Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2ce1f04d
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2ce1f04d
编写于
12月 08, 2022
作者:
C
ccrrong
提交者:
GitHub
12月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
remove pool2d from fluid (#48512)
* remove pool2d
上级
73bff10f
变更
17
隐藏空白更改
内联
并排
Showing
17 changed file
with
216 addition
and
796 deletion
+216
-796
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
...paddle/fluid/contrib/slim/tests/test_quantization_pass.py
+16
-16
python/paddle/fluid/contrib/tests/test_image_classification_fp16.py
...dle/fluid/contrib/tests/test_image_classification_fp16.py
+1
-3
python/paddle/fluid/contrib/tests/test_multi_precision_fp16_train.py
...le/fluid/contrib/tests/test_multi_precision_fp16_train.py
+1
-3
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+0
-244
python/paddle/fluid/nets.py
python/paddle/fluid/nets.py
+26
-17
python/paddle/fluid/tests/book/test_image_classification.py
python/paddle/fluid/tests/book/test_image_classification.py
+1
-3
python/paddle/fluid/tests/unittests/dist_se_resnext.py
python/paddle/fluid/tests/unittests/dist_se_resnext.py
+17
-24
python/paddle/fluid/tests/unittests/ipu/test_pool_avg_op_ipu.py
.../paddle/fluid/tests/unittests/ipu/test_pool_avg_op_ipu.py
+13
-21
python/paddle/fluid/tests/unittests/ipu/test_pool_max_op_ipu.py
.../paddle/fluid/tests/unittests/ipu/test_pool_max_op_ipu.py
+12
-27
python/paddle/fluid/tests/unittests/ir/inference/test_trt_pool_op.py
...le/fluid/tests/unittests/ir/inference/test_trt_pool_op.py
+19
-10
python/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py
...on/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py
+56
-70
python/paddle/fluid/tests/unittests/seresnext_net.py
python/paddle/fluid/tests/unittests/seresnext_net.py
+2
-2
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+4
-4
python/paddle/fluid/tests/unittests/test_nn_grad.py
python/paddle/fluid/tests/unittests/test_nn_grad.py
+1
-2
python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py
...luid/tests/unittests/test_parallel_executor_fetch_feed.py
+2
-2
python/paddle/fluid/tests/unittests/test_pool2d_op.py
python/paddle/fluid/tests/unittests/test_pool2d_op.py
+0
-327
python/paddle/nn/functional/pooling.py
python/paddle/nn/functional/pooling.py
+45
-21
未找到文件。
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
浏览文件 @
2ce1f04d
...
...
@@ -81,12 +81,12 @@ def residual_block(num, quant_skip_pattern=None):
hidden
=
paddle
.
matmul
(
hidden
,
matmul_weight
,
True
,
True
)
if
quant_skip_pattern
:
with
fluid
.
name_scope
(
quant_skip_pattern
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'avg'
,
pool_
stride
=
2
pool
=
paddle
.
nn
.
functional
.
avg_
pool2d
(
x
=
hidden
,
kernel_size
=
2
,
stride
=
2
)
else
:
pool
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'avg'
,
pool_
stride
=
2
pool
=
paddle
.
nn
.
functional
.
avg_
pool2d
(
x
=
hidden
,
kernel_size
=
2
,
stride
=
2
)
fc
=
fluid
.
layers
.
fc
(
input
=
pool
,
size
=
10
)
loss
=
paddle
.
nn
.
functional
.
cross_entropy
(
...
...
@@ -733,11 +733,11 @@ def quant_dequant_residual_block(num, quant_skip_pattern=None):
hidden
=
paddle
.
matmul
(
hidden
,
data2
,
True
,
True
)
if
isinstance
(
quant_skip_pattern
,
str
):
with
fluid
.
name_scope
(
quant_skip_pattern
):
pool1
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'avg'
,
pool_
stride
=
2
pool1
=
paddle
.
nn
.
functional
.
avg_
pool2d
(
x
=
hidden
,
kernel_size
=
2
,
stride
=
2
)
pool2
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'max'
,
pool_
stride
=
2
pool2
=
paddle
.
nn
.
functional
.
max_
pool2d
(
x
=
hidden
,
kernel_size
=
2
,
stride
=
2
)
pool_add
=
paddle
.
nn
.
functional
.
relu
(
paddle
.
add
(
x
=
pool1
,
y
=
pool2
))
elif
isinstance
(
quant_skip_pattern
,
list
):
...
...
@@ -745,20 +745,20 @@ def quant_dequant_residual_block(num, quant_skip_pattern=None):
len
(
quant_skip_pattern
)
>
1
),
'test config error: the len of quant_skip_pattern list should be greater than 1.'
with
fluid
.
name_scope
(
quant_skip_pattern
[
0
]):
pool1
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'avg'
,
pool_
stride
=
2
pool1
=
paddle
.
nn
.
functional
.
avg_
pool2d
(
x
=
hidden
,
kernel_size
=
2
,
stride
=
2
)
pool2
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'max'
,
pool_
stride
=
2
pool2
=
paddle
.
nn
.
functional
.
max_
pool2d
(
x
=
hidden
,
kernel_size
=
2
,
stride
=
2
)
with
fluid
.
name_scope
(
quant_skip_pattern
[
1
]):
pool_add
=
paddle
.
nn
.
functional
.
relu
(
paddle
.
add
(
x
=
pool1
,
y
=
pool2
))
else
:
pool1
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'avg'
,
pool_
stride
=
2
pool1
=
paddle
.
nn
.
functional
.
avg_
pool2d
(
x
=
hidden
,
kernel_size
=
2
,
stride
=
2
)
pool2
=
fluid
.
layers
.
pool2d
(
input
=
hidden
,
pool_size
=
2
,
pool_type
=
'max'
,
pool_
stride
=
2
pool2
=
paddle
.
nn
.
functional
.
max_
pool2d
(
x
=
hidden
,
kernel_size
=
2
,
stride
=
2
)
pool_add
=
paddle
.
nn
.
functional
.
relu
(
paddle
.
add
(
x
=
pool1
,
y
=
pool2
))
fc
=
fluid
.
layers
.
fc
(
input
=
pool_add
,
size
=
10
)
...
...
python/paddle/fluid/contrib/tests/test_image_classification_fp16.py
浏览文件 @
2ce1f04d
...
...
@@ -69,9 +69,7 @@ def resnet_cifar10(input, depth=32):
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
16
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
32
,
64
,
n
,
2
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
)
pool
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
res3
,
kernel_size
=
8
,
stride
=
1
)
return
pool
...
...
python/paddle/fluid/contrib/tests/test_multi_precision_fp16_train.py
浏览文件 @
2ce1f04d
...
...
@@ -88,9 +88,7 @@ def resnet_cifar10(input, depth=32):
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
16
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
32
,
64
,
n
,
2
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
)
pool
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
res3
,
kernel_size
=
8
,
stride
=
1
)
return
pool
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
2ce1f04d
...
...
@@ -68,7 +68,6 @@ __all__ = [
'linear_chain_crf'
,
'crf_decoding'
,
'conv2d'
,
'pool2d'
,
'dropout'
,
'split'
,
'l2_normalize'
,
...
...
@@ -1428,249 +1427,6 @@ def conv2d(
return
helper
.
append_activation
(
pre_act
)
@
templatedoc
()
def
pool2d
(
input
,
pool_size
=-
1
,
pool_type
=
"max"
,
pool_stride
=
1
,
pool_padding
=
0
,
global_pooling
=
False
,
use_cudnn
=
True
,
ceil_mode
=
False
,
name
=
None
,
exclusive
=
True
,
data_format
=
"NCHW"
,
):
"""
${comment}
Args:
input (Variable): The input tensor of pooling operator which is a 4-D tensor with
shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
`"NHWC"`, where `N` is batch size, `C` is the number of channels,
`H` is the height of the feature, and `W` is the width of the
feature. The data type if float32 or float64.
pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
it must contain two integers, (pool_size_Height, pool_size_Width).
Otherwise, the pool kernel size will be a square of an int.
pool_type: ${pooling_type_comment}
pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
it must contain two integers, (pool_stride_Height, pool_stride_Width).
Otherwise, the pool stride size will be a square of an int.
pool_padding (string|int|list|tuple): The pool padding. If `pool_padding` is a string, either 'VALID' or
'SAME' which is the padding algorithm. If pool padding size is a tuple or list,
it could be in three forms: `[pad_height, pad_width]` or
`[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`, and when `data_format` is `"NCHW"`,
`pool_padding` can be in the form `[[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
when `data_format` is `"NHWC"`, `pool_padding` can be in the form
`[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
Otherwise, the pool padding size will be a square of an int.
global_pooling (bool): ${global_pooling_comment}
use_cudnn (bool): ${use_cudnn_comment}
ceil_mode (bool): ${ceil_mode_comment}
name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and
None by default.
exclusive (bool): Whether to exclude padding points in average pooling
mode, default is `true`.
data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
`[batch_size, input_channels, input_height, input_width]`.
Returns:
Variable: The output tensor of pooling result. The data type is same as input tensor.
Raises:
ValueError: If `pool_type` is not "max" nor "avg".
ValueError: If `global_pooling` is False and `pool_size` is -1.
TypeError: If `use_cudnn` is not a bool value.
ValueError: If `data_format` is not "NCHW" or "NHWC".
ValueError: If `pool_padding` is a string, but not "SAME" or "VALID".
ValueError: If `pool_padding` is "VALID", but `ceil_mode` is True.
ValueError: If `pool_padding` is a list or tuple, but the elements in the batch or channel dimensions are non-zero.
ShapeError: If the input is not a 4-D or 5-D Tensor.
ShapeError: If the dimension of input minus the size of `pool_stride` is not 2.
ShapeError: If the size of `pool_size` and `pool_stride` is not equal.
ShapeError: If the output's shape calculated is not greater than 0.
Examples:
.. code-block:: python
import paddle.fluid as fluid
import paddle
paddle.enable_static()
data = fluid.data(name='data', shape=[None, 3, 32, 32], dtype='float32')
# max pool2d
pool2d = fluid.layers.pool2d(
input = data,
pool_size = 2,
pool_type = "max",
pool_stride = 1,
global_pooling=False)
# average pool2d
pool2d = fluid.layers.pool2d(
input = data,
pool_size = 2,
pool_type = "avg",
pool_stride = 1,
global_pooling=False)
# global average pool2d
pool2d = fluid.layers.pool2d(
input = data,
pool_size = 2,
pool_type = "avg",
pool_stride = 1,
global_pooling=True)
# Attr(pool_padding) is a list with 4 elements, Attr(data_format) is "NCHW".
out_1 = fluid.layers.pool2d(
input = data,
pool_size = 3,
pool_type = "avg",
pool_stride = 1,
pool_padding = [1, 2, 1, 0],
data_format = "NCHW")
# Attr(pool_padding) is a string, Attr(data_format) is "NCHW".
out_2 = fluid.layers.pool2d(
input = data,
pool_size = 3,
pool_type = "avg",
pool_stride = 1,
pool_padding = "VALID",
data_format = "NCHW")
"""
if
pool_type
not
in
[
"max"
,
"avg"
]:
raise
ValueError
(
"Unknown Attr(pool_type): '%s'. It can only be 'max' or 'avg'."
,
str
(
pool_type
),
)
if
global_pooling
is
False
and
pool_size
==
-
1
:
raise
ValueError
(
"When Attr(global_pooling) is False, Attr(pool_size) must be passed "
"and be a valid value. Received pool_size: %s."
%
str
(
pool_size
)
)
if
not
isinstance
(
use_cudnn
,
bool
):
raise
TypeError
(
"Attr(use_cudnn) should be True or False. Received "
"Attr(use_cudnn): %s."
%
str
(
use_cudnn
)
)
if
data_format
not
in
[
"NCHW"
,
"NHWC"
]:
raise
ValueError
(
"Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
"Attr(data_format): %s."
%
str
(
data_format
)
)
pool_size
=
utils
.
convert_to_list
(
pool_size
,
2
,
'pool_size'
)
pool_stride
=
utils
.
convert_to_list
(
pool_stride
,
2
,
'pool_stride'
)
def
update_padding
(
padding
,
data_format
):
def
is_list_or_tuple
(
ele
):
if
isinstance
(
ele
,
list
)
or
isinstance
(
ele
,
tuple
):
return
True
return
False
if
is_list_or_tuple
(
padding
)
and
len
(
padding
)
==
4
:
if
is_list_or_tuple
(
padding
[
0
])
and
(
data_format
==
"NCHW"
):
if
not
(
padding
[
0
]
==
[
0
,
0
]
and
padding
[
1
]
==
[
0
,
0
]):
raise
ValueError
(
"Non-zero pool_padding(%s) in the batch or channel dimensions "
"is not supported."
%
str
(
padding
)
)
padding
=
padding
[
2
:
4
]
padding
=
[
ele
for
a_list
in
padding
for
ele
in
a_list
]
elif
is_list_or_tuple
(
padding
[
0
])
and
(
data_format
==
"NHWC"
):
if
not
(
padding
[
0
]
==
[
0
,
0
]
and
padding
[
3
]
==
[
0
,
0
]):
raise
ValueError
(
"Non-zero pool_padding(%s) in the batch or channel dimensions "
"is not supported."
%
str
(
padding
)
)
padding
=
padding
[
1
:
3
]
padding
=
[
ele
for
a_list
in
padding
for
ele
in
a_list
]
padding
=
utils
.
convert_to_list
(
padding
,
4
,
'padding'
)
if
utils
.
_is_symmetric_padding
(
padding
,
2
):
padding
=
[
padding
[
0
],
padding
[
2
]]
else
:
padding
=
utils
.
convert_to_list
(
padding
,
2
,
'padding'
)
return
padding
padding_algorithm
=
"EXPLICIT"
if
isinstance
(
pool_padding
,
str
):
pool_padding
=
pool_padding
.
upper
()
if
pool_padding
not
in
[
"SAME"
,
"VALID"
]:
raise
ValueError
(
"Unknown Attr(pool_padding): '%s'. It can only be 'SAME' or 'VALID'."
%
str
(
pool_padding
)
)
if
pool_padding
==
"VALID"
:
padding_algorithm
=
"VALID"
pool_padding
=
[
0
,
0
]
if
ceil_mode
is
not
False
:
raise
ValueError
(
"When Attr(pool_padding) is
\"
VALID
\"
, Attr(ceil_mode) must be False. "
"Received ceil_mode: True."
)
elif
pool_padding
==
"SAME"
:
padding_algorithm
=
"SAME"
pool_padding
=
[
0
,
0
]
pool_padding
=
update_padding
(
pool_padding
,
data_format
)
if
in_dygraph_mode
():
input
=
input
.
_use_gpudnn
(
use_cudnn
)
return
_C_ops
.
pool2d
(
input
,
pool_size
,
pool_stride
,
pool_padding
,
ceil_mode
,
exclusive
,
data_format
,
pool_type
,
global_pooling
,
False
,
padding_algorithm
,
)
op_type
=
'pool2d'
helper
=
LayerHelper
(
op_type
,
**
locals
())
dtype
=
helper
.
input_dtype
()
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
"X"
:
input
},
outputs
=
{
"Out"
:
pool_out
},
attrs
=
{
"pooling_type"
:
pool_type
,
"ksize"
:
pool_size
,
"global_pooling"
:
global_pooling
,
"strides"
:
pool_stride
,
"paddings"
:
pool_padding
,
"padding_algorithm"
:
padding_algorithm
,
"use_cudnn"
:
use_cudnn
,
"ceil_mode"
:
ceil_mode
,
"use_mkldnn"
:
False
,
"exclusive"
:
exclusive
,
"data_format"
:
data_format
,
},
)
return
pool_out
@
templatedoc
()
def
layer_norm
(
input
,
...
...
python/paddle/fluid/nets.py
浏览文件 @
2ce1f04d
...
...
@@ -132,16 +132,20 @@ def simple_img_conv_pool(
act
=
act
,
use_cudnn
=
use_cudnn
,
)
pool_out
=
layers
.
pool2d
(
input
=
conv_out
,
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
pool_padding
=
pool_padding
,
global_pooling
=
global_pooling
,
use_cudnn
=
use_cudnn
,
)
if
pool_type
==
'max'
:
pool_out
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
conv_out
,
kernel_size
=
pool_size
,
stride
=
pool_stride
,
padding
=
pool_padding
,
)
else
:
pool_out
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
conv_out
,
kernel_size
=
pool_size
,
stride
=
pool_stride
,
padding
=
pool_padding
,
)
return
pool_out
...
...
@@ -258,13 +262,18 @@ def img_conv_group(
if
abs
(
drop_rate
)
>
1e-5
:
tmp
=
layers
.
dropout
(
x
=
tmp
,
dropout_prob
=
drop_rate
)
pool_out
=
layers
.
pool2d
(
input
=
tmp
,
pool_size
=
pool_size
,
pool_type
=
pool_type
,
pool_stride
=
pool_stride
,
use_cudnn
=
use_cudnn
,
)
if
pool_type
==
'max'
:
pool_out
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
tmp
,
kernel_size
=
pool_size
,
stride
=
pool_stride
,
)
else
:
pool_out
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
tmp
,
kernel_size
=
pool_size
,
stride
=
pool_stride
,
)
return
pool_out
...
...
python/paddle/fluid/tests/book/test_image_classification.py
浏览文件 @
2ce1f04d
...
...
@@ -68,9 +68,7 @@ def resnet_cifar10(input, depth=32):
res1
=
layer_warp
(
basicblock
,
conv1
,
16
,
16
,
n
,
1
)
res2
=
layer_warp
(
basicblock
,
res1
,
16
,
32
,
n
,
2
)
res3
=
layer_warp
(
basicblock
,
res2
,
32
,
64
,
n
,
2
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
res3
,
pool_size
=
8
,
pool_type
=
'avg'
,
pool_stride
=
1
)
pool
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
res3
,
kernel_size
=
8
,
stride
=
1
)
return
pool
...
...
python/paddle/fluid/tests/unittests/dist_se_resnext.py
浏览文件 @
2ce1f04d
...
...
@@ -59,12 +59,11 @@ class SE_ResNeXt:
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
,
conv
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
conv
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
)
elif
layers
==
101
:
cardinality
=
32
...
...
@@ -75,12 +74,11 @@ class SE_ResNeXt:
conv
=
self
.
conv_bn_layer
(
input
=
input
,
num_filters
=
64
,
filter_size
=
7
,
stride
=
2
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
,
conv
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
conv
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
)
elif
layers
==
152
:
cardinality
=
64
...
...
@@ -97,12 +95,11 @@ class SE_ResNeXt:
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
num_filters
=
128
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
,
conv
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
conv
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
,
)
for
block
in
range
(
len
(
depth
)):
...
...
@@ -115,9 +112,7 @@ class SE_ResNeXt:
reduction_ratio
=
reduction_ratio
,
)
pool
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
7
,
pool_type
=
'avg'
,
global_pooling
=
True
)
pool
=
paddle
.
nn
.
functional
.
adaptive_avg_pool2d
(
x
=
conv
,
output_size
=
1
)
drop
=
fluid
.
layers
.
dropout
(
x
=
pool
,
dropout_prob
=
0.2
)
stdv
=
1.0
/
math
.
sqrt
(
drop
.
shape
[
1
]
*
1.0
)
out
=
fluid
.
layers
.
fc
(
...
...
@@ -185,9 +180,7 @@ class SE_ResNeXt:
return
paddle
.
static
.
nn
.
batch_norm
(
input
=
conv
,
act
=
act
)
def
squeeze_excitation
(
self
,
input
,
num_channels
,
reduction_ratio
):
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_size
=
0
,
pool_type
=
'avg'
,
global_pooling
=
True
)
pool
=
paddle
.
nn
.
functional
.
adaptive_avg_pool2d
(
x
=
input
,
output_size
=
1
)
stdv
=
1.0
/
math
.
sqrt
(
pool
.
shape
[
1
]
*
1.0
)
squeeze
=
fluid
.
layers
.
fc
(
input
=
pool
,
...
...
python/paddle/fluid/tests/unittests/ipu/test_pool_avg_op_ipu.py
浏览文件 @
2ce1f04d
...
...
@@ -41,11 +41,9 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"pool_size"
:
3
,
"pool_type"
:
'avg'
,
"pool_stride"
:
1
,
"pool_padding"
:
0
,
"global_pooling"
:
False
,
"kernel_size"
:
3
,
"stride"
:
1
,
"padding"
:
0
,
"ceil_mode"
:
False
,
"exclusive"
:
True
,
"data_format"
:
'NCHW'
,
...
...
@@ -56,7 +54,7 @@ class TestBase(IPUOpTest):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
pool2d
(
x
,
**
self
.
attrs
)
out
=
paddle
.
nn
.
functional
.
avg_
pool2d
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
...
...
@@ -73,58 +71,52 @@ class TestBase(IPUOpTest):
class
TestCase1
(
TestBase
):
def
set_attrs
(
self
):
super
().
set_attrs
()
self
.
attrs
[
'
poo
l_size'
]
=
3
self
.
attrs
[
'
kerne
l_size'
]
=
3
class
TestCase1_2
(
TestBase
):
def
set_attrs
(
self
):
super
().
set_attrs
()
self
.
attrs
[
'
poo
l_size'
]
=
[
3
,
1
]
self
.
attrs
[
'
kerne
l_size'
]
=
[
3
,
1
]
class
TestCase2
(
TestBase
):
def
set_attrs
(
self
):
super
().
set_attrs
()
self
.
attrs
[
'
pool_
stride'
]
=
2
self
.
attrs
[
'stride'
]
=
2
class
TestCase2_2
(
TestBase
):
def
set_attrs
(
self
):
super
().
set_attrs
()
self
.
attrs
[
'
pool_
stride'
]
=
[
2
,
1
]
self
.
attrs
[
'stride'
]
=
[
2
,
1
]
class
TestCase3
(
TestBase
):
def
set_attrs
(
self
):
super
().
set_attrs
()
self
.
attrs
[
'p
ool_p
adding'
]
=
[
1
,
1
]
self
.
attrs
[
'padding'
]
=
[
1
,
1
]
class
TestCase3_2
(
TestBase
):
def
set_attrs
(
self
):
super
().
set_attrs
()
self
.
attrs
[
'p
ool_p
adding'
]
=
[
1
,
1
,
2
,
2
]
self
.
attrs
[
'padding'
]
=
[
1
,
1
,
2
,
2
]
@
unittest
.
skip
(
'the results has a positional offset'
)
class
TestCase3_3
(
TestBase
):
def
set_attrs
(
self
):
super
().
set_attrs
()
self
.
attrs
[
'p
ool_p
adding'
]
=
[
1
,
2
,
1
,
1
]
self
.
attrs
[
'padding'
]
=
[
1
,
2
,
1
,
1
]
@
unittest
.
skip
(
'paddle output has nan'
)
class
TestCase3_4
(
TestBase
):
def
set_attrs
(
self
):
super
().
set_attrs
()
self
.
attrs
[
'pool_size'
]
=
1
self
.
attrs
[
'pool_padding'
]
=
1
class
TestCase4
(
TestBase
):
def
set_attrs
(
self
):
super
().
set_attrs
()
self
.
attrs
[
'global_pooling'
]
=
True
self
.
attrs
[
'size'
]
=
1
self
.
attrs
[
'padding'
]
=
1
class
TestCase5
(
TestBase
):
...
...
python/paddle/fluid/tests/unittests/ipu/test_pool_max_op_ipu.py
浏览文件 @
2ce1f04d
...
...
@@ -41,13 +41,10 @@ class TestBase(IPUOpTest):
def
set_op_attrs
(
self
):
self
.
attrs
=
{
"pool_size"
:
3
,
"pool_type"
:
'max'
,
"pool_stride"
:
1
,
"pool_padding"
:
0
,
"global_pooling"
:
False
,
"kernel_size"
:
3
,
"stride"
:
1
,
"padding"
:
0
,
"ceil_mode"
:
False
,
"exclusive"
:
True
,
"data_format"
:
'NCHW'
,
}
...
...
@@ -56,7 +53,7 @@ class TestBase(IPUOpTest):
x
=
paddle
.
static
.
data
(
name
=
self
.
feed_list
[
0
],
shape
=
self
.
feed_shape
[
0
],
dtype
=
'float32'
)
out
=
paddle
.
fluid
.
layers
.
pool2d
(
x
,
**
self
.
attrs
)
out
=
paddle
.
nn
.
functional
.
max_
pool2d
(
x
,
**
self
.
attrs
)
self
.
fetch_list
=
[
out
.
name
]
def
run_model
(
self
,
exec_mode
):
...
...
@@ -73,57 +70,51 @@ class TestBase(IPUOpTest):
class
TestCase1
(
TestBase
):
def
set_op_attrs
(
self
):
super
().
set_op_attrs
()
self
.
attrs
[
'
poo
l_size'
]
=
3
self
.
attrs
[
'
kerne
l_size'
]
=
3
class
TestCase1_2
(
TestBase
):
def
set_op_attrs
(
self
):
super
().
set_op_attrs
()
self
.
attrs
[
'
poo
l_size'
]
=
[
3
,
1
]
self
.
attrs
[
'
kerne
l_size'
]
=
[
3
,
1
]
class
TestCase2
(
TestBase
):
def
set_op_attrs
(
self
):
super
().
set_op_attrs
()
self
.
attrs
[
'
pool_
stride'
]
=
2
self
.
attrs
[
'stride'
]
=
2
class
TestCase2_2
(
TestBase
):
def
set_op_attrs
(
self
):
super
().
set_op_attrs
()
self
.
attrs
[
'
pool_
stride'
]
=
[
2
,
1
]
self
.
attrs
[
'stride'
]
=
[
2
,
1
]
class
TestCase3
(
TestBase
):
def
set_op_attrs
(
self
):
super
().
set_op_attrs
()
self
.
attrs
[
'p
ool_p
adding'
]
=
[
1
,
1
]
self
.
attrs
[
'padding'
]
=
[
1
,
1
]
class
TestCase3_2
(
TestBase
):
def
set_op_attrs
(
self
):
super
().
set_op_attrs
()
self
.
attrs
[
'p
ool_p
adding'
]
=
[
1
,
1
,
2
,
2
]
self
.
attrs
[
'padding'
]
=
[
1
,
1
,
2
,
2
]
@
unittest
.
skip
(
'auto_pad is not currently supported'
)
class
TestCase3_3
(
TestBase
):
def
set_op_attrs
(
self
):
super
().
set_op_attrs
()
self
.
attrs
[
'p
ool_p
adding'
]
=
'VALID'
self
.
attrs
[
'padding'
]
=
'VALID'
@
unittest
.
skip
(
'auto_pad is not currently supported'
)
class
TestCase3_4
(
TestBase
):
def
set_op_attrs
(
self
):
super
().
set_op_attrs
()
self
.
attrs
[
'pool_padding'
]
=
'SAME'
class
TestCase4
(
TestBase
):
def
set_op_attrs
(
self
):
super
().
set_op_attrs
()
self
.
attrs
[
'global_pooling'
]
=
True
self
.
attrs
[
'padding'
]
=
'SAME'
class
TestCase5
(
TestBase
):
...
...
@@ -132,11 +123,5 @@ class TestCase5(TestBase):
self
.
attrs
[
'ceil_mode'
]
=
True
class
TestCase6
(
TestBase
):
def
set_op_attrs
(
self
):
super
().
set_op_attrs
()
self
.
attrs
[
'exclusive'
]
=
False
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ir/inference/test_trt_pool_op.py
浏览文件 @
2ce1f04d
...
...
@@ -20,6 +20,7 @@ import unittest
import
numpy
as
np
from
inference_pass_test
import
InferencePassTest
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
import
paddle.static.nn
as
nn
...
...
@@ -63,17 +64,25 @@ class TensorRTPoolTest(InferencePassTest):
shape
=
[
-
1
,
self
.
channel
,
self
.
height
,
self
.
width
],
dtype
=
'float32'
,
)
pool_out
=
fluid
.
layers
.
pool2d
(
input
=
data
,
pool_size
=
self
.
pool_size
,
pool_type
=
self
.
pool_type
,
pool_stride
=
self
.
pool_stride
,
pool_padding
=
self
.
pool_padding
,
global_pooling
=
self
.
global_pooling
,
ceil_mode
=
self
.
ceil_mode
,
exclusive
=
self
.
exclusive
,
)
if
self
.
pool_type
==
'max'
:
pool_out
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
data
,
kernel_size
=
self
.
pool_size
,
stride
=
self
.
pool_stride
,
padding
=
self
.
pool_padding
,
ceil_mode
=
self
.
ceil_mode
,
)
else
:
pool_out
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
data
,
kernel_size
=
self
.
pool_size
,
stride
=
self
.
pool_stride
,
padding
=
self
.
pool_padding
,
ceil_mode
=
self
.
ceil_mode
,
exclusive
=
self
.
exclusive
,
)
out
=
nn
.
batch_norm
(
pool_out
,
is_test
=
True
)
self
.
fetch_list
=
[
out
]
def
check_output
(
self
):
...
...
python/paddle/fluid/tests/unittests/mlu/test_pool2d_op_mlu.py
浏览文件 @
2ce1f04d
...
...
@@ -734,86 +734,76 @@ class TestPool2DAPI(unittest.TestCase):
)
ksize
=
[
3
,
3
]
out_1
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[
1
,
1
],
out_1
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
input_NHWC
,
kernel_size
=
ksize
,
padding
=
[
1
,
1
],
data_format
=
"NHWC"
,
)
out_2
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[[
0
,
0
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
out_2
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
input_NHWC
,
kernel_size
=
ksize
,
padding
=
[[
0
,
0
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
data_format
=
"NHWC"
,
)
out_3
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[[
0
,
0
],
[
0
,
0
],
[
1
,
1
],
[
1
,
1
]],
out_3
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
input_NCHW
,
kernel_size
=
ksize
,
padding
=
[[
0
,
0
],
[
0
,
0
],
[
1
,
1
],
[
1
,
1
]],
data_format
=
"NCHW"
,
)
out_4
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[
1
,
2
,
1
,
0
],
out_4
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
input_NCHW
,
kernel_size
=
ksize
,
padding
=
[
1
,
2
,
1
,
0
],
data_format
=
"NCHW"
,
)
# test VALID
out_5
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
"VALID"
,
out_5
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
input_NCHW
,
kernel_size
=
ksize
,
padding
=
"VALID"
,
data_format
=
"NCHW"
,
)
out_6
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALID"
,
out_6
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
input_NHWC
,
kernel_size
=
ksize
,
padding
=
"VALID"
,
data_format
=
"NHWC"
,
)
# test SAME
out_7
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
[
4
,
4
],
pool_type
=
"avg"
,
pool_padding
=
"SAME"
,
out_7
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
input_NCHW
,
kernel_size
=
[
4
,
4
],
padding
=
"SAME"
,
data_format
=
"NCHW"
,
)
out_8
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
[
4
,
4
],
pool_type
=
"max"
,
pool_padding
=
"SAME"
,
out_8
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
input_NHWC
,
kernel_size
=
[
4
,
4
],
padding
=
"SAME"
,
data_format
=
"NHWC"
,
)
# test negetive
out_9
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC_negetive
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[
0
,
0
],
out_9
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
input_NHWC_negetive
,
kernel_size
=
ksize
,
padding
=
[
0
,
0
],
data_format
=
"NHWC"
,
)
assert
out_9
.
shape
==
(
2
,
-
1
,
3
,
3
)
out_10
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW_negetive
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[
0
,
0
],
out_10
=
paddle
.
nn
.
functional
.
avg_pool2d
(
x
=
input_NCHW_negetive
,
kernel_size
=
ksize
,
padding
=
[
0
,
0
],
data_format
=
"NCHW"
,
)
assert
out_10
.
shape
==
(
2
,
3
,
-
1
,
-
1
)
...
...
@@ -950,11 +940,10 @@ class TestPool2DAPI_Error(unittest.TestCase):
# data_format value error
def
run_2
():
out_2
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[
1
,
1
],
out_2
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
input_NHWC
,
kernel_size
=
ksize
,
padding
=
[
1
,
1
],
data_format
=
"NHWCC"
,
)
...
...
@@ -962,11 +951,10 @@ class TestPool2DAPI_Error(unittest.TestCase):
# padding str value error
def
run_3
():
out_3
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALIDSAME"
,
out_3
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
input_NHWC
,
kernel_size
=
ksize
,
padding
=
"VALIDSAME"
,
data_format
=
"NHWC"
,
)
...
...
@@ -974,11 +962,10 @@ class TestPool2DAPI_Error(unittest.TestCase):
# padding str valid and ceil_mode value error
def
run_4
():
out_4
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALID"
,
out_4
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
input_NHWC
,
kernel_size
=
ksize
,
padding
=
"VALID"
,
ceil_mode
=
True
,
data_format
=
"NHWC"
,
)
...
...
@@ -987,11 +974,10 @@ class TestPool2DAPI_Error(unittest.TestCase):
# padding with 8 ele. value error
def
run_5
():
out_5
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
1
,
1
]],
out_5
=
paddle
.
nn
.
functional
.
max_pool2d
(
x
=
input_NHWC
,
kernel_size
=
ksize
,
padding
=
[[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
1
,
1
]],
data_format
=
"NHWC"
,
)
...
...
python/paddle/fluid/tests/unittests/seresnext_net.py
浏览文件 @
2ce1f04d
...
...
@@ -141,8 +141,8 @@ def SE_ResNeXt50Small(use_feed):
conv
=
conv_bn_layer
(
input
=
conv
,
num_filters
=
16
,
filter_size
=
3
,
stride
=
1
,
act
=
'relu'
)
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_size
=
3
,
pool_stride
=
2
,
pool_padding
=
1
,
pool_type
=
'max'
conv
=
paddle
.
nn
.
functional
.
max_
pool2d
(
x
=
conv
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
cardinality
=
32
...
...
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
2ce1f04d
...
...
@@ -2121,8 +2121,8 @@ class TestBook(LayerTest):
fluid
.
default_main_program
(),
fluid
.
default_startup_program
()
):
x
=
self
.
_get_data
(
name
=
'x'
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
return
layers
.
pool2d
(
x
,
pool_size
=
[
5
,
3
],
pool_stride
=
[
1
,
2
],
pool_
padding
=
(
2
,
1
)
return
paddle
.
nn
.
functional
.
max_
pool2d
(
x
,
kernel_size
=
[
5
,
3
],
stride
=
[
1
,
2
],
padding
=
(
2
,
1
)
)
def
make_pool2d_infershape
(
self
):
...
...
@@ -2133,8 +2133,8 @@ class TestBook(LayerTest):
x
=
paddle
.
nn
.
functional
.
affine_grid
(
theta
,
out_shape
=
[
2
,
3
,
244
,
244
]
)
return
layers
.
pool2d
(
x
,
pool_size
=
[
5
,
3
],
pool_stride
=
[
1
,
2
],
pool_
padding
=
(
2
,
1
)
return
paddle
.
nn
.
functional
.
max_
pool2d
(
x
,
kernel_size
=
[
5
,
3
],
stride
=
[
1
,
2
],
padding
=
(
2
,
1
)
)
def
make_lstm_unit
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_nn_grad.py
浏览文件 @
2ce1f04d
...
...
@@ -431,7 +431,7 @@ class TestAvgPool2DDoubleGradCheckCase1(unittest.TestCase):
)
input_NCHW
.
persistable
=
True
y
=
layers
.
pool2d
(
input_NCHW
,
pool_size
=
2
,
pool_type
=
"avg"
)
y
=
paddle
.
nn
.
functional
.
avg_pool2d
(
input_NCHW
,
kernel_size
=
2
)
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
[
2
,
3
,
5
,
5
]).
astype
(
np
.
float32
)
gradient_checker
.
double_grad_check
(
...
...
@@ -533,7 +533,6 @@ class TestAvgPool2DDoubleGradCheckCase4(unittest.TestCase):
)
input_NCHW
.
persistable
=
True
y
=
layers
.
pool2d
(
input_NCHW
,
pool_size
=
[
4
,
4
],
pool_type
=
"avg"
)
y
=
paddle
.
nn
.
functional
.
avg_pool2d
(
input_NCHW
,
kernel_size
=
[
4
,
4
])
x_arr
=
np
.
random
.
uniform
(
-
1
,
1
,
[
2
,
3
,
5
,
5
]).
astype
(
np
.
float32
)
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_fetch_feed.py
浏览文件 @
2ce1f04d
...
...
@@ -27,10 +27,10 @@ from paddle.fluid import compiler
def
Lenet
(
data
,
class_dim
):
conv1
=
fluid
.
layers
.
conv2d
(
data
,
4
,
5
,
1
,
act
=
None
)
bn1
=
paddle
.
static
.
nn
.
batch_norm
(
conv1
,
act
=
'relu'
)
pool1
=
fluid
.
layers
.
pool2d
(
bn1
,
2
,
'max'
,
2
)
pool1
=
paddle
.
nn
.
functional
.
max_pool2d
(
bn1
,
2
,
2
)
conv2
=
fluid
.
layers
.
conv2d
(
pool1
,
16
,
5
,
1
,
act
=
None
)
bn2
=
paddle
.
static
.
nn
.
batch_norm
(
conv2
,
act
=
'relu'
)
pool2
=
fluid
.
layers
.
pool2d
(
bn2
,
2
,
'max'
,
2
)
pool2
=
paddle
.
nn
.
functional
.
max_pool2d
(
bn2
,
2
,
2
)
fc1
=
fluid
.
layers
.
fc
(
pool2
,
size
=
50
,
act
=
'relu'
)
fc2
=
fluid
.
layers
.
fc
(
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
...
...
python/paddle/fluid/tests/unittests/test_pool2d_op.py
浏览文件 @
2ce1f04d
...
...
@@ -16,7 +16,6 @@ import unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
paddle.fluid.tests.unittests.op_test
import
OpTest
...
...
@@ -1133,331 +1132,5 @@ create_test_padding_SAME_class(TestCase1_strides)
create_test_cudnn_padding_SAME_class
(
TestCase1_strides
)
# ----- test API
class
TestPool2DAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
x_NHWC
=
np
.
random
.
random
([
2
,
5
,
5
,
3
]).
astype
(
"float32"
)
x_NCHW
=
np
.
random
.
random
([
2
,
3
,
5
,
5
]).
astype
(
"float32"
)
input_NHWC
=
fluid
.
layers
.
data
(
name
=
"input_NHWC"
,
shape
=
[
2
,
5
,
5
,
3
],
append_batch_size
=
False
,
dtype
=
"float32"
,
)
input_NCHW
=
fluid
.
layers
.
data
(
name
=
"input_NCHW"
,
shape
=
[
2
,
3
,
5
,
5
],
append_batch_size
=
False
,
dtype
=
"float32"
,
)
input_NHWC_negetive
=
fluid
.
layers
.
data
(
name
=
"input_NHWC_negetive"
,
shape
=
[
2
,
-
1
,
5
,
3
],
append_batch_size
=
False
,
dtype
=
"float32"
,
)
input_NCHW_negetive
=
fluid
.
layers
.
data
(
name
=
"input_NCHW_negetive"
,
shape
=
[
2
,
3
,
-
1
,
-
1
],
append_batch_size
=
False
,
dtype
=
"float32"
,
)
ksize
=
[
3
,
3
]
out_1
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[
1
,
1
],
use_cudnn
=
False
,
data_format
=
"NHWC"
,
)
out_2
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[[
0
,
0
],
[
1
,
1
],
[
1
,
1
],
[
0
,
0
]],
use_cudnn
=
False
,
data_format
=
"NHWC"
,
)
out_3
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[[
0
,
0
],
[
0
,
0
],
[
1
,
1
],
[
1
,
1
]],
use_cudnn
=
False
,
data_format
=
"NCHW"
,
)
out_4
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[
1
,
2
,
1
,
0
],
use_cudnn
=
False
,
data_format
=
"NCHW"
,
)
# test VALID
out_5
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
"VALID"
,
use_cudnn
=
False
,
data_format
=
"NCHW"
,
)
out_6
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALID"
,
use_cudnn
=
False
,
data_format
=
"NHWC"
,
)
# test SAME
out_7
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW
,
pool_size
=
[
4
,
4
],
pool_type
=
"avg"
,
pool_padding
=
"SAME"
,
use_cudnn
=
False
,
data_format
=
"NCHW"
,
)
out_8
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
[
4
,
4
],
pool_type
=
"max"
,
pool_padding
=
"SAME"
,
use_cudnn
=
False
,
data_format
=
"NHWC"
,
)
# test negetive
out_9
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC_negetive
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[
0
,
0
],
use_cudnn
=
False
,
data_format
=
"NHWC"
,
)
assert
out_9
.
shape
==
(
2
,
-
1
,
3
,
3
)
out_10
=
fluid
.
layers
.
pool2d
(
input
=
input_NCHW_negetive
,
pool_size
=
ksize
,
pool_type
=
"avg"
,
pool_padding
=
[
0
,
0
],
use_cudnn
=
False
,
data_format
=
"NCHW"
,
)
assert
out_10
.
shape
==
(
2
,
3
,
-
1
,
-
1
)
exe
=
fluid
.
Executor
(
place
=
fluid
.
CPUPlace
())
[
res_1
,
res_2
,
res_3
,
res_4
,
res_5
,
res_6
,
res_7
,
res_8
]
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input_NHWC"
:
x_NHWC
,
"input_NCHW"
:
x_NCHW
,
"input_NHWC_negetive"
:
x_NHWC
,
"input_NCHW_negetive"
:
x_NCHW
,
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
,
out_7
,
out_8
],
)
assert
np
.
allclose
(
res_1
,
pool2D_forward_naive
(
x
=
x_NHWC
,
ksize
=
ksize
,
pool_type
=
"max"
,
strides
=
[
1
,
1
],
paddings
=
[
1
,
1
],
data_format
=
"NHWC"
,
),
)
assert
np
.
allclose
(
res_2
,
pool2D_forward_naive
(
x
=
x_NHWC
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
],
paddings
=
[
1
,
1
,
1
,
1
],
data_format
=
"NHWC"
,
),
)
assert
np
.
allclose
(
res_3
,
pool2D_forward_naive
(
x
=
x_NCHW
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
],
paddings
=
[
1
,
1
,
1
,
1
],
data_format
=
"NCHW"
,
),
rtol
=
0.07
,
atol
=
1e-05
,
)
assert
np
.
allclose
(
res_4
,
pool2D_forward_naive
(
x
=
x_NCHW
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
],
paddings
=
[
1
,
2
,
1
,
0
],
data_format
=
"NCHW"
,
),
rtol
=
0.07
,
atol
=
1e-05
,
)
# VALID
assert
np
.
allclose
(
res_5
,
pool2D_forward_naive
(
x
=
x_NCHW
,
ksize
=
ksize
,
pool_type
=
"avg"
,
strides
=
[
1
,
1
],
paddings
=
[
10
,
20
],
# any ele is ok
padding_algorithm
=
"VALID"
,
data_format
=
"NCHW"
,
),
rtol
=
0.07
,
atol
=
1e-05
,
)
assert
np
.
allclose
(
res_6
,
pool2D_forward_naive
(
x
=
x_NHWC
,
ksize
=
ksize
,
pool_type
=
"max"
,
strides
=
[
1
,
1
],
paddings
=
[
10
,
20
],
padding_algorithm
=
"VALID"
,
data_format
=
"NHWC"
,
),
)
# SAME
assert
np
.
allclose
(
res_7
,
pool2D_forward_naive
(
x
=
x_NCHW
,
ksize
=
[
4
,
4
],
pool_type
=
"avg"
,
strides
=
[
1
,
1
],
paddings
=
[
10
,
20
],
padding_algorithm
=
"SAME"
,
data_format
=
"NCHW"
,
),
rtol
=
0.07
,
atol
=
1e-05
,
)
assert
np
.
allclose
(
res_8
,
pool2D_forward_naive
(
x
=
x_NHWC
,
ksize
=
[
4
,
4
],
pool_type
=
"max"
,
strides
=
[
1
,
1
],
paddings
=
[
10
,
20
],
padding_algorithm
=
"SAME"
,
data_format
=
"NHWC"
,
),
)
class
TestPool2DAPI_Error
(
unittest
.
TestCase
):
def
test_api
(
self
):
input_NHWC
=
fluid
.
layers
.
data
(
name
=
"input_NHWC"
,
shape
=
[
2
,
5
,
5
,
3
],
append_batch_size
=
False
,
dtype
=
"float32"
,
)
ksize
=
[
3
,
3
]
# cudnn type error
def
run_1
():
out_1
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[
1
,
1
],
use_cudnn
=
[
0
],
data_format
=
"NHWC"
,
)
self
.
assertRaises
(
TypeError
,
run_1
)
# data_format value error
def
run_2
():
out_2
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[
1
,
1
],
use_cudnn
=
False
,
data_format
=
"NHWCC"
,
)
self
.
assertRaises
(
ValueError
,
run_2
)
# padding str value error
def
run_3
():
out_3
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALIDSAME"
,
use_cudnn
=
False
,
data_format
=
"NHWC"
,
)
self
.
assertRaises
(
ValueError
,
run_3
)
# padding str valid and ceil_mode value error
def
run_4
():
out_4
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
"VALID"
,
use_cudnn
=
False
,
ceil_mode
=
True
,
data_format
=
"NHWC"
,
)
self
.
assertRaises
(
ValueError
,
run_4
)
# padding with 8 ele. value error
def
run_5
():
out_5
=
fluid
.
layers
.
pool2d
(
input
=
input_NHWC
,
pool_size
=
ksize
,
pool_type
=
"max"
,
pool_padding
=
[[
1
,
1
],
[
0
,
0
],
[
0
,
0
],
[
1
,
1
]],
use_cudnn
=
False
,
data_format
=
"NHWC"
,
)
self
.
assertRaises
(
ValueError
,
run_5
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/nn/functional/pooling.py
浏览文件 @
2ce1f04d
...
...
@@ -1427,29 +1427,53 @@ def max_pool2d(
)
dtype
=
helper
.
input_dtype
(
input_param_name
=
'x'
)
pool_out
=
helper
.
create_variable_for_type_inference
(
dtype
)
mask
=
helper
.
create_variable_for_type_inference
(
"int32"
)
outputs
=
{
"Out"
:
pool_out
,
"Mask"
:
mask
}
helper
.
append_op
(
type
=
op_type
,
inputs
=
{
"X"
:
x
},
outputs
=
outputs
,
attrs
=
{
"pooling_type"
:
'max'
,
"ksize"
:
kernel_size
,
"global_pooling"
:
False
,
"strides"
:
stride
,
"paddings"
:
padding
,
"padding_algorithm"
:
padding_algorithm
,
"use_cudnn"
:
True
,
"ceil_mode"
:
ceil_mode
,
"use_mkldnn"
:
False
,
"exclusive"
:
True
,
"data_format"
:
data_format
,
},
)
if
return_mask
:
mask
=
helper
.
create_variable_for_type_inference
(
"int32"
)
outputs
=
{
"Out"
:
pool_out
,
"Mask"
:
mask
}
return
(
pool_out
,
mask
)
if
return_mask
else
pool_out
helper
.
append_op
(
type
=
"max_pool2d_with_index"
,
inputs
=
{
"X"
:
x
},
outputs
=
outputs
,
attrs
=
{
"pooling_type"
:
'max'
,
"ksize"
:
kernel_size
,
"global_pooling"
:
False
,
"strides"
:
stride
,
"paddings"
:
padding
,
"padding_algorithm"
:
padding_algorithm
,
"use_cudnn"
:
True
,
"ceil_mode"
:
ceil_mode
,
"use_mkldnn"
:
False
,
"exclusive"
:
True
,
"data_format"
:
data_format
,
},
)
return
(
pool_out
,
mask
)
else
:
outputs
=
{
"Out"
:
pool_out
}
helper
.
append_op
(
type
=
"pool2d"
,
inputs
=
{
"X"
:
x
},
outputs
=
outputs
,
attrs
=
{
"pooling_type"
:
'max'
,
"ksize"
:
kernel_size
,
"global_pooling"
:
False
,
"strides"
:
stride
,
"paddings"
:
padding
,
"padding_algorithm"
:
padding_algorithm
,
"use_cudnn"
:
True
,
"ceil_mode"
:
ceil_mode
,
"use_mkldnn"
:
False
,
"exclusive"
:
True
,
"data_format"
:
data_format
,
},
)
return
pool_out
def
max_pool3d
(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录