未验证 提交 2cb28014 编写于 作者: J JYChen 提交者: GitHub

remove fluid memory_usage_calc&model_stat&op_frequence (#53838)

上级 78967ad2
......@@ -14,21 +14,13 @@
# limitations under the License.
from . import memory_usage_calc
from .memory_usage_calc import *
from . import op_frequence
from .op_frequence import *
from . import extend_optimizer
from .extend_optimizer import *
from . import model_stat
from .model_stat import *
from . import optimizer
from .optimizer import *
__all__ = []
__all__ += memory_usage_calc.__all__
__all__ += op_frequence.__all__
__all__ += extend_optimizer.__all__
__all__ += optimizer.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module provides a memory usage calculate function for user.
The purpose of this API is to allow users to estimate memory usage of
a program under a special batch size, then user can set appropriate
batch size to fully utilize a GPU.
This API is still under active development and may change drastically.
"""
from .. import core
from ..framework import Program, Variable
__all__ = ['memory_usage']
dtype_to_size = {
core.VarDesc.VarType.FP16: 2,
core.VarDesc.VarType.FP32: 4,
core.VarDesc.VarType.FP64: 8,
core.VarDesc.VarType.INT16: 2,
core.VarDesc.VarType.INT32: 4,
core.VarDesc.VarType.INT64: 8,
core.VarDesc.VarType.BOOL: 1,
core.VarDesc.VarType.UINT8: 1,
}
DEBUG = False
def memory_usage(program, batch_size):
r"""
Get the estimate memory usage of program with input batch size.
Args:
program(Program): The current Program.
batch_size(int): The current input data batch_size.
Returns:
min_total_memory(float): the estimate memory usage lower bound.
max_total_memory(float): the estimate memory usage upper bound.
unit_str(string): the unit of estimate usage result.
Examples:
>>> import paddle.fluid as fluid
>>> lower_usage, upper_usage, unit = fluid.contrib.memory_usage(
fluid.default_main_program(), batch_size=10)
>>> print "memory usage is about %.3f - %.3f %s" % \
(lower_usage, upper_usage, unit)
"""
# Parameters check
if not isinstance(program, Program):
raise TypeError(
"Calculating Memory Usage requires Program as its Parameter."
"But you passed in %s" % (type(program))
)
if batch_size <= 0:
raise ValueError("The batch size need to be positive.")
# Get the var_name list of first block and calculate
total_memory = 0.0
processed_var_names = set(["@EMPTY@"])
for op in program.global_block().ops:
for var_name in op.output_arg_names:
if var_name in processed_var_names:
continue
processed_var_names.add(var_name)
var = program.global_block().vars[var_name]
if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR:
continue
data_count = 1
neg_dim_count = 0
for x in var.shape:
if x < 0:
if neg_dim_count >= 1:
raise ValueError(
"Var %s has more than one negative dim."
% (var_name)
)
neg_dim_count += 1
data_count *= batch_size * (-x)
else:
data_count *= x
var_memory = data_count * dtype_to_size[var.dtype]
if DEBUG:
print("%s memory usage: %d" % (var.name, var_memory))
total_memory += var_memory
if DEBUG:
print("total memory usage: %.2f" % (total_memory))
# Convert appropriate unit
unit_str = "B"
if total_memory > 1024:
total_memory /= 1024
unit_str = "KB"
if total_memory > 1024:
total_memory /= 1024
unit_str = "MB"
# Append extra memory consumption (5% - 10%)
min_total_memory = total_memory * 1.05
max_total_memory = total_memory * 1.1
return min_total_memory, max_total_memory, unit_str
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Example:
>>from paddle.fluid.contrib.model_stat import summary
>>main_program = ...
>>summary(main_program)
+-----+------------+----------------+----------------+---------+------------+
| No. | TYPE | INPUT | OUTPUT | PARAMs | FLOPs |
+-----+------------+----------------+----------------+---------+------------+
| 0 | conv2d | (3, 200, 200) | (64, 100, 100) | 9408 | 188160000 |
| 1 | batch_norm | (64, 100, 100) | (64, 100, 100) | 256 | 640000 |
| 2 | relu | (64, 100, 100) | (64, 100, 100) | 0 | 640000 |
| 3 | pool2d | (64, 100, 100) | (64, 50, 50) | 0 | 1440000 |
...
| 176 | conv2d | (512, 7, 7) | (512, 7, 7) | 2359296 | 231211008 |
| 177 | relu | (512, 7, 7) | (512, 7, 7) | 0 | 25088 |
| 178 | conv2d | (512, 7, 7) | (2048, 7, 7) | 1048576 | 102760448 |
| 179 | relu | (2048, 7, 7) | (2048, 7, 7) | 0 | 100352 |
| 180 | pool2d | (2048, 7, 7) | (2048, 1, 1) | 0 | 100352 |
+-----+------------+----------------+----------------+---------+------------+
Total PARAMs: 48017344(0.0480G)
Total FLOPs: 11692747751(11.69G)
'''
from collections import OrderedDict
def summary(main_prog):
'''
It can summary model's PARAMS, FLOPs until now.
It support common operator like conv, fc, pool, relu, sigmoid, bn etc.
Args:
main_prog: main program
Returns:
print summary on terminal
'''
collected_ops_list = []
for one_b in main_prog.blocks:
block_vars = one_b.vars
for one_op in one_b.ops:
op_info = OrderedDict()
spf_res = _summary_model(block_vars, one_op)
if spf_res is None:
continue
# TODO: get the operator name
op_info['type'] = one_op.type
op_info['input_shape'] = spf_res[0][1:]
op_info['out_shape'] = spf_res[1][1:]
op_info['PARAMs'] = spf_res[2]
op_info['FLOPs'] = spf_res[3]
collected_ops_list.append(op_info)
summary_table, total = _format_summary(collected_ops_list)
_print_summary(summary_table, total)
def _summary_model(block_vars, one_op):
'''
Compute operator's params and flops.
Args:
block_vars: all vars of one block
one_op: one operator to count
Returns:
in_data_shape: one operator's input data shape
out_data_shape: one operator's output data shape
params: one operator's PARAMs
flops: : one operator's FLOPs
'''
if one_op.type in ['conv2d', 'depthwise_conv2d']:
k_arg_shape = block_vars[one_op.input("Filter")[0]].shape
in_data_shape = block_vars[one_op.input("Input")[0]].shape
out_data_shape = block_vars[one_op.output("Output")[0]].shape
c_out, c_in, k_h, k_w = k_arg_shape
_, c_out_, h_out, w_out = out_data_shape
assert c_out == c_out_, 'shape error!'
k_groups = one_op.attr("groups")
kernel_ops = k_h * k_w * (c_in / k_groups)
bias_ops = 0 if one_op.input("Bias") == [] else 1
params = c_out * (kernel_ops + bias_ops)
flops = h_out * w_out * c_out * (kernel_ops + bias_ops)
# base nvidia paper, include mul and add
flops = 2 * flops
elif one_op.type == 'pool2d':
in_data_shape = block_vars[one_op.input("X")[0]].shape
out_data_shape = block_vars[one_op.output("Out")[0]].shape
_, c_out, h_out, w_out = out_data_shape
k_size = one_op.attr("ksize")
params = 0
flops = h_out * w_out * c_out * (k_size[0] * k_size[1])
elif one_op.type == 'mul':
k_arg_shape = block_vars[one_op.input("Y")[0]].shape
in_data_shape = block_vars[one_op.input("X")[0]].shape
out_data_shape = block_vars[one_op.output("Out")[0]].shape
# TODO: fc has mul ops
# add attr to mul op, tell us whether it belongs to 'fc'
# this's not the best way
if 'fc' not in one_op.output("Out")[0]:
return None
k_in, k_out = k_arg_shape
# bias in sum op
params = k_in * k_out + 1
flops = k_in * k_out
elif one_op.type in ['sigmoid', 'tanh', 'relu', 'leaky_relu', 'prelu']:
in_data_shape = block_vars[one_op.input("X")[0]].shape
out_data_shape = block_vars[one_op.output("Out")[0]].shape
params = 0
if one_op.type == 'prelu':
params = 1
flops = 1
for one_dim in in_data_shape:
flops *= one_dim
elif one_op.type == 'batch_norm':
in_data_shape = block_vars[one_op.input("X")[0]].shape
out_data_shape = block_vars[one_op.output("Y")[0]].shape
_, c_in, h_out, w_out = in_data_shape
# gamma, beta
params = c_in * 2
# compute mean and std
flops = h_out * w_out * c_in * 2
else:
return None
return in_data_shape, out_data_shape, params, flops
def _format_summary(collected_ops_list):
'''
Format summary report.
Args:
collected_ops_list: the collected operator with summary
Returns:
summary_table: summary report format
total: sum param and flops
'''
_verify_dependent_package()
from prettytable import PrettyTable
summary_table = PrettyTable(
["No.", "TYPE", "INPUT", "OUTPUT", "PARAMs", "FLOPs"]
)
summary_table.align = 'r'
total = {}
total_params = []
total_flops = []
for i, one_op in enumerate(collected_ops_list):
# notice the order
table_row = [
i,
one_op['type'],
one_op['input_shape'],
one_op['out_shape'],
int(one_op['PARAMs']),
int(one_op['FLOPs']),
]
summary_table.add_row(table_row)
total_params.append(int(one_op['PARAMs']))
total_flops.append(int(one_op['FLOPs']))
total['params'] = total_params
total['flops'] = total_flops
return summary_table, total
def _verify_dependent_package():
"""
Verify whether `prettytable` is installed.
"""
try:
from prettytable import PrettyTable
except ImportError:
raise ImportError(
"paddle.summary() requires package `prettytable`, place install it firstly using `pip install prettytable`. "
)
def _print_summary(summary_table, total):
'''
Print all the summary on terminal.
Args:
summary_table: summary report format
total: sum param and flops
'''
parmas = total['params']
flops = total['flops']
print(summary_table)
print(
'Total PARAMs: {}({:.4f}M)'.format(sum(parmas), sum(parmas) / (10**6))
)
print('Total FLOPs: {}({:.2f}G)'.format(sum(flops), sum(flops) / 10**9))
print(
"Notice: \n now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu)]"
)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from ..framework import Program
__all__ = ['op_freq_statistic']
def op_freq_statistic(program):
"""
Statistics of Op frequency.
Args:
program(Program): The current Program.
Returns:
uni_op_freq(dict): the single op frequency.
adj_2_op_freq(dict): the two adjacent ops frequency.
Examples:
>>> import paddle.fluid as fluid
>>> uni_op_freq, adj_2_op_freq = fluid.contrib.op_freq_statistic(
>>> fluid.default_main_program())
>>> for op_type, op_num in uni_op_freq:
>>> print("%s \t %d" % (op_type, op_num))
>>> for op_type, op_num in adj_2_op_freq:
>>> print("%s \t %d" % (op_type, op_num))
"""
if not isinstance(program, Program):
raise TypeError(
"The input type should be Porgram."
"But you passed in %s" % (type(program))
)
uni_op_freq = OrderedDict()
adj_2_op_freq = OrderedDict()
op_in_ops = OrderedDict()
parameters = [p.name for p in program.blocks[0].all_parameters()]
# get uni_op_freq
for op in program.global_block().ops:
had_recorded = False
for var_name in op.output_arg_names:
if var_name in parameters:
continue
if not had_recorded and uni_op_freq.has_key(op.type):
uni_op_freq[op.type] += 1
had_recorded = True
elif not had_recorded:
uni_op_freq[op.type] = 1
had_recorded = True
# get adj_2_op_freq
var_gen_op = {}
for op in program.global_block().ops:
for var_name in op.input_arg_names:
if var_name in parameters:
continue
if var_gen_op.has_key(var_name):
assert len(var_gen_op[var_name]) > 0
if op_in_ops.has_key(op.type):
op_in_ops[op.type].append(var_gen_op[var_name][-1])
else:
op_in_ops[op.type] = [var_gen_op[var_name][-1]]
else:
print(
"Var's generate op is not found,%s, %s"
% (var_name, op.type)
)
for var_name in op.output_arg_names:
if var_gen_op.has_key(var_name):
var_gen_op[var_name].append(op.type)
else:
var_gen_op[var_name] = [op.type]
for op, in_ops in op_in_ops.iteritems():
for in_op in in_ops:
op_op = in_op + "->" + op
if adj_2_op_freq.has_key(op_op):
adj_2_op_freq[op_op] += 1
else:
adj_2_op_freq[op_op] = 1
uni_op_freq = sorted(
uni_op_freq.items(), key=lambda item: item[1], reverse=True
)
adj_2_op_freq = sorted(
adj_2_op_freq.items(), key=lambda item: item[1], reverse=True
)
return uni_op_freq, adj_2_op_freq
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import unittest
import paddle
from paddle import fluid
def train_simulator(test_batch_size=10):
if test_batch_size <= 0:
raise ValueError(
"batch_size should be a positive integeral value, "
"but got batch_size={}".format(test_batch_size)
)
x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
y_predict = paddle.static.nn.fc(x, size=1, activation=None)
y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32')
cost = paddle.nn.functional.square_error_cost(input=y_predict, label=y)
avg_cost = paddle.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
# Calculate memory usage in current network config
lower_usage, upper_usage, unit = fluid.contrib.memory_usage(
fluid.default_main_program(), batch_size=test_batch_size
)
print(
"memory usage is about %.3f - %.3f %s"
% (lower_usage, upper_usage, unit)
)
class TestMemoryUsage(unittest.TestCase):
def test_with_unit_B(self):
with self.program_scope_guard():
train_simulator()
def test_with_unit_KB(self):
with self.program_scope_guard():
train_simulator(test_batch_size=1000)
def test_with_unit_MB(self):
with self.program_scope_guard():
train_simulator(test_batch_size=100000)
@contextlib.contextmanager
def program_scope_guard(self):
prog = fluid.Program()
startup_prog = fluid.Program()
scope = fluid.core.Scope()
with fluid.scope_guard(scope):
with fluid.program_guard(prog, startup_prog):
yield
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册