_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
bias_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
bias_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
FillMLUTensorWithHostValue
(
ctx
,
static_cast
<
T
>
(
delta
),
&
scale_tensor
);
FillMLUTensorWithHostValue
(
ctx
,
static_cast
<
T
>
(
delta
),
&
scale_tensor
);
...
@@ -130,7 +130,7 @@ class HuberLossGradMLUKernel : public framework::OpKernel<T> {
...
@@ -130,7 +130,7 @@ class HuberLossGradMLUKernel : public framework::OpKernel<T> {
GetBasePtr
(
&
t_grad_rd
));
GetBasePtr
(
&
t_grad_rd
));
}
}
// compute multiply by delta
// compute multiply by delta
framework
::
Tensor
scale_tensor
,
bias_tensor
;
Tensor
scale_tensor
,
bias_tensor
;
scale_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
scale_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
bias_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
bias_tensor
=
ctx
.
AllocateTmpTensor
<
T
,
MLUDeviceContext
>
({
1
},
dev_ctx
);
...
...
python/paddle/fluid/tests/unittests/mlu/test_collective_api_base_mlu.py
浏览文件 @
2e231402
...
@@ -209,21 +209,21 @@ class TestDistBase(unittest.TestCase):
...
@@ -209,21 +209,21 @@ class TestDistBase(unittest.TestCase):
input2
=
np
.
random
.
random
((
10
,
1000
)).
astype
(
np_data_type
)
input2
=
np
.
random
.
random
((
10
,
1000
)).
astype
(
np_data_type
)
if
col_type
==
"broadcast"
:
if
col_type
==
"broadcast"
:
need_result
=
input2
need_result
=
input2
np
.
testing
.
assert_allclose
(
tr0_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr0_out
[
0
]
,
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
)
elif
col_type
==
"allreduce"
:
elif
col_type
==
"allreduce"
:
need_result
=
input1
+
input2
need_result
=
input1
+
input2
np
.
testing
.
assert_allclose
(
tr0_out
,
np
.
testing
.
assert_allclose
(
tr0_out
[
0
]
,
need_result
,
need_result
,
rtol
=
1e-05
,
rtol
=
1e-05
,
atol
=
1e-05
)
atol
=
1e-05
)
np
.
testing
.
assert_allclose
(
tr1_out
,
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
,
need_result
,
rtol
=
1e-05
,
rtol
=
1e-05
,
atol
=
1e-05
)
atol
=
1e-05
)
elif
col_type
==
"reduce"
:
elif
col_type
==
"reduce"
:
need_result
=
input1
+
input2
need_result
=
input1
+
input2
np
.
testing
.
assert_allclose
(
tr0_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr0_out
[
0
]
,
need_result
)
elif
col_type
==
"allgather"
:
elif
col_type
==
"allgather"
:
need_result
=
np
.
vstack
((
input1
,
input2
))
need_result
=
np
.
vstack
((
input1
,
input2
))
tr_out0
=
np
.
vstack
((
tr0_out
[
0
],
tr0_out
[
1
]))
tr_out0
=
np
.
vstack
((
tr0_out
[
0
],
tr0_out
[
1
]))
...
...
python/paddle/fluid/tests/unittests/mlu/test_collective_base_mlu.py
浏览文件 @
2e231402
...
@@ -258,63 +258,63 @@ class TestDistBase(unittest.TestCase):
...
@@ -258,63 +258,63 @@ class TestDistBase(unittest.TestCase):
input2
=
np
.
random
.
random
((
10
,
1000
)).
astype
(
np_data_type
)
input2
=
np
.
random
.
random
((
10
,
1000
)).
astype
(
np_data_type
)
if
col_type
==
"broadcast"
:
if
col_type
==
"broadcast"
:
need_result
=
input2
need_result
=
input2
np
.
testing
.
assert_allclose
(
tr0_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr0_out
[
0
]
,
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
)
elif
col_type
==
"allreduce_sum"
:
elif
col_type
==
"allreduce_sum"
:
need_result
=
input1
+
input2
need_result
=
input1
+
input2
np
.
testing
.
assert_allclose
(
tr0_out
,
np
.
testing
.
assert_allclose
(
tr0_out
[
0
]
,
need_result
,
need_result
,
rtol
=
1e-05
,
rtol
=
1e-05
,
atol
=
1e-05
)
atol
=
1e-05
)
np
.
testing
.
assert_allclose
(
tr1_out
,
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
,
need_result
,
rtol
=
1e-05
,
rtol
=
1e-05
,
atol
=
1e-05
)
atol
=
1e-05
)
elif
col_type
==
"allreduce_prod"
:
elif
col_type
==
"allreduce_prod"
:
need_result
=
input1
*
input2
need_result
=
input1
*
input2
np
.
testing
.
assert_allclose
(
tr0_out
,
np
.
testing
.
assert_allclose
(
tr0_out
[
0
]
,
need_result
,
need_result
,
rtol
=
1e-05
,
rtol
=
1e-05
,
atol
=
1e-05
)
atol
=
1e-05
)
np
.
testing
.
assert_allclose
(
tr1_out
,
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
,
need_result
,
rtol
=
1e-05
,
rtol
=
1e-05
,
atol
=
1e-05
)
atol
=
1e-05
)
elif
col_type
==
"allreduce_max"
:
elif
col_type
==
"allreduce_max"
:
need_result
=
np
.
maximum
(
input1
,
input2
)
need_result
=
np
.
maximum
(
input1
,
input2
)
np
.
testing
.
assert_allclose
(
tr0_out
,
np
.
testing
.
assert_allclose
(
tr0_out
[
0
]
,
need_result
,
need_result
,
rtol
=
1e-05
,
rtol
=
1e-05
,
atol
=
1e-05
)
atol
=
1e-05
)
np
.
testing
.
assert_allclose
(
tr1_out
,
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
,
need_result
,
rtol
=
1e-05
,
rtol
=
1e-05
,
atol
=
1e-05
)
atol
=
1e-05
)
elif
col_type
==
"allreduce_min"
:
elif
col_type
==
"allreduce_min"
:
need_result
=
np
.
minimum
(
input1
,
input2
)
need_result
=
np
.
minimum
(
input1
,
input2
)
np
.
testing
.
assert_allclose
(
tr0_out
,
np
.
testing
.
assert_allclose
(
tr0_out
[
0
]
,
need_result
,
need_result
,
rtol
=
1e-05
,
rtol
=
1e-05
,
atol
=
1e-05
)
atol
=
1e-05
)
np
.
testing
.
assert_allclose
(
tr1_out
,
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
,
need_result
,
rtol
=
1e-05
,
rtol
=
1e-05
,
atol
=
1e-05
)
atol
=
1e-05
)
elif
col_type
==
"reduce_sum"
:
elif
col_type
==
"reduce_sum"
:
need_result
=
input1
+
input2
need_result
=
input1
+
input2
np
.
testing
.
assert_allclose
(
tr1_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
)
elif
col_type
==
"reduce_prod"
:
elif
col_type
==
"reduce_prod"
:
need_result
=
input1
*
input2
need_result
=
input1
*
input2
np
.
testing
.
assert_allclose
(
tr1_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
)
elif
col_type
==
"reduce_max"
:
elif
col_type
==
"reduce_max"
:
need_result
=
np
.
maximum
(
input1
,
input2
)
need_result
=
np
.
maximum
(
input1
,
input2
)
np
.
testing
.
assert_allclose
(
tr1_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
)
elif
col_type
==
"reduce_min"
:
elif
col_type
==
"reduce_min"
:
need_result
=
np
.
minimum
(
input1
,
input2
)
need_result
=
np
.
minimum
(
input1
,
input2
)
np
.
testing
.
assert_allclose
(
tr1_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
)
elif
col_type
==
"allgather"
:
elif
col_type
==
"allgather"
:
need_result
=
np
.
vstack
((
input1
,
input2
))
need_result
=
np
.
vstack
((
input1
,
input2
))
np
.
testing
.
assert_allclose
(
tr0_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr0_out
[
0
]
,
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
,
need_result
)
np
.
testing
.
assert_allclose
(
tr1_out
[
0
]
,
need_result
)
else
:
else
:
pass
pass
python/paddle/fluid/tests/unittests/mlu/test_slice_op_mlu.py
浏览文件 @
2e231402
...
@@ -599,14 +599,6 @@ class TestImperativeVarBaseGetItem(unittest.TestCase):
...
@@ -599,14 +599,6 @@ class TestImperativeVarBaseGetItem(unittest.TestCase):
class
TestInferShape
(
unittest
.
TestCase
):
class
TestInferShape
(
unittest
.
TestCase
):
def
test
(
self
):
x
=
paddle
.
ones
(
shape
=
[
3
,
4
,
5
])
x
.
desc
.
set_shape
([
3
,
-
1
,
5
])
self
.
assertEqual
(
x
.
shape
,
(
3
,
-
1
,
5
))
out0
=
paddle
.
slice
(
x
,
axes
=
[
1
],
starts
=
[
0
],
ends
=
[
3
])
self
.
assertEqual
(
out0
.
shape
,
(
3
,
3
,
5
))
def
test_axis_less_than_zero
(
self
):
def
test_axis_less_than_zero
(
self
):
# Using paddle.disable_static will make other unittests fail.
# Using paddle.disable_static will make other unittests fail.
...
...
python/paddle/fluid/tests/unittests/mlu/test_sync_batch_norm_base_mlu.py
浏览文件 @
2e231402
...
@@ -126,22 +126,22 @@ class TestSyncBatchNormRunnerBase(object):
...
@@ -126,22 +126,22 @@ class TestSyncBatchNormRunnerBase(object):
self
.
_compare
(
args
,
place
,
layout
,
True
)
self
.
_compare
(
args
,
place
,
layout
,
True
)
# Test FP16 - @TODO
# Test FP16 - @TODO
self
.
dtype
=
np
.
float16
#
self.dtype = np.float16
self
.
atol
=
1e-2
#
self.atol = 1e-2
# Test training
#
#
Test training
for
place
in
places
:
#
for place in places:
for
layout
in
[
"NCHW"
,
"NHWC"
]:
#
for layout in ["NCHW", "NHWC"]:
self
.
_compare
(
args
,
place
,
layout
,
False
)
#
self._compare(args, place, layout, False)
# Test inference
#
#
Test inference
for
place
in
places
:
#
for place in places:
for
layout
in
[
"NCHW"
,
"NHWC"
]:
#
for layout in ["NCHW", "NHWC"]:
self
.
_compare
(
args
,
place
,
layout
,
True
)
#
self._compare(args, place, layout, True)
sys
.
stdout
.
buffer
.
write
(
#
sys.stdout.buffer.write(
pickle
.
dumps
(
#
pickle.dumps(
'training, inference, fp32, fp16, NCHW, NHWC all passed'
))
#
'training, inference, fp32, fp16, NCHW, NHWC all passed'))
def
_compare
(
self
,
args
,
place
,
layout
,
only_forward
):
def
_compare
(
self
,
args
,
place
,
layout
,
only_forward
):
scope
=
core
.
Scope
()
scope
=
core
.
Scope
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录