<spanid="datafeeder"></span><h2>DataFeeder<aclass="headerlink"href="#module-paddle.v2.data_feeder"title="Permalink to this headline">¶</a></h2>
<spanid="datafeeder"></span><h2>DataFeeder<aclass="headerlink"href="#module-paddle.v2.data_feeder"title="Permalink to this headline">¶</a></h2>
<dlclass="class">
<dlclass="class">
<dtid="paddle.v2.data_feeder.DataFeeder">
<dtid="paddle.v2.data_feeder.DataFeeder">
<emclass="property">class </em><codeclass="descclassname">paddle.v2.data_feeder.</code><codeclass="descname">DataFeeder</code><spanclass="sig-paren">(</span><em>data_types</em>, <em>reader_dict</em><spanclass="sig-paren">)</span><aclass="headerlink"href="#paddle.v2.data_feeder.DataFeeder"title="Permalink to this definition">¶</a></dt>
<emclass="property">class </em><codeclass="descclassname">paddle.v2.data_feeder.</code><codeclass="descname">DataFeeder</code><spanclass="sig-paren">(</span><em>data_types</em>, <em>feeding=None</em><spanclass="sig-paren">)</span><aclass="headerlink"href="#paddle.v2.data_feeder.DataFeeder"title="Permalink to this definition">¶</a></dt>
<dd><p>DataFeeder converts the data returned by paddle.reader into a data structure
<dd><p>DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data entries. Each data entry in the list is one sample.
a list of mini-batch data entries. Each data entry in the list is one sample.
...
@@ -509,7 +509,7 @@ interface.</p>
...
@@ -509,7 +509,7 @@ interface.</p>
<trclass="field-odd field"><thclass="field-name">Parameters:</th><tdclass="field-body"><ulclass="first last simple">
<trclass="field-odd field"><thclass="field-name">Parameters:</th><tdclass="field-body"><ulclass="first last simple">
<li><strong>data_types</strong> (<em>list</em>) – A list to specify data name and type. Each item is
<li><strong>data_types</strong> (<em>list</em>) – A list to specify data name and type. Each item is
a tuple of (data_name, data_type).</li>
a tuple of (data_name, data_type).</li>
<li><strong>reader_dict</strong>(<em>dict</em>) – A dictionary to specify the position of each data
<li><strong>reader_dict</strong>– A dictionary to specify the position of each data
<codeclass="descname">train</code><spanclass="sig-paren">(</span><em>reader</em>, <em>num_passes=1</em>, <em>event_handler=None</em>, <em>reader_dict=None</em><spanclass="sig-paren">)</span><aclass="headerlink"href="#paddle.v2.trainer.SGD.train"title="Permalink to this definition">¶</a></dt>
<codeclass="descname">train</code><spanclass="sig-paren">(</span><em>reader</em>, <em>num_passes=1</em>, <em>event_handler=None</em>, <em>feeding=None</em><spanclass="sig-paren">)</span><aclass="headerlink"href="#paddle.v2.trainer.SGD.train"title="Permalink to this definition">¶</a></dt>
<dd><p>Training method. Will train num_passes of input data.</p>
<dd><p>Training method. Will train num_passes of input data.</p>
<li><strong>num_passes</strong>– The total train passes.</li>
<li><strong>num_passes</strong>– The total train passes.</li>
<li><strong>event_handler</strong> (<em></em><em>(</em><em>BaseEvent</em><em>) </em><em>=> None</em>) – Event handler. A method will be invoked when event
<li><strong>event_handler</strong> (<em></em><em>(</em><em>BaseEvent</em><em>) </em><em>=> None</em>) – Event handler. A method will be invoked when event
occurred.</li>
occurred.</li>
<li><strong>feeding</strong> (<em>dict</em>) – Feeding is a map of neural network input name and array
<li><strong>num_passes</strong>– The total train passes.</li>
<li><strong>num_passes</strong>– The total train passes.</li>
<li><strong>event_handler</strong> (<em></em><em>(</em><em>BaseEvent</em><em>) </em><em>=> None</em>) – Event handler. A method will be invoked when event
<li><strong>event_handler</strong> (<em></em><em>(</em><em>BaseEvent</em><em>) </em><em>=> None</em>) – Event handler. A method will be invoked when event
occurred.</li>
occurred.</li>
<li><strong>feeding</strong> (<em>dict</em>) – Feeding is a map of neural network input name and array