Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2c2347df
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2c2347df
编写于
2月 27, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into convert
上级
72c13278
111e7710
变更
24
隐藏空白更改
内联
并排
Showing
24 changed file
with
254 addition
and
30 deletion
+254
-30
demo/image_classification/prediction.py
demo/image_classification/prediction.py
+1
-1
demo/model_zoo/resnet/classify.py
demo/model_zoo/resnet/classify.py
+1
-1
paddle/api/Arguments.cpp
paddle/api/Arguments.cpp
+7
-0
paddle/api/GradientMachine.cpp
paddle/api/GradientMachine.cpp
+4
-4
paddle/api/PaddleAPI.h
paddle/api/PaddleAPI.h
+3
-2
paddle/api/Trainer.cpp
paddle/api/Trainer.cpp
+4
-5
paddle/gserver/gradientmachines/GradientMachine.h
paddle/gserver/gradientmachines/GradientMachine.h
+4
-0
paddle/gserver/gradientmachines/MultiGradientMachine.cpp
paddle/gserver/gradientmachines/MultiGradientMachine.cpp
+12
-0
paddle/gserver/gradientmachines/MultiGradientMachine.h
paddle/gserver/gradientmachines/MultiGradientMachine.h
+4
-0
paddle/gserver/gradientmachines/NeuralNetwork.cpp
paddle/gserver/gradientmachines/NeuralNetwork.cpp
+3
-4
paddle/gserver/gradientmachines/NeuralNetwork.h
paddle/gserver/gradientmachines/NeuralNetwork.h
+2
-1
paddle/gserver/layers/CosSimLayer.cpp
paddle/gserver/layers/CosSimLayer.cpp
+2
-2
paddle/gserver/layers/CosSimVecMatLayer.cpp
paddle/gserver/layers/CosSimVecMatLayer.cpp
+2
-2
paddle/math/tests/test_RowBuffer.cpp
paddle/math/tests/test_RowBuffer.cpp
+4
-4
paddle/py_paddle/util.py
paddle/py_paddle/util.py
+1
-1
python/paddle/reader/__init__.py
python/paddle/reader/__init__.py
+2
-0
python/paddle/reader/creator.py
python/paddle/reader/creator.py
+53
-0
python/paddle/reader/tests/CMakeLists.txt
python/paddle/reader/tests/CMakeLists.txt
+5
-0
python/paddle/reader/tests/creator_test.py
python/paddle/reader/tests/creator_test.py
+38
-0
python/paddle/reader/tests/test_data_creator.txt
python/paddle/reader/tests/test_data_creator.txt
+3
-0
python/paddle/v2/dataset/__init__.py
python/paddle/v2/dataset/__init__.py
+0
-0
python/paddle/v2/dataset/config.py
python/paddle/v2/dataset/config.py
+8
-0
python/paddle/v2/dataset/mnist.py
python/paddle/v2/dataset/mnist.py
+39
-0
python/paddle/v2/optimizer.py
python/paddle/v2/optimizer.py
+52
-3
未找到文件。
demo/image_classification/prediction.py
浏览文件 @
2c2347df
...
...
@@ -126,7 +126,7 @@ class ImageClassifier():
# For oversampling, average predictions across crops.
# If not, the shape of output[name]: (1, class_number),
# the mean is also applicable.
return
output
[
output_layer
].
mean
(
0
)
return
output
[
output_layer
]
[
'value'
]
.
mean
(
0
)
def
predict
(
self
,
image
=
None
,
output_layer
=
None
):
assert
isinstance
(
image
,
basestring
)
...
...
demo/model_zoo/resnet/classify.py
浏览文件 @
2c2347df
...
...
@@ -156,7 +156,7 @@ class ImageClassifier():
# For oversampling, average predictions across crops.
# If not, the shape of output[name]: (1, class_number),
# the mean is also applicable.
res
[
name
]
=
output
[
name
].
mean
(
0
)
res
[
name
]
=
output
[
name
]
[
'value'
]
.
mean
(
0
)
return
res
...
...
paddle/api/Arguments.cpp
浏览文件 @
2c2347df
...
...
@@ -38,6 +38,13 @@ Arguments* Arguments::createByPaddleArgumentVector(void* ptr) {
return
args
;
}
Arguments
*
Arguments
::
createByPaddleArgument
(
const
void
*
ptr
)
{
auto
p
=
(
paddle
::
Argument
*
)(
ptr
);
auto
args
=
new
Arguments
();
args
->
m
->
outputs
.
push_back
(
*
p
);
return
args
;
}
Matrix
*
Arguments
::
getSlotValue
(
size_t
idx
)
const
throw
(
RangeError
)
{
auto
&
a
=
m
->
getArg
(
idx
);
return
Matrix
::
createByPaddleMatrixPtr
(
&
a
.
value
);
...
...
paddle/api/GradientMachine.cpp
浏览文件 @
2c2347df
...
...
@@ -144,12 +144,12 @@ Parameter* GradientMachine::getParameter(size_t i) throw(RangeError) {
void
GradientMachine
::
randParameters
()
{
m
->
machine
->
randParameters
();
}
Matrix
*
GradientMachine
::
getLayerOutput
(
const
std
::
string
&
layerName
)
const
Arguments
*
GradientMachine
::
getLayerOutput
(
const
std
::
string
&
layerName
)
const
throw
(
UnsupportError
)
{
auto
nn
=
std
::
dynamic_pointer_cast
<
paddle
::
NeuralNetwork
>
(
m
->
machine
)
;
auto
nn
=
m
->
machine
;
if
(
nn
)
{
auto
mat
=
nn
->
getLayerOutput
(
layerName
);
return
Matrix
::
createByPaddleMatrixPtr
(
&
mat
);
auto
arg
=
nn
->
getLayerOutput
(
layerName
);
return
Arguments
::
createByPaddleArgument
(
&
arg
);
}
else
{
throw
UnsupportError
();
}
...
...
paddle/api/PaddleAPI.h
浏览文件 @
2c2347df
...
...
@@ -454,6 +454,7 @@ public:
private:
static
Arguments
*
createByPaddleArgumentVector
(
void
*
ptr
);
static
Arguments
*
createByPaddleArgument
(
const
void
*
ptr
);
void
*
getInternalArgumentsPtr
()
const
;
private:
...
...
@@ -769,7 +770,7 @@ public:
void
randParameters
();
Matrix
*
getLayerOutput
(
const
std
::
string
&
layerName
)
const
Arguments
*
getLayerOutput
(
const
std
::
string
&
layerName
)
const
throw
(
UnsupportError
);
/**
...
...
@@ -956,7 +957,7 @@ public:
Arguments
*
getForwardOutput
();
Matrix
*
getLayerOutput
(
const
std
::
string
&
layerName
)
;
Arguments
*
getLayerOutput
(
const
std
::
string
&
layerName
)
const
;
};
/// the N-Best results generated from one input sequence.
...
...
paddle/api/Trainer.cpp
浏览文件 @
2c2347df
...
...
@@ -131,12 +131,11 @@ void Trainer::testOneDataBatch(size_t batchSize, const Arguments& args) {
void
TrainerPrivate
::
finishTestPeriod
()
{
tester_
->
finishTestPeriod
();
}
void
Trainer
::
finishTestPeriod
()
{
m
->
finishTestPeriod
();
}
Matrix
*
Trainer
::
getLayerOutput
(
const
std
::
string
&
layerName
)
{
auto
nn
=
std
::
dynamic_pointer_cast
<
paddle
::
NeuralNetwork
>
(
this
->
m
->
getGradientMachine
());
Arguments
*
Trainer
::
getLayerOutput
(
const
std
::
string
&
layerName
)
const
{
auto
nn
=
this
->
m
->
getGradientMachine
();
CHECK
(
nn
)
<<
"trainerInternal_.getGradientMachine() is not NeuralNetwork"
;
auto
m
=
nn
->
getLayerOutput
(
layerName
);
return
Matrix
::
createByPaddleMatrixPtr
(
&
m
);
auto
arg
=
nn
->
getLayerOutput
(
layerName
);
return
Arguments
::
createByPaddleArgument
(
&
arg
);
}
void
Trainer
::
forwardOneBatch
(
size_t
batchSize
)
{
...
...
paddle/gserver/gradientmachines/GradientMachine.h
浏览文件 @
2c2347df
...
...
@@ -134,6 +134,10 @@ public:
backward
(
callback
);
}
virtual
Argument
getLayerOutput
(
const
std
::
string
&
layerName
)
{
return
*
((
Argument
*
)
nullptr
);
}
// see comment in Layer.h for the function with the same name
virtual
void
resetState
()
{}
...
...
paddle/gserver/gradientmachines/MultiGradientMachine.cpp
浏览文件 @
2c2347df
...
...
@@ -282,6 +282,18 @@ void MultiGradientMachine::forwardBackward(const std::vector<Argument>& inArgs,
backwardImp
(
callback
);
}
Argument
MultiGradientMachine
::
getLayerOutput
(
const
std
::
string
&
layerName
)
{
std
::
vector
<
Argument
>
args
;
args
.
reserve
(
threads_
.
size
());
for
(
auto
&
thread
:
threads_
)
{
args
.
push_back
(
thread
->
getGradientMachine
()
->
getLayerOutput
(
layerName
));
}
outLayerArgs_
.
concat
(
args
,
false
/* use_gpu */
,
outArgStream_
,
passType_
);
return
outLayerArgs_
;
}
void
MultiGradientMachine
::
backwardImp
(
const
UpdateCallback
&
callback
)
{
for
(
size_t
i
=
0
;
i
<
parameters_
.
size
();
i
++
)
{
if
(
!
parameters_
[
i
]
->
useGpu
()
||
parameters_
[
i
]
->
isStatic
())
continue
;
...
...
paddle/gserver/gradientmachines/MultiGradientMachine.h
浏览文件 @
2c2347df
...
...
@@ -189,6 +189,8 @@ public:
PassType
passType
,
const
UpdateCallback
&
callback
);
virtual
Argument
getLayerOutput
(
const
std
::
string
&
layerName
);
virtual
void
onPassEnd
();
virtual
void
finish
();
...
...
@@ -314,6 +316,8 @@ protected:
std
::
vector
<
Argument
>
outArgs_
;
hl_stream_t
outArgStream_
;
Argument
outLayerArgs_
;
/// ParameterType which needs to be merged from each GPU
std
::
vector
<
ParameterType
>
mergeTypes_
;
int
numDevices_
;
/* number of gpu devices */
...
...
paddle/gserver/gradientmachines/NeuralNetwork.cpp
浏览文件 @
2c2347df
...
...
@@ -293,11 +293,10 @@ void NeuralNetwork::backward(const UpdateCallback& callback) {
}
}
MatrixPtr
NeuralNetwork
::
getLayerOutput
(
const
std
::
string
&
layerName
)
{
auto
it
=
layerMap_
.
find
(
layerName
);
CHECK
(
it
!=
layerMap_
.
end
())
<<
"Cannot find layer: "
<<
layerName
;
return
it
->
second
->
getOutputValue
();
Argument
NeuralNetwork
::
getLayerOutput
(
const
std
::
string
&
layerName
)
{
return
getLayer
(
layerName
)
->
getOutput
();
}
void
NeuralNetwork
::
onPassEnd
()
{
for
(
auto
&
layer
:
layers_
)
{
layer
->
onPassEnd
();
...
...
paddle/gserver/gradientmachines/NeuralNetwork.h
浏览文件 @
2c2347df
...
...
@@ -87,7 +87,8 @@ public:
virtual
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
);
MatrixPtr
getLayerOutput
(
const
std
::
string
&
layerName
);
virtual
Argument
getLayerOutput
(
const
std
::
string
&
layerName
);
const
LayerPtr
&
getLayer
(
const
std
::
string
&
layerName
)
const
{
auto
it
=
layerMap_
.
find
(
layerName
);
CHECK
(
it
!=
layerMap_
.
end
())
<<
"Unknown layer "
<<
layerName
;
...
...
paddle/gserver/layers/CosSimLayer.cpp
浏览文件 @
2c2347df
...
...
@@ -42,7 +42,7 @@ void CosSimLayer::forward(PassType passType) {
/* malloc memory for the output_ if necessary */
int
batchSize
=
getInputValue
(
0
)
->
getHeight
();
int
size
=
getSize
();
CHECK_EQ
(
forward_
.
size
(),
1
)
<<
"Only one forward function needed"
;
CHECK_EQ
(
forward_
.
size
(),
1
UL
)
<<
"Only one forward function needed"
;
{
REGISTER_TIMER_INFO
(
"CosFwResetTimer"
,
getName
().
c_str
());
...
...
@@ -68,7 +68,7 @@ void CosSimLayer::forward(PassType passType) {
void
CosSimLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
/* activation */
{
REGISTER_TIMER_INFO
(
"CosBpAtvTimer"
,
getName
().
c_str
());
CHECK_EQ
(
backward_
.
size
(),
1
)
<<
"Only one backward function needed"
;
CHECK_EQ
(
backward_
.
size
(),
1
UL
)
<<
"Only one backward function needed"
;
const
auto
outG
=
this
->
getOutputGrad
();
const
auto
outV
=
this
->
getOutputValue
();
...
...
paddle/gserver/layers/CosSimVecMatLayer.cpp
浏览文件 @
2c2347df
...
...
@@ -112,7 +112,7 @@ bool CosSimVecMatLayer::init(const LayerMap& layerMap,
void
CosSimVecMatLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
CHECK_EQ
(
forward_
.
size
(),
1
)
<<
"Only one forward function needed"
;
CHECK_EQ
(
forward_
.
size
(),
1
UL
)
<<
"Only one forward function needed"
;
MatrixPtr
inV0
=
getInputValue
(
0
);
MatrixPtr
inV1
=
getInputValue
(
1
);
...
...
@@ -145,7 +145,7 @@ void CosSimVecMatLayer::forward(PassType passType) {
}
void
CosSimVecMatLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
CHECK_EQ
(
backward_
.
size
(),
1
)
<<
"Only one forward function needed"
;
CHECK_EQ
(
backward_
.
size
(),
1
UL
)
<<
"Only one forward function needed"
;
MatrixPtr
inV0
=
getInputValue
(
0
);
MatrixPtr
inV1
=
getInputValue
(
1
);
...
...
paddle/math/tests/test_RowBuffer.cpp
浏览文件 @
2c2347df
...
...
@@ -17,10 +17,10 @@ limitations under the License. */
TEST
(
RowBuffer
,
testAutoGrow
)
{
paddle
::
RowBuffer
buf
(
128
);
ASSERT_EQ
(
128
,
buf
.
getWidth
());
ASSERT_EQ
(
128
UL
,
buf
.
getWidth
());
ASSERT_TRUE
(
buf
.
isAutoGrowth
());
buf
.
resize
(
2
);
ASSERT_EQ
(
2
,
buf
.
getRowCount
());
ASSERT_EQ
(
2
UL
,
buf
.
getRowCount
());
for
(
size_t
i
=
0
;
i
<
buf
.
getWidth
()
*
2
;
++
i
)
{
buf
.
data
()[
i
]
=
i
;
}
...
...
@@ -35,7 +35,7 @@ TEST(RowBuffer, testAutoGrow) {
data
[
i
]
=
i
;
}
ASSERT_EQ
(
3
,
buf
.
getRowCount
());
ASSERT_EQ
(
3
UL
,
buf
.
getRowCount
());
for
(
size_t
i
=
0
;
i
<
buf
.
getRowCount
()
-
1
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
buf
.
getWidth
();
++
j
)
{
ASSERT_NEAR
(
i
*
buf
.
getWidth
()
+
j
,
buf
.
get
(
i
)[
j
],
1e-5
);
...
...
@@ -51,7 +51,7 @@ TEST(RowBuffer, testWithMemBuf) {
std
::
make_shared
<
paddle
::
CpuMemoryHandle
>
(
128
*
2
*
sizeof
(
real
));
paddle
::
RowBuffer
buf
(
mem
,
128
);
ASSERT_TRUE
(
!
buf
.
isAutoGrowth
());
ASSERT_EQ
(
2
,
buf
.
getRowCount
());
ASSERT_EQ
(
2
UL
,
buf
.
getRowCount
());
for
(
size_t
i
=
0
;
i
<
buf
.
getWidth
()
*
2
;
++
i
)
{
buf
.
data
()[
i
]
=
i
;
}
...
...
paddle/py_paddle/util.py
浏览文件 @
2c2347df
...
...
@@ -208,7 +208,7 @@ def __monkeypatch_gradient_machine__():
output
=
dict
()
for
name
in
layerNames
:
output
[
name
]
=
__
matrix_to_numpy__
(
self
.
getLayerOutput
(
name
))
output
[
name
]
=
__
arguments_to_numpy__
(
0
,
self
.
getLayerOutput
(
name
))
return
output
swig_paddle
.
GradientMachine
.
getLayerOutputs
=
getLayerOutputs
...
...
python/paddle/reader/__init__.py
浏览文件 @
2c2347df
...
...
@@ -21,3 +21,5 @@
#
# r = paddle.reader.buffered(paddle.reader.creator.text("hello.txt"))
from
decorator
import
*
import
creator
python/paddle/reader/creator.py
0 → 100644
浏览文件 @
2c2347df
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__all__
=
[
'np_array'
,
'text_file'
]
def
np_array
(
x
):
"""
Creates a reader that yields elements of x, if it is a
numpy vector. Or rows of x, if it is a numpy matrix.
Or any sub-hyperplane indexed by the highest dimension.
:param x: the numpy array to create reader from.
:returns: data reader created from x.
"""
def
reader
():
if
x
.
ndim
<
1
:
yield
x
for
e
in
x
:
yield
e
return
reader
def
text_file
(
path
):
"""
Creates a data reader that outputs text line by line from given text file.
Trailing new line ('
\n
') of each line will be removed.
:path: path of the text file.
:returns: data reader of text file
"""
def
reader
():
f
=
open
(
path
,
"r"
)
for
l
in
f
:
yield
l
.
rstrip
(
'
\n
'
)
f
.
close
()
return
reader
python/paddle/reader/tests/CMakeLists.txt
浏览文件 @
2c2347df
...
...
@@ -2,3 +2,8 @@ add_test(NAME reader_decorator_test
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/reader/tests/decorator_test.py
WORKING_DIRECTORY
${
PROJ_ROOT
}
/python/paddle
)
add_test
(
NAME reader_creator_test
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/reader/tests/creator_test.py
WORKING_DIRECTORY
${
PROJ_ROOT
}
/python/paddle
)
python/paddle/reader/tests/creator_test.py
0 → 100644
浏览文件 @
2c2347df
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.reader.creator
import
numpy
as
np
import
os
class
TestNumpyArray
(
unittest
.
TestCase
):
def
test_numpy_array
(
self
):
l
=
[[
1
,
2
,
3
],
[
4
,
5
,
6
]]
x
=
np
.
array
(
l
,
np
.
int32
)
reader
=
paddle
.
reader
.
creator
.
np_array
(
x
)
for
idx
,
e
in
enumerate
(
reader
()):
self
.
assertItemsEqual
(
e
,
l
[
idx
])
class
TestTextFile
(
unittest
.
TestCase
):
def
test_text_file
(
self
):
path
=
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
"test_data_creator.txt"
)
reader
=
paddle
.
reader
.
creator
.
text_file
(
path
)
for
idx
,
e
in
enumerate
(
reader
()):
self
.
assertEqual
(
e
,
str
(
idx
*
2
)
+
" "
+
str
(
idx
*
2
+
1
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/reader/tests/test_data_creator.txt
0 → 100644
浏览文件 @
2c2347df
0 1
2 3
4 5
python/paddle/v2/dataset/__init__.py
0 → 100644
浏览文件 @
2c2347df
python/paddle/v2/dataset/config.py
0 → 100644
浏览文件 @
2c2347df
import
os
__all__
=
[
'DATA_HOME'
]
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle_data_set'
)
if
not
os
.
path
.
exists
(
DATA_HOME
):
os
.
makedirs
(
DATA_HOME
)
python/paddle/v2/dataset/mnist.py
0 → 100644
浏览文件 @
2c2347df
import
sklearn.datasets.mldata
import
sklearn.model_selection
import
numpy
from
config
import
DATA_HOME
__all__
=
[
'train_creator'
,
'test_creator'
]
def
__mnist_reader_creator__
(
data
,
target
):
def
reader
():
n_samples
=
data
.
shape
[
0
]
for
i
in
xrange
(
n_samples
):
yield
(
data
[
i
]
/
255.0
).
astype
(
numpy
.
float32
),
int
(
target
[
i
])
return
reader
TEST_SIZE
=
10000
data
=
sklearn
.
datasets
.
mldata
.
fetch_mldata
(
"MNIST original"
,
data_home
=
DATA_HOME
)
X_train
,
X_test
,
y_train
,
y_test
=
sklearn
.
model_selection
.
train_test_split
(
data
.
data
,
data
.
target
,
test_size
=
TEST_SIZE
,
random_state
=
0
)
def
train_creator
():
return
__mnist_reader_creator__
(
X_train
,
y_train
)
def
test_creator
():
return
__mnist_reader_creator__
(
X_test
,
y_test
)
def
unittest
():
assert
len
(
list
(
test_creator
()()))
==
TEST_SIZE
if
__name__
==
'__main__'
:
unittest
()
python/paddle/v2/optimizer.py
浏览文件 @
2c2347df
...
...
@@ -3,7 +3,10 @@ import paddle.trainer_config_helpers.optimizers as v1_optimizers
import
paddle.trainer_config_helpers.config_parser_utils
as
config_parser_utils
import
paddle.v2
__all__
=
[
'Adam'
,
'Adamax'
]
__all__
=
[
'Momentum'
,
'Adam'
,
'Adamax'
,
'AdaGrad'
,
'DecayedAdaGrad'
,
'AdaDelta'
,
'RMSProp'
,
'ModelAverage'
,
'L2Regularization'
]
class
Optimizer
(
object
):
...
...
@@ -38,6 +41,14 @@ class Optimizer(object):
pass_num
)
class
Momentum
(
Optimizer
):
def
__init__
(
self
,
momentum
=
None
,
sparse
=
False
,
**
kwargs
):
learning_method
=
v1_optimizers
.
MomentumOptimizer
(
momentum
=
None
,
sparse
=
False
)
super
(
Momentum
,
self
).
__init__
(
learning_method
=
learning_method
,
**
kwargs
)
class
Adam
(
Optimizer
):
def
__init__
(
self
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-8
,
**
kwargs
):
learning_method
=
v1_optimizers
.
AdamOptimizer
(
...
...
@@ -52,7 +63,45 @@ class Adamax(Optimizer):
super
(
Adamax
,
self
).
__init__
(
learning_method
=
learning_method
,
**
kwargs
)
class
AdaGrad
(
Optimizer
):
def
__init__
(
self
,
**
kwargs
):
learning_method
=
v1_optimizers
.
AdaGradOptimizer
()
super
(
AdaGrad
,
self
).
__init__
(
learning_method
=
learning_method
,
**
kwargs
)
class
DecayedAdaGrad
(
Optimizer
):
def
__init__
(
self
,
rho
=
0.95
,
epsilon
=
1e-06
,
**
kwargs
):
learning_method
=
v1_optimizers
.
DecayedAdaGradOptimizer
(
rho
=
rho
,
epsilon
=
epsilon
)
super
(
DecayedAdaGrad
,
self
).
__init__
(
learning_method
=
learning_method
,
**
kwargs
)
class
AdaDelta
(
Optimizer
):
def
__init__
(
self
,
rho
=
0.95
,
epsilon
=
1e-06
,
**
kwargs
):
learning_method
=
v1_optimizers
.
AdaDeltaOptimizer
(
rho
=
rho
,
epsilon
=
epsilon
)
super
(
AdaDelta
,
self
).
__init__
(
learning_method
=
learning_method
,
**
kwargs
)
class
RMSProp
(
Optimizer
):
def
__init__
(
self
,
rho
=
0.95
,
epsilon
=
1e-6
,
**
kwargs
):
learning_method
=
v1_optimizers
.
RMSPropOptimizer
(
rho
=
rho
,
epsilon
=
epsilon
)
super
(
RMSProp
,
self
).
__init__
(
learning_method
=
learning_method
,
**
kwargs
)
ModelAverage
=
v1_optimizers
.
ModelAverage
L2Regularization
=
v1_optimizers
.
L2Regularization
if
__name__
==
'__main__'
:
swig_api
.
initPaddle
(
'--use_gpu=false'
)
opt
=
paddle
.
v2
.
optimizer
.
Adam
()
print
opt
.
enable_types
()
for
opt
in
[
Momentum
(),
Adam
(),
Adamax
(),
AdaGrad
(),
DecayedAdaGrad
(),
AdaDelta
(),
RMSProp
(),
Adam
(
model_average
=
ModelAverage
(
average_window
=
0.5
),
regularization
=
L2Regularization
(
rate
=
0.5
),
gradient_clipping_threshold
=
25
)
]:
print
opt
,
opt
.
enable_types
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录