Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2d10ea34
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2d10ea34
编写于
12月 04, 2018
作者:
X
xiaoli.liu@intel.com
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete scale reuse and change INT8 recognition
上级
d308171c
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
29 addition
and
76 deletion
+29
-76
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+29
-76
未找到文件。
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
2d10ea34
...
...
@@ -116,7 +116,11 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
// ctx.op().Output("Output"));
const
std
::
string
key_conv_pd
=
key
+
"@conv_pd"
;
bool
is_INT8
=
ctx
.
HasInput
(
"Scale_in"
)
?
true
:
false
;
bool
is_INT8
=
false
;
mkldnn
::
memory
::
data_type
src_dt
=
paddle
::
framework
::
ToMKLDNNDataType
(
input
->
type
());
if
(
src_dt
==
mkldnn
::
memory
::
data_type
::
u8
||
src_dt
==
mkldnn
::
memory
::
data_type
::
s8
){
is_INT8
=
true
;
}
bool
need_s8_to_u8
=
false
;
if
(
fuse_residual_conn
&&
is_INT8
&&
fuse_relu
)
{
...
...
@@ -341,9 +345,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bool
is_multi_channel
=
(
scale_weights
->
memory_size
()
>
1
)
?
true
:
false
;
static
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
scale_map
;
bool
scale_reuse
=
true
;
auto
scale_in_key
=
key
+
"@scale_in"
;
auto
scale_weights_key
=
key
+
"@scale_weights"
;
auto
scale_out_key
=
key
+
"@scale_out"
;
...
...
@@ -358,49 +359,26 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
float
>
sum_scale
=
{
1.0
f
};
std
::
vector
<
float
>
none_scale
=
{
0
};
if
(
GetScaleMap
(
scale_map
,
scale_in_key
)
==
none_scale
){
scale_reuse
=
false
;
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
scale_in_data
=
{
*
(
scale_in
->
data
<
float
>
())};
scale_weights_data
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
){
scale_weights_data
[
i
]
=*
(
scale_weights
->
data
<
float
>
()
+
i
);
}
if
(
!
scale_reuse
){
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
scale_in_data
=
{
*
(
scale_in
->
data
<
float
>
())};
scale_weights_data
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
){
scale_weights_data
[
i
]
=*
(
scale_weights
->
data
<
float
>
()
+
i
);
}
if
(
!
force_fp32_output
)
scale_out_data
=
{
*
(
scale_out
->
data
<
float
>
())};
output_shift_scale
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
){
if
(
scale_weights_data
[
i
]
==
0.0
)
output_shift_scale
[
i
]
=
scale_out_data
[
0
];
else
output_shift_scale
[
i
]
=
scale_out_data
[
0
]
/
(
scale_in_data
[
0
]
*
scale_weights_data
[
i
]);
}
if
(
fuse_residual_conn
){
scale_in_eltwise_data
=
{
*
(
scale_in_eltwise
->
data
<
float
>
())};
sum_scale
[
0
]
=
scale_out_data
[
0
]
/
scale_in_eltwise_data
[
0
];
SetScaleMap
(
scale_map
,
scale_in_eltwise_key
,
scale_in_eltwise_data
);
}
//scale reuse
SetScaleMap
(
scale_map
,
scale_in_key
,
scale_in_data
);
SetScaleMap
(
scale_map
,
scale_weights_key
,
scale_weights_data
);
SetScaleMap
(
scale_map
,
scale_out_key
,
scale_out_data
);
SetScaleMap
(
scale_map
,
output_shift_scale_key
,
output_shift_scale
);
SetScaleMap
(
scale_map
,
sum_scale_key
,
sum_scale
);
}
else
{
scale_in_data
=
GetScaleMap
(
scale_map
,
scale_in_key
);
scale_out_data
=
GetScaleMap
(
scale_map
,
scale_out_key
);
scale_weights_data
=
GetScaleMap
(
scale_map
,
scale_weights_key
);
if
(
fuse_residual_conn
){
scale_in_eltwise_data
=
GetScaleMap
(
scale_map
,
scale_in_eltwise_key
);
}
output_shift_scale
=
GetScaleMap
(
scale_map
,
output_shift_scale_key
);
sum_scale
=
GetScaleMap
(
scale_map
,
sum_scale_key
);
if
(
!
force_fp32_output
)
scale_out_data
=
{
*
(
scale_out
->
data
<
float
>
())};
output_shift_scale
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
){
if
(
scale_weights_data
[
i
]
==
0.0
)
output_shift_scale
[
i
]
=
scale_out_data
[
0
];
else
output_shift_scale
[
i
]
=
scale_out_data
[
0
]
/
(
scale_in_data
[
0
]
*
scale_weights_data
[
i
]);
}
if
(
fuse_residual_conn
){
scale_in_eltwise_data
=
{
*
(
scale_in_eltwise
->
data
<
float
>
())};
sum_scale
[
0
]
=
scale_out_data
[
0
]
/
scale_in_eltwise_data
[
0
];
}
std
::
vector
<
primitive
>
pipeline
;
...
...
@@ -521,16 +499,11 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
handler
->
AcquireBiasMemory
(
user_bias_md
,
to_void_cast
<
float
>
(
bias_data
));
std
::
shared_ptr
<
mkldnn
::
memory
>
bias_memory_p
;
int
mask_reorder
=
is_multi_channel
?
1
<<
0
:
1
;
if
(
!
scale_reuse
){
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
scale_bias_data
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
){
scale_bias_data
[
i
]
=
scale_in_data
[
0
]
*
scale_weights_data
[
i
];
}
SetScaleMap
(
scale_map
,
scale_bias_key
,
scale_bias_data
);
}
else
{
scale_bias_data
=
GetScaleMap
(
scale_map
,
scale_bias_key
);
int
count
=
is_multi_channel
?
(
g
>
1
?
weights_tz
[
1
]
*
weights_tz
[
0
]
:
weights_tz
[
0
])
:
1
;
scale_bias_data
.
resize
(
count
);
#pragma omp parallel for if (count > 1)
for
(
int
i
=
0
;
i
<
count
;
i
++
){
scale_bias_data
[
i
]
=
scale_in_data
[
0
]
*
scale_weights_data
[
i
];
}
bias_memory_p
=
handler
->
AcquireBiasMemoryFromPrimitive
(
user_bias_memory_p
,
pipeline
,
is_test
,
is_INT8
,
scale_bias_data
,
mask_reorder
);
...
...
@@ -601,26 +574,6 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
key
.
append
(
s
);
}
void
SetScaleMap
(
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
&
scale_map
,
const
std
::
string
&
name
,
std
::
vector
<
float
>
scale_data
)
const
{
auto
it
=
scale_map
.
find
(
name
);
if
(
it
==
scale_map
.
end
())
{
scale_map
[
name
]
=
scale_data
;
// create new blob
}
else
{
(
*
it
).
second
=
scale_data
;
// set data to existing blob
}
return
;
}
std
::
vector
<
float
>
GetScaleMap
(
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
float
>>
&
scale_map
,
const
std
::
string
&
name
)
const
{
auto
it
=
scale_map
.
find
(
name
);
if
(
it
!=
scale_map
.
end
())
{
return
(
*
it
).
second
;
}
return
{
0
};
}
mkldnn
::
primitive_attr
CreatePostOps
(
bool
fuse_relu
,
bool
fuse_residual_conn
,
const
std
::
vector
<
float
>
output_shift_scale
,
float
sum_scale
)
const
{
mkldnn
::
primitive_attr
conv_attr
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录