Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2d6b71a2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2d6b71a2
编写于
4月 15, 2022
作者:
F
fwenguang
提交者:
GitHub
4月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU] add mlu softmax kernel (#41816)
上级
a22b68b8
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
311 addition
and
0 deletion
+311
-0
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+12
-0
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+7
-0
paddle/fluid/operators/softmax_op_mlu.cc
paddle/fluid/operators/softmax_op_mlu.cc
+103
-0
python/paddle/fluid/tests/unittests/mlu/test_softmax_op_mlu.py
...n/paddle/fluid/tests/unittests/mlu/test_softmax_op_mlu.py
+189
-0
未找到文件。
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
2d6b71a2
...
...
@@ -1158,6 +1158,18 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
output_desc
,
output
));
}
/* static */
void
MLUCnnl
::
SoftmaxBackward
(
const
ExecutionContext
&
ctx
,
cnnlSoftmaxAlgorithm_t
algorithm
,
cnnlSoftmaxMode_t
mode
,
const
cnnlTensorDescriptor_t
y_desc
,
const
void
*
y
,
const
cnnlTensorDescriptor_t
diff_y_desc
,
const
void
*
diff_y
,
const
cnnlTensorDescriptor_t
diff_x_desc
,
void
*
diff_x
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSoftmaxBackward
(
handle
,
algorithm
,
mode
,
nullptr
,
y_desc
,
y
,
diff_y_desc
,
diff_y
,
nullptr
,
diff_x_desc
,
diff_x
));
}
/* static */
void
MLUCnnl
::
Softplus
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
features_desc
,
const
void
*
features
,
...
...
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
2d6b71a2
...
...
@@ -740,6 +740,13 @@ class MLUCnnl {
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
);
static
void
SoftmaxBackward
(
const
ExecutionContext
&
ctx
,
cnnlSoftmaxAlgorithm_t
algorithm
,
cnnlSoftmaxMode_t
mode
,
const
cnnlTensorDescriptor_t
y_desc
,
const
void
*
y
,
const
cnnlTensorDescriptor_t
diff_y_desc
,
const
void
*
diff_y
,
const
cnnlTensorDescriptor_t
diff_x_desc
,
void
*
diff_x
);
static
void
Softplus
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
features_desc
,
const
void
*
features
,
...
...
paddle/fluid/operators/softmax_op_mlu.cc
0 → 100644
浏览文件 @
2d6b71a2
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
T
>
class
SoftmaxMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
in
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
framework
::
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
int
rank
=
in
->
dims
().
size
();
const
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
rank
);
// cnnl softmax only support 3-dims, regard all shape as [d1, d2, d3]
const
int
cnnl_softmax_dims
=
3
;
const
int
d1
=
phi
::
funcs
::
SizeToAxis
(
axis
,
in
->
dims
());
const
int
d2
=
in
->
dims
()[
axis
];
const
int
d3
=
phi
::
funcs
::
SizeOutAxis
(
axis
,
in
->
dims
());
// CNNL_SOFTMAX_MODE_LOW_DIMENSION has better perfermence, use it as much as
// possible.
cnnlSoftmaxMode_t
mode
=
CNNL_SOFTMAX_MODE_LOW_DIMENSION
;
std
::
vector
<
int
>
regard_in_shape
{
d1
,
1
,
d2
};
if
(
d3
!=
1
)
{
mode
=
CNNL_SOFTMAX_MODE_MEDIUM_DIMENSION
;
regard_in_shape
=
{
d1
,
d2
,
d3
};
}
static
const
cnnlSoftmaxAlgorithm_t
algo
=
CNNL_SOFTMAX_ACCURATE
;
MLUCnnlTensorDesc
in_desc
(
cnnl_softmax_dims
,
regard_in_shape
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnl
::
SoftmaxForward
(
ctx
,
algo
,
mode
,
NULL
,
in_desc
.
get
(),
GetBasePtr
(
in
),
NULL
,
in_desc
.
get
(),
GetBasePtr
(
out
));
}
};
template
<
typename
T
>
class
SoftmaxGradMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
out
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Out"
);
auto
*
dOut
=
ctx
.
Input
<
framework
::
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
const
int
rank
=
out
->
dims
().
size
();
const
int
axis
=
phi
::
funcs
::
CanonicalAxis
(
ctx
.
Attr
<
int
>
(
"axis"
),
rank
);
// cnnl softmax only support 3-dims, regard all shape as [d1, d2, d3]
const
int
cnnl_softmax_dims
=
3
;
const
int
d1
=
phi
::
funcs
::
SizeToAxis
(
axis
,
out
->
dims
());
const
int
d2
=
out
->
dims
()[
axis
];
const
int
d3
=
phi
::
funcs
::
SizeOutAxis
(
axis
,
out
->
dims
());
// CNNL_SOFTMAX_MODE_LOW_DIMENSION has better perfermence, use it as much as
// possible.
cnnlSoftmaxMode_t
mode
=
CNNL_SOFTMAX_MODE_LOW_DIMENSION
;
std
::
vector
<
int
>
regard_out_shape
{
d1
,
1
,
d2
};
if
(
d3
!=
1
)
{
mode
=
CNNL_SOFTMAX_MODE_MEDIUM_DIMENSION
;
regard_out_shape
=
{
d1
,
d2
,
d3
};
}
static
const
cnnlSoftmaxAlgorithm_t
algo
=
CNNL_SOFTMAX_ACCURATE
;
MLUCnnlTensorDesc
out_desc
(
cnnl_softmax_dims
,
regard_out_shape
.
data
(),
ToCnnlDataType
<
T
>
());
MLUCnnl
::
SoftmaxBackward
(
ctx
,
algo
,
mode
,
out_desc
.
get
(),
GetBasePtr
(
out
),
out_desc
.
get
(),
GetBasePtr
(
dOut
),
out_desc
.
get
(),
GetBasePtr
(
dX
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_MLU_KERNEL
(
softmax
,
ops
::
SoftmaxMLUKernel
<
float
>
,
ops
::
SoftmaxMLUKernel
<
plat
::
float16
>
);
REGISTER_OP_MLU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradMLUKernel
<
float
>
,
ops
::
SoftmaxGradMLUKernel
<
paddle
::
platform
::
float16
>
);
python/paddle/fluid/tests/unittests/mlu/test_softmax_op_mlu.py
0 → 100644
浏览文件 @
2d6b71a2
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
import
sys
sys
.
path
.
append
(
'..'
)
from
op_test
import
OpTest
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
,
Program
,
program_guard
import
paddle
import
paddle.nn.functional
as
F
paddle
.
enable_static
()
np
.
random
.
seed
(
10
)
def
stable_softmax
(
x
):
"""Compute the softmax of vector x in a numerically stable way."""
# clip to shiftx, otherwise, when calc loss with
# log(exp(shiftx)), may get log(0)=INF
shiftx
=
(
x
-
np
.
max
(
x
)).
clip
(
-
64.
)
exps
=
np
.
exp
(
shiftx
)
return
exps
/
np
.
sum
(
exps
)
def
ref_softmax
(
x
,
axis
=
None
,
dtype
=
None
):
x_t
=
x
.
copy
()
if
dtype
is
not
None
:
x_t
=
x_t
.
astype
(
dtype
)
if
axis
is
None
:
axis
=
-
1
return
np
.
apply_along_axis
(
stable_softmax
,
axis
,
x_t
)
class
TestSoftmaxOp
(
OpTest
):
def
get_x_shape
(
self
):
return
[
10
,
10
]
def
get_axis
(
self
):
return
-
1
def
setUp
(
self
):
self
.
op_type
=
"softmax"
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
dtype
=
np
.
float32
self
.
init_kernel_type
()
self
.
shape
=
self
.
get_x_shape
()
self
.
axis
=
self
.
get_axis
()
np
.
random
.
seed
(
0
)
x
=
np
.
random
.
uniform
(
0.1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
out
=
np
.
apply_along_axis
(
stable_softmax
,
self
.
axis
,
x
)
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
}
def
init_kernel_type
(
self
):
pass
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
)
def
test_check_grad
(
self
):
self
.
check_grad_with_place
(
self
.
place
,
[
"X"
],
"Out"
,
max_relative_error
=
0.01
)
class
TestSoftmaxOp2
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
class
TestSoftmaxOp3
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
0
class
TestSoftmaxOp4
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
1
class
TestSoftmaxOp5
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
2
class
TestSoftmaxOp6
(
TestSoftmaxOp
):
def
get_x_shape
(
self
):
return
[
2
,
3
,
4
,
5
]
def
get_axis
(
self
):
return
3
class
TestSoftmaxAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
paddle
.
MLUPlace
(
0
)
self
.
x_np
=
np
.
random
.
uniform
(
-
1.
,
1.
,
[
2
,
3
,
4
,
5
]).
astype
(
'float32'
)
self
.
out_ref
=
np
.
apply_along_axis
(
stable_softmax
,
-
1
,
self
.
x_np
)
self
.
executed_api
()
def
executed_api
(
self
):
self
.
softmax
=
F
.
softmax
def
test_static_check
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
x
=
paddle
.
fluid
.
data
(
'X'
,
self
.
x_np
.
shape
,
'float32'
)
out1
=
self
.
softmax
(
x
)
m
=
paddle
.
nn
.
Softmax
()
out2
=
m
(
x
)
exe
=
paddle
.
static
.
Executor
(
self
.
place
)
res
=
exe
.
run
(
feed
=
{
'X'
:
self
.
x_np
},
fetch_list
=
[
out1
,
out2
])
out_ref
=
ref_softmax
(
self
.
x_np
,
axis
=-
1
,
dtype
=
None
)
for
r
in
res
:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
),
True
)
def
test_dygraph_check
(
self
):
paddle
.
disable_static
(
self
.
place
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
out1
=
self
.
softmax
(
x
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
m
=
paddle
.
nn
.
Softmax
()
out2
=
m
(
x
)
out_ref
=
ref_softmax
(
self
.
x_np
,
axis
=-
1
,
dtype
=
None
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
out1
=
self
.
softmax
(
x
,
axis
=
0
)
x
=
paddle
.
to_tensor
(
self
.
x_np
)
m
=
paddle
.
nn
.
Softmax
(
axis
=
0
)
out2
=
m
(
x
)
out_ref
=
ref_softmax
(
self
.
x_np
,
axis
=
0
,
dtype
=
None
)
for
r
in
[
out1
,
out2
]:
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
r
.
numpy
()),
True
)
out
=
self
.
softmax
(
x
,
dtype
=
np
.
float32
)
out_ref
=
ref_softmax
(
self
.
x_np
,
axis
=-
1
,
dtype
=
np
.
float32
)
self
.
assertEqual
(
np
.
allclose
(
out_ref
,
out
.
numpy
()),
True
)
paddle
.
enable_static
()
def
test_error
(
self
):
with
paddle
.
static
.
program_guard
(
paddle
.
static
.
Program
()):
# The input type must be Variable.
self
.
assertRaises
(
TypeError
,
self
.
softmax
,
1
)
# The input dtype must be float16, float32
x_int32
=
paddle
.
fluid
.
data
(
name
=
'x_int32'
,
shape
=
[
2
,
3
],
dtype
=
'int32'
)
self
.
assertRaises
(
TypeError
,
self
.
softmax
,
x_int32
)
# support the input dtype is float16
x_fp16
=
paddle
.
fluid
.
data
(
name
=
'x_fp16'
,
shape
=
[
2
,
3
],
dtype
=
'float16'
)
self
.
softmax
(
x_fp16
)
class
TestSoftmaxInplaceAPI
(
TestSoftmaxAPI
):
def
executed_api
(
self
):
self
.
softmax
=
F
.
softmax_
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录