未验证 提交 2b98993b 编写于 作者: R RedContritio 提交者: GitHub

support auto generate for p_norm (#51590)

* supoort auto generate p_norm

* fix bug in backward
上级 ec877d1f
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_version_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"
namespace paddle {
namespace operators {
class PnormOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(Tensor) A tensor of rank >= axis.");
AddAttr<float>("porder",
"(float, default 2) The porder is the p order vector norm "
"to calculate. Available for porder=0, inf, -inf and any "
"real number.")
.SetDefault(2.0f);
AddAttr<int>("axis",
"The axis on which to apply norm operation. If axis < 0, "
"the dimension to pnorm is rank(X) + axis. -1 is "
"the last dimension.")
.SetDefault(-1);
AddAttr<float>("epsilon",
"(float, default 1e-12) The epsilon value is used "
"to avoid division by zero.")
.SetDefault(1.0e-12f);
AddAttr<bool>(
"keepdim",
"(bool, default false) Whether to keep the dimensions as the input.")
.SetDefault(false);
AddAttr<bool>("asvector",
"(bool, default false) as vector norm when axis is None and "
"input is matrix, ")
.SetDefault(false);
AddOutput("Out", "(Tensor) Output result tensor of p-norm");
AddComment(R"DOC(
Pnorm Operator.
Given a tensor X, compute Lp-norm of X.
When p = 0, defining $0^0 = 0$, the zero-norm of X is simply the number of non-zero elements of X.
$$
||X||_{0} = \lim_{p \rightarrow 0} \sum_i |x_i|^p
$$
When p = inf, the inf-norm of X is the maximum element of X.
$$
||X||_\infty = \max_i |x_i|
$$
When p = -inf, the negative-inf-norm of X is the minimum element of X.
$$
||X||_{-\infty} = \min_i |x_i|
$$
Otherwise, the p-norm of X follows the formula,
$$
||X||_{p} = (\sum_i |x_i|^p)^{1/p}
$$
where, $\sum_i $ is calculated along the `axis` dimension.
)DOC");
}
};
class PnormOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
};
class PnormOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
};
template <typename T>
class PnormOpGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("p_norm_grad");
op->SetAttrMap(this->Attrs());
op->SetInput("X", this->Input("X"));
op->SetInput("Out", this->Output("Out"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
using CPU = phi::CPUContext;
DECLARE_INFER_SHAPE_FUNCTOR(p_norm,
PNormInferShapeFunctor,
PD_INFER_META(phi::PNormInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(p_norm_grad,
PNormGradInferShapeFunctor,
PD_INFER_META(phi::GeneralUnaryGradInferMeta));
REGISTER_OPERATOR(p_norm,
ops::PnormOp,
ops::PnormOpMaker,
ops::PnormOpGradOpMaker<paddle::framework::OpDesc>,
ops::PnormOpGradOpMaker<paddle::imperative::OpBase>,
PNormInferShapeFunctor);
REGISTER_OPERATOR(p_norm_grad, ops::PnormOpGrad, PNormGradInferShapeFunctor);
REGISTER_OP_VERSION(p_norm).AddCheckpoint(
R"ROC(
Upgrade p_norm, add 1 attribute [asvector].
)ROC",
paddle::framework::compatible::OpVersionDesc().NewAttr(
"asvector",
"Compute as vector when axis is None and input is matrix",
false));
......@@ -1028,6 +1028,16 @@
func : overlap_add_grad
data_type : x
- backward_op : p_norm_grad
forward : p_norm(Tensor x, float porder=2, int axis=-1, float epsilon=1.0e-12f, bool keepdim=false, bool asvector=false) -> Tensor(out)
args : (Tensor x, Tensor out, Tensor out_grad, float porder, int axis, float epsilon, bool keepdim, bool asvector)
output : Tensor(x_grad)
infer_meta :
func : GeneralUnaryGradInferMeta
param: [x]
kernel :
func : p_norm_grad
- backward_op : pixel_shuffle_grad
forward : pixel_shuffle (Tensor x, int upscale_factor=1, str data_format="NCHW") -> Tensor(out)
args : (Tensor out_grad, int upscale_factor, str data_format)
......
......@@ -863,16 +863,6 @@
kernel :
func : norm_grad
- backward_op : p_norm_grad
forward : p_norm(Tensor x, float porder, int axis, float epsilon, bool keepdim, bool asvector=false) -> Tensor(out)
args : (Tensor x, Tensor out, Tensor out_grad, float porder, int axis, float epsilon, bool keepdim, bool asvector)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param: [x]
kernel :
func : p_norm_grad
- backward_op : pad3d_double_grad
forward : pad3d_grad(Tensor x, Tensor grad_out, IntArray paddings, str mode, float pad_value, str data_format) -> Tensor(grad_x)
args : (Tensor grad_x_grad, IntArray paddings, str mode, float pad_value, str data_format)
......
......@@ -1235,15 +1235,6 @@
output : Tensor(out)
invoke : full_like(x, 1, dtype, place)
- op : p_norm
args : (Tensor x, float porder, int axis, float epsilon, bool keepdim, bool asvector=false)
output : Tensor(out)
infer_meta :
func : PNormInferMeta
kernel :
func : p_norm
backward : p_norm_grad
- op : pad
args : (Tensor x, int[] paddings, Scalar pad_value)
output : Tensor
......
......@@ -1290,6 +1290,13 @@
outputs :
out : Out
- op : p_norm
backward: p_norm_grad
inputs :
x : X
outputs :
out : Out
- op : pad2d
backward : pad2d_grad
extra :
......
......@@ -102,6 +102,14 @@
comment : In order to force fill output variable to gpu memory.
default : "false"
- op : p_norm
version :
- checkpoint : Upgrade p_norm, add 1 attribute [asvector].
action :
- add_attr : asvector
comment : Compute as vector when axis is None and input is matrix.
default : "false"
- op : pixel_shuffle
version :
- checkpoint : Compatible upgrade of pixel_shuffle, add a new attribute [data_format]
......
......@@ -1078,6 +1078,15 @@
data_type : x
backward: overlap_add_grad
- op : p_norm
args : (Tensor x, float porder=2, int axis=-1, float epsilon=1.0e-12f, bool keepdim=false, bool asvector=false)
output : Tensor(out)
infer_meta :
func : PNormInferMeta
kernel :
func : p_norm
backward : p_norm_grad
- op : pixel_shuffle
args : (Tensor x, int upscale_factor=1, str data_format="NCHW")
output : Tensor
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature PNormGradOpArgumentMapping(const ArgumentMappingContext& ctx) {
return KernelSignature("p_norm_grad",
{"X", "Out", "Out@GRAD"},
{"porder", "axis", "epsilon", "keepdim", "asvector"},
{"X@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(p_norm_grad, phi::PNormGradOpArgumentMapping);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册