Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2b6fc108
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 2 年 前同步成功
通知
2325
Star
20933
Fork
5424
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2b6fc108
编写于
6月 22, 2021
作者:
C
cc
提交者:
GitHub
6月 22, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Dygraph post trainging quantization (#33445)
* dygraph post training quantization * refine the ptq config * refine ptq quantizer
上级
1b0c5ef2
变更
9
隐藏空白更改
内联
并排
Showing
9 changed file
with
952 addition
and
4 deletion
+952
-4
python/paddle/fluid/contrib/slim/quantization/imperative/__init__.py
...le/fluid/contrib/slim/quantization/imperative/__init__.py
+16
-0
python/paddle/fluid/contrib/slim/quantization/imperative/ptq.py
.../paddle/fluid/contrib/slim/quantization/imperative/ptq.py
+112
-0
python/paddle/fluid/contrib/slim/quantization/imperative/ptq_config.py
.../fluid/contrib/slim/quantization/imperative/ptq_config.py
+44
-0
python/paddle/fluid/contrib/slim/quantization/imperative/ptq_hooks.py
...e/fluid/contrib/slim/quantization/imperative/ptq_hooks.py
+28
-0
python/paddle/fluid/contrib/slim/quantization/imperative/ptq_quantizer.py
...uid/contrib/slim/quantization/imperative/ptq_quantizer.py
+261
-0
python/paddle/fluid/contrib/slim/quantization/imperative/ptq_registry.py
...luid/contrib/slim/quantization/imperative/ptq_registry.py
+86
-0
python/paddle/fluid/contrib/slim/quantization/imperative/utils.py
...addle/fluid/contrib/slim/quantization/imperative/utils.py
+115
-4
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
+2
-0
python/paddle/fluid/contrib/slim/tests/test_imperative_ptq.py
...on/paddle/fluid/contrib/slim/tests/test_imperative_ptq.py
+288
-0
未找到文件。
python/paddle/fluid/contrib/slim/quantization/imperative/__init__.py
浏览文件 @
2b6fc108
...
@@ -20,6 +20,22 @@ from .quant_nn import *
...
@@ -20,6 +20,22 @@ from .quant_nn import *
from
.
import
qat
from
.
import
qat
from
.qat
import
*
from
.qat
import
*
from
.
import
ptq
from
.ptq
import
*
from
.
import
ptq_config
from
.ptq_config
import
*
from
.
import
ptq_quantizer
from
.ptq_quantizer
import
*
from
.
import
ptq_registry
from
.ptq_registry
import
*
__all__
=
[]
__all__
=
[]
__all__
+=
quant_nn
.
__all__
__all__
+=
quant_nn
.
__all__
__all__
+=
qat
.
__all__
__all__
+=
qat
.
__all__
__all__
+=
ptq
.
__all__
__all__
+=
ptq_config
.
__all__
__all__
+=
ptq_quantizer
.
__all__
__all__
+=
ptq_registry
.
__all__
python/paddle/fluid/contrib/slim/quantization/imperative/ptq.py
0 → 100644
浏览文件 @
2b6fc108
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
logging
import
copy
import
numpy
as
np
import
paddle
from
paddle.fluid.log_helper
import
get_logger
from
.
import
utils
from
.
import
ptq_hooks
from
.
import
ptq_config
from
.ptq_registry
import
PTQRegistry
__all__
=
[
'ImperativePTQ'
]
_logger
=
get_logger
(
__name__
,
logging
.
INFO
,
fmt
=
'%(asctime)s-%(levelname)s: %(message)s'
)
class
ImperativePTQ
(
object
):
"""
Applying static post_training quantization to the dgraph model.
"""
def
__init__
(
self
,
quant_config
=
ptq_config
.
default_ptq_config
):
"""
Constructor.
Args:
algo(str): The algorithm in post_training quantizaion to be used.
activation_bits(int): quantization bit number for activations.
weight_bits(int): quantization bit number for weights.
"""
super
(
ImperativePTQ
,
self
).
__init__
()
assert
isinstance
(
quant_config
,
ptq_config
.
PTQConfig
)
self
.
_quant_config
=
quant_config
def
quantize
(
self
,
model
,
inplace
=
False
):
"""
Add hook to the leaf layer to calculate the threshold of inputs and outputs.
Args:
model(paddle.nn.Layer): The model to be quantized.
Returns:
None
"""
assert
isinstance
(
model
,
paddle
.
nn
.
Layer
),
\
"The model must be the instance of paddle.nn.Layer."
if
not
inplace
:
model
=
copy
.
deepcopy
(
model
)
for
name
,
layer
in
model
.
named_sublayers
():
if
PTQRegistry
.
is_supported_layer
(
layer
)
\
and
utils
.
is_leaf_layer
(
layer
):
quant_config
=
copy
.
deepcopy
(
self
.
_quant_config
)
layer
.
_quant_config
=
quant_config
hook
=
ptq_hooks
.
quant_forward_post_hook
hook_handle
=
layer
.
register_forward_post_hook
(
hook
)
quant_config
.
hook_handle
=
hook_handle
layer
.
_forward_post_hooks
.
move_to_end
(
hook_handle
.
_hook_id
,
last
=
False
)
return
model
def
convert
(
self
,
model
):
"""
Process the scales and remove the hooks.
Args:
model(paddle.nn.Layer): The model to be quantized.
Returns:
None
"""
assert
isinstance
(
model
,
paddle
.
nn
.
Layer
),
\
"The input model must be the instance of paddle.nn.Layer."
for
name
,
sub_layer
in
model
.
named_sublayers
():
if
PTQRegistry
.
is_supported_layer
(
sub_layer
)
\
and
utils
.
is_leaf_layer
(
sub_layer
):
assert
hasattr
(
sub_layer
,
"_quant_config"
)
quant_config
=
sub_layer
.
_quant_config
quant_config
.
hook_handle
.
remove
()
quant_config
.
in_act_quantizer
.
cal_thresholds
()
quant_config
.
out_act_quantizer
.
cal_thresholds
()
# get weight thresholds
if
isinstance
(
sub_layer
,
tuple
(
utils
.
fake_quant_input_layers
)):
weights
=
(
sub_layer
.
weight
,
)
quant_config
.
wt_quantizer
.
sample_data
(
sub_layer
,
weights
)
# TODO (jc):
# save input activation threshold and quant bits
return
model
python/paddle/fluid/contrib/slim/quantization/imperative/ptq_config.py
0 → 100644
浏览文件 @
2b6fc108
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
six
import
abc
import
copy
import
paddle
from
.ptq_quantizer
import
*
__all__
=
[
'PTQConfig'
,
'default_ptq_config'
]
class
PTQConfig
(
object
):
"""
The PTQ config shows how to quantize the inputs and outputs.
"""
def
__init__
(
self
,
activation_quantizer
,
weight_quantizer
):
super
(
PTQConfig
,
self
).
__init__
()
assert
isinstance
(
activation_quantizer
,
BaseQuantizer
)
assert
isinstance
(
weight_quantizer
,
BaseQuantizer
)
self
.
in_act_quantizer
=
copy
.
deepcopy
(
activation_quantizer
)
self
.
out_act_quantizer
=
copy
.
deepcopy
(
activation_quantizer
)
self
.
wt_quantizer
=
copy
.
deepcopy
(
weight_quantizer
)
self
.
hook_handle
=
None
default_ptq_config
=
PTQConfig
(
AbsmaxQuantizer
(),
AbsmaxQuantizer
())
python/paddle/fluid/contrib/slim/quantization/imperative/ptq_hooks.py
0 → 100644
浏览文件 @
2b6fc108
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
math
import
numpy
as
np
from
.
import
ptq_config
def
quant_forward_post_hook
(
layer
,
inputs
,
outputs
):
"""
The forward_post_hook for PTQ.
"""
assert
hasattr
(
layer
,
'_quant_config'
),
\
"The layer should have _quant_config attr"
layer
.
_quant_config
.
in_act_quantizer
.
sample_data
(
layer
,
inputs
)
layer
.
_quant_config
.
out_act_quantizer
.
sample_data
(
layer
,
(
outputs
,
))
python/paddle/fluid/contrib/slim/quantization/imperative/ptq_quantizer.py
0 → 100644
浏览文件 @
2b6fc108
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
six
import
abc
import
copy
import
math
import
numpy
as
np
import
paddle
from
.
import
utils
__all__
=
[
'BaseQuantizer'
,
'AbsmaxQuantizer'
,
'PerChannelAbsmaxQuantizer'
,
'KLQuantizer'
,
'HistQuantizer'
,
]
def
abs_max_value
(
tensor
):
return
float
(
paddle
.
max
(
paddle
.
abs
(
tensor
)).
numpy
())
def
merge_max_value
(
old
,
new
):
"""
Merge the max element one by one in two lists.
"""
assert
isinstance
(
old
,
list
)
and
isinstance
(
new
,
list
)
if
old
!=
[]:
assert
len
(
old
)
==
len
(
new
)
for
i
in
range
(
len
(
old
)):
assert
type
(
old
[
i
])
==
type
(
new
[
i
])
if
isinstance
(
old
[
i
],
list
):
new
[
i
]
=
merge_max_value
(
old
[
i
],
new
[
i
])
else
:
new
[
i
]
=
old
[
i
]
if
new
[
i
]
<
old
[
i
]
else
new
[
i
]
return
new
def
combine_abs_max_and_hist
(
tensor
,
origin_max
,
origin_hist
,
bins
,
upsample_bins
):
"""
"""
new_max
=
abs_max_value
(
tensor
)
if
new_max
==
0.0
:
return
origin_max
,
origin_hist
elif
origin_max
==
0.0
:
new_hist
,
_
=
np
.
histogram
(
paddle
.
abs
(
tensor
).
numpy
(),
range
=
(
0
,
new_max
),
bins
=
bins
)
new_hist
=
new_hist
.
astype
(
np
.
float32
)
return
new_max
,
new_hist
elif
new_max
<=
origin_max
:
new_hist
,
_
=
np
.
histogram
(
paddle
.
abs
(
tensor
).
numpy
(),
range
=
(
0
,
origin_max
),
bins
=
bins
)
new_hist
=
new_hist
.
astype
(
np
.
float32
)
new_hist
+=
origin_hist
return
origin_max
,
new_hist
else
:
# bin_width = origin_max / (bins * upsample_bins)
# = new_max / (bins * downsample_bins)
bin_width
=
origin_max
/
(
bins
*
upsample_bins
)
downsampe_bins
=
int
(
math
.
ceil
(
new_max
/
(
bins
*
bin_width
)))
new_max
=
bins
*
bin_width
*
downsampe_bins
upsampled_hist
=
np
.
repeat
(
origin_hist
,
upsample_bins
)
expanded_hist
=
np
.
zeros
((
bins
*
downsampe_bins
),
dtype
=
np
.
float32
)
expanded_hist
[
0
:
bins
*
upsample_bins
]
=
upsampled_hist
cumsumed_hist
=
np
.
cumsum
(
expanded_hist
,
dtype
=
np
.
float64
)[
downsampe_bins
-
1
::
downsampe_bins
]
shift_cumsumed_hist
=
np
.
zeros
((
bins
),
dtype
=
np
.
float64
)
shift_cumsumed_hist
[
1
:]
=
cumsumed_hist
[
0
:
-
1
]
sampled_hist
=
(
cumsumed_hist
-
shift_cumsumed_hist
)
/
upsample_bins
sampled_hist
=
sampled_hist
.
astype
(
np
.
float32
)
new_hist
,
_
=
np
.
histogram
(
paddle
.
abs
(
tensor
).
numpy
(),
range
=
(
0
,
new_max
),
bins
=
bins
)
new_hist
=
new_hist
.
astype
(
np
.
float32
)
new_hist
+=
sampled_hist
return
new_max
,
new_hist
@
six
.
add_metaclass
(
abc
.
ABCMeta
)
class
BaseQuantizer
(
object
):
"""
Base quantizer for activation and weight.
"""
def
__init__
(
self
,
quant_bits
=
8
):
super
(
BaseQuantizer
,
self
).
__init__
()
assert
isinstance
(
quant_bits
,
int
)
assert
quant_bits
>
0
and
quant_bits
<=
16
self
.
quant_bits
=
quant_bits
self
.
thresholds
=
[]
@
abc
.
abstractmethod
def
sample_data
(
self
,
layer
,
tensors
):
pass
@
abc
.
abstractmethod
def
cal_thresholds
(
self
):
pass
class
AbsmaxQuantizer
(
BaseQuantizer
):
"""
Per-tensor abs max quantizer.
"""
def
__init__
(
self
,
quant_bits
=
8
):
super
(
AbsmaxQuantizer
,
self
).
__init__
(
quant_bits
)
def
sample_data
(
self
,
layer
,
tensors
):
assert
isinstance
(
tensors
,
tuple
)
abs_max_vals
=
[
abs_max_value
(
t
)
for
t
in
tensors
]
self
.
thresholds
=
merge_max_value
(
self
.
thresholds
,
abs_max_vals
)
def
cal_thresholds
(
self
):
pass
class
PerChannelAbsmaxQuantizer
(
BaseQuantizer
):
"""
Per channel abs max quantizer.
"""
def
__init__
(
self
,
quant_bits
=
8
):
super
(
PerChannelAbsmaxQuantizer
,
self
).
__init__
(
quant_bits
)
def
sample_data
(
self
,
layer
,
tensors
):
assert
isinstance
(
layer
,
paddle
.
nn
.
Layer
)
assert
isinstance
(
tensors
,
tuple
)
abs_max_vals_list
=
[]
for
idx
,
tensor
in
enumerate
(
tensors
):
if
isinstance
(
layer
,
tuple
(
utils
.
spec_channel_axis_layers
)):
abs_max_vals
=
[
abs_max_value
(
tensor
[:,
i
])
for
i
in
range
(
tensor
.
shape
[
1
])
]
abs_max_vals_list
.
append
(
abs_max_vals
)
else
:
abs_max_vals
=
[
abs_max_value
(
tensor
[
i
])
for
i
in
range
(
tensor
.
shape
[
0
])
]
abs_max_vals_list
.
append
(
abs_max_vals
)
self
.
thresholds
=
merge_max_value
(
self
.
thresholds
,
abs_max_vals_list
)
def
cal_thresholds
(
self
):
pass
@
six
.
add_metaclass
(
abc
.
ABCMeta
)
class
BaseHistQuantizer
(
BaseQuantizer
):
"""
"""
def
__init__
(
self
,
quant_bits
=
8
,
bins
=
1024
,
upsample_bins
=
64
):
super
(
BaseHistQuantizer
,
self
).
__init__
(
quant_bits
)
self
.
bins
=
bins
self
.
upsample_bins
=
upsample_bins
self
.
abs_max_vals
=
[]
self
.
hists
=
[]
def
sample_data
(
self
,
layer
,
tensors
):
assert
isinstance
(
tensors
,
tuple
)
if
self
.
abs_max_vals
==
[]:
abs_max_vals
=
[
abs_max_value
(
t
)
for
t
in
tensors
]
self
.
abs_max_vals
=
abs_max_vals
for
idx
,
tensor
in
enumerate
(
tensors
):
if
abs_max_vals
[
idx
]
==
0.0
:
self
.
hists
.
append
(
None
)
else
:
hist
,
_
=
np
.
histogram
(
paddle
.
abs
(
tensor
).
numpy
(),
range
=
(
0.
,
abs_max_vals
[
idx
]),
bins
=
self
.
bins
)
hist
=
hist
.
astype
(
np
.
float32
)
self
.
hists
.
append
(
hist
)
else
:
assert
len
(
self
.
abs_max_vals
)
==
len
(
tensors
)
assert
len
(
self
.
hists
)
==
len
(
tensors
)
for
idx
,
tensor
in
enumerate
(
tensors
):
new_abs_max
,
new_hist
=
combine_abs_max_and_hist
(
tensor
,
self
.
abs_max_vals
[
idx
],
self
.
hists
[
idx
],
self
.
bins
,
self
.
upsample_bins
)
self
.
abs_max_vals
[
idx
]
=
new_abs_max
self
.
hists
[
idx
]
=
new_hist
@
abc
.
abstractmethod
def
cal_thresholds
(
self
):
pass
class
HistQuantizer
(
BaseHistQuantizer
):
"""
"""
def
__init__
(
self
,
quant_bits
=
8
,
bins
=
1024
,
upsample_bins
=
64
,
hist_percent
=
0.99999
):
super
(
HistQuantizer
,
self
).
__init__
(
quant_bits
,
bins
,
upsample_bins
)
self
.
hist_percent
=
hist_percent
def
cal_thresholds
(
self
):
def
_helper
(
abs_max
,
hist
,
percent
):
assert
hist
.
ndim
==
1
and
percent
<
1.0
hist
=
hist
/
np
.
sum
(
hist
,
dtype
=
np
.
float64
)
cumsumed_hist
=
np
.
cumsum
(
hist
)
index
=
np
.
argwhere
(
cumsumed_hist
>=
percent
)[
0
]
return
float
((
index
-
0.5
)
*
(
abs_max
/
hist
.
shape
[
0
]))
for
idx
in
range
(
len
(
self
.
hists
)):
if
self
.
hists
[
idx
]
is
None
:
self
.
thresholds
.
append
(
self
.
abs_max_vals
[
idx
])
else
:
threshold
=
_helper
(
self
.
abs_max_vals
[
idx
],
self
.
hists
[
idx
],
self
.
hist_percent
)
self
.
thresholds
.
append
(
threshold
)
class
KLQuantizer
(
BaseHistQuantizer
):
"""
"""
def
__init__
(
self
,
quant_bits
=
8
,
bins
=
1024
,
upsample_bins
=
64
):
super
(
KLQuantizer
,
self
).
__init__
(
quant_bits
,
bins
,
upsample_bins
)
def
cal_thresholds
(
self
):
for
idx
in
range
(
len
(
self
.
hists
)):
if
self
.
hists
[
idx
]
is
None
:
self
.
thresholds
.
append
(
self
.
abs_max_vals
[
idx
])
else
:
threshold
=
utils
.
cal_kl_scaling_factor
(
self
.
hists
[
idx
],
self
.
abs_max_vals
[
idx
],
self
.
quant_bits
)
self
.
thresholds
.
append
(
threshold
)
python/paddle/fluid/contrib/slim/quantization/imperative/ptq_registry.py
0 → 100644
浏览文件 @
2b6fc108
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
__all__
=
[
'PTQRegistry'
]
class
LayerInfo
(
object
):
"""
Store the argnames of the inputs and outputs.
"""
def
__init__
(
self
,
layer
,
input_names
,
weight_names
,
output_names
):
super
(
LayerInfo
,
self
).
__init__
()
self
.
layer
=
layer
self
.
input_names
=
input_names
self
.
weight_names
=
weight_names
self
.
output_names
=
output_names
PTQ_LAYERS_INFO
=
[
LayerInfo
(
paddle
.
nn
.
Conv2D
,
[
'Input'
],
[
'Filter'
],
[
'Output'
]),
LayerInfo
(
paddle
.
nn
.
Linear
,
[
'X'
],
[
'Y'
],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
BatchNorm2D
,
[
'X'
],
[],
[
'Y'
]),
LayerInfo
(
paddle
.
nn
.
AdaptiveMaxPool2D
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
AdaptiveAvgPool2D
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
AvgPool2D
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
MaxPool2D
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
ReLU
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
ReLU6
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Hardswish
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Sigmoid
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Softmax
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
Tanh
,
[
'X'
],
[],
[
'Out'
]),
LayerInfo
(
paddle
.
nn
.
quant
.
add
,
[
'X'
,
'Y'
],
[],
[
'Out'
]),
]
class
PTQRegistry
(
object
):
"""
Register the supported layers for PTQ and provide layers info.
"""
supported_layers_map
=
{}
is_inited
=
False
def
__init__
(
self
):
super
(
PTQRegistry
,
self
).
__init__
()
@
classmethod
def
_init
(
cls
):
if
not
cls
.
is_inited
:
for
layer_info
in
PTQ_LAYERS_INFO
:
cls
.
supported_layers_map
[
layer_info
.
layer
]
=
layer_info
cls
.
is_inited
=
True
@
classmethod
def
is_supported_layer
(
cls
,
layer
):
"""
Analyze whether the layer supports quantization.
"""
cls
.
_init
()
return
layer
in
cls
.
supported_layers_map
or
\
isinstance
(
layer
,
tuple
(
cls
.
supported_layers_map
.
keys
()))
def
layer_info
(
cls
,
layer
):
"""
Get the infomation for the supported layer.
"""
assert
cls
.
is_supported_layer
(
layer
),
"The input layer is not supported."
for
layer_key
,
layer_info
in
cls
.
supported_layers_map
.
items
():
if
layer
==
layer_key
or
isinstance
(
layer
,
layer_key
):
return
layer_info
python/paddle/fluid/contrib/slim/quantization/imperative/utils.py
浏览文件 @
2b6fc108
...
@@ -12,9 +12,11 @@
...
@@ -12,9 +12,11 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
import
paddle
import
math
from
paddle.fluid
import
dygraph
import
numpy
as
np
import
numpy
as
np
import
paddle
from
.
import
quant_nn
from
.
import
quant_nn
layer_name_map
=
{
layer_name_map
=
{
...
@@ -60,6 +62,9 @@ fake_quant_leaf_layers = [
...
@@ -60,6 +62,9 @@ fake_quant_leaf_layers = [
fake_quant_wrap_layers
=
[
quant_nn
.
QuantizedConv2D
,
quant_nn
.
QuantizedLinear
]
fake_quant_wrap_layers
=
[
quant_nn
.
QuantizedConv2D
,
quant_nn
.
QuantizedLinear
]
# The weight format of these layers is Cin * Cout * H * W
spec_channel_axis_layers
=
[
paddle
.
nn
.
Conv2D
,
paddle
.
nn
.
Conv2DTranspose
]
weight_op_types
=
[
weight_op_types
=
[
"conv2d"
,
"depthwise_conv2d"
,
"matmul"
,
"conv2d_transpose"
,
"conv2d"
,
"depthwise_conv2d"
,
"matmul"
,
"conv2d_transpose"
,
"depthwise_conv2d_transpose"
"depthwise_conv2d_transpose"
...
@@ -109,7 +114,7 @@ def find_parent_layer_and_sub_name(model, name):
...
@@ -109,7 +114,7 @@ def find_parent_layer_and_sub_name(model, name):
For example, if name is 'block_1/convbn_1/conv_1', the parent layer is
For example, if name is 'block_1/convbn_1/conv_1', the parent layer is
'block_1/convbn_1' and the sub_name is `conv_1`.
'block_1/convbn_1' and the sub_name is `conv_1`.
"""
"""
assert
isinstance
(
model
,
dygraph
.
Layer
),
\
assert
isinstance
(
model
,
paddle
.
nn
.
Layer
),
\
"The model must be the instance of paddle.nn.Layer."
"The model must be the instance of paddle.nn.Layer."
assert
len
(
name
)
>
0
,
"The input (name) should not be empty."
assert
len
(
name
)
>
0
,
"The input (name) should not be empty."
...
@@ -131,5 +136,111 @@ def is_leaf_layer(layer):
...
@@ -131,5 +136,111 @@ def is_leaf_layer(layer):
"""
"""
Whether the layer is leaf layer.
Whether the layer is leaf layer.
"""
"""
return
isinstance
(
layer
,
dygraph
.
Layer
)
\
return
isinstance
(
layer
,
paddle
.
nn
.
Layer
)
\
and
len
(
layer
.
sublayers
())
==
0
and
len
(
layer
.
sublayers
())
==
0
def
expand_quantized_bins
(
quantized_bins
,
reference_bins
):
"""
"""
expanded_quantized_bins
=
[
0
]
*
len
(
reference_bins
)
num_merged_bins
=
int
(
len
(
reference_bins
)
/
len
(
quantized_bins
))
j_start
=
0
j_end
=
num_merged_bins
for
idx
in
range
(
len
(
quantized_bins
)):
zero_count
=
reference_bins
[
j_start
:
j_end
].
count
(
0
)
num_merged_bins
=
j_end
-
j_start
if
zero_count
==
num_merged_bins
:
avg_bin_ele
=
0
else
:
avg_bin_ele
=
quantized_bins
[
idx
]
/
(
num_merged_bins
-
zero_count
+
0.0
)
for
idx1
in
range
(
j_start
,
j_end
):
expanded_quantized_bins
[
idx1
]
=
(
0
if
reference_bins
[
idx1
]
==
0
else
avg_bin_ele
)
j_start
+=
num_merged_bins
j_end
+=
num_merged_bins
if
(
idx
+
1
)
==
len
(
quantized_bins
)
-
1
:
j_end
=
len
(
reference_bins
)
return
expanded_quantized_bins
def
safe_entropy
(
reference_distr_P
,
P_sum
,
candidate_distr_Q
,
Q_sum
):
'''
Calculate the entropy.
'''
assert
len
(
reference_distr_P
)
==
len
(
candidate_distr_Q
)
tmp_sum1
=
0
tmp_sum2
=
0
for
idx
in
range
(
len
(
reference_distr_P
)):
p_idx
=
reference_distr_P
[
idx
]
q_idx
=
candidate_distr_Q
[
idx
]
if
p_idx
==
0
:
tmp_sum1
+=
0
tmp_sum2
+=
0
else
:
if
q_idx
==
0
:
_logger
.
error
(
"Fatal error!, idx = "
+
str
(
idx
)
+
" qindex = 0! p_idx = "
+
str
(
p_idx
))
tmp_sum1
+=
p_idx
*
(
math
.
log
(
Q_sum
*
p_idx
))
tmp_sum2
+=
p_idx
*
(
math
.
log
(
P_sum
*
q_idx
))
return
(
tmp_sum1
-
tmp_sum2
)
/
P_sum
def
cal_kl_scaling_factor
(
hist
,
abs_max
,
bits
):
'''
Using the KL-divergenc method to get the more precise scaling factor.
'''
assert
hist
.
ndim
==
1
hist_bins
=
hist
.
shape
[
0
]
starting_iter
=
int
((
hist_bins
-
1
)
*
0.5
)
bin_width
=
abs_max
/
hist_bins
quant_range
=
2
**
(
bits
-
1
)
-
1
P_sum
=
np
.
sum
(
np
.
array
(
hist
).
ravel
())
min_kl_divergence
=
0
min_kl_index
=
0
kl_inited
=
False
for
i
in
range
(
starting_iter
,
hist_bins
):
reference_distr_P
=
hist
[
0
:
i
].
tolist
()
outliers_count
=
sum
(
hist
[
i
:])
if
reference_distr_P
[
i
-
1
]
==
0
:
continue
reference_distr_P
[
i
-
1
]
+=
outliers_count
reference_distr_bins
=
reference_distr_P
[:]
candidate_distr_Q
=
hist
[
0
:
i
].
tolist
()
num_merged_bins
=
int
(
i
/
quant_range
)
candidate_distr_Q_quantized
=
[
0
]
*
quant_range
j_start
=
0
j_end
=
num_merged_bins
for
idx
in
range
(
quant_range
):
candidate_distr_Q_quantized
[
idx
]
=
sum
(
candidate_distr_Q
[
j_start
:
j_end
])
j_start
+=
num_merged_bins
j_end
+=
num_merged_bins
if
(
idx
+
1
)
==
quant_range
-
1
:
j_end
=
i
candidate_distr_Q
=
expand_quantized_bins
(
candidate_distr_Q_quantized
,
reference_distr_bins
)
Q_sum
=
sum
(
candidate_distr_Q
)
kl_divergence
=
safe_entropy
(
reference_distr_P
,
P_sum
,
candidate_distr_Q
,
Q_sum
)
if
not
kl_inited
:
min_kl_divergence
=
kl_divergence
min_kl_index
=
i
kl_inited
=
True
elif
kl_divergence
<
min_kl_divergence
:
min_kl_divergence
=
kl_divergence
min_kl_index
=
i
else
:
pass
if
min_kl_index
==
0
:
while
starting_iter
>
0
:
if
hist
[
starting_iter
]
==
0
:
starting_iter
-=
1
continue
else
:
break
min_kl_index
=
starting_iter
return
(
min_kl_index
+
0.5
)
*
bin_width
python/paddle/fluid/contrib/slim/tests/CMakeLists.txt
浏览文件 @
2b6fc108
...
@@ -125,6 +125,7 @@ if(WIN32)
...
@@ -125,6 +125,7 @@ if(WIN32)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_resnet50
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_lstm_model
)
list
(
REMOVE_ITEM TEST_OPS test_post_training_quantization_lstm_model
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_ptq
)
list
(
REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_weight_quantization_mobilenetv1
)
list
(
REMOVE_ITEM TEST_OPS test_quantize_transpiler_v2
)
list
(
REMOVE_ITEM TEST_OPS test_quantize_transpiler_v2
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_qat_amp
)
list
(
REMOVE_ITEM TEST_OPS test_imperative_qat_amp
)
...
@@ -300,6 +301,7 @@ if(NOT WIN32)
...
@@ -300,6 +301,7 @@ if(NOT WIN32)
set_tests_properties
(
test_post_training_quantization_mobilenetv1 PROPERTIES TIMEOUT 600 LABELS
"RUN_TYPE=NIGHTLY"
)
set_tests_properties
(
test_post_training_quantization_mobilenetv1 PROPERTIES TIMEOUT 600 LABELS
"RUN_TYPE=NIGHTLY"
)
set_tests_properties
(
test_post_training_quantization_resnet50 PROPERTIES TIMEOUT 600 LABELS
"RUN_TYPE=NIGHTLY"
)
set_tests_properties
(
test_post_training_quantization_resnet50 PROPERTIES TIMEOUT 600 LABELS
"RUN_TYPE=NIGHTLY"
)
set_tests_properties
(
test_post_training_quantization_mnist PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_post_training_quantization_mnist PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_imperative_ptq PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_weight_quantization_mobilenetv1 PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_weight_quantization_mobilenetv1 PROPERTIES TIMEOUT 120
)
endif
()
endif
()
...
...
python/paddle/fluid/contrib/slim/tests/test_imperative_ptq.py
0 → 100644
浏览文件 @
2b6fc108
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
from
__future__
import
print_function
import
os
import
numpy
as
np
import
random
import
shutil
import
time
import
unittest
import
logging
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.contrib.slim.quantization
import
*
from
paddle.fluid.log_helper
import
get_logger
from
paddle.dataset.common
import
download
from
imperative_test_utils
import
fix_model_dict
,
ImperativeLenet
_logger
=
get_logger
(
__name__
,
logging
.
INFO
,
fmt
=
'%(asctime)s-%(levelname)s: %(message)s'
)
class
TestImperativePTQ
(
unittest
.
TestCase
):
"""
"""
@
classmethod
def
setUpClass
(
cls
):
timestamp
=
time
.
strftime
(
'%Y-%m-%d-%H-%M-%S'
,
time
.
localtime
())
cls
.
root_path
=
os
.
path
.
join
(
os
.
getcwd
(),
"imperative_ptq_"
+
timestamp
)
cls
.
save_path
=
os
.
path
.
join
(
cls
.
root_path
,
"model"
)
cls
.
download_path
=
'dygraph_int8/download'
cls
.
cache_folder
=
os
.
path
.
expanduser
(
'~/.cache/paddle/dataset/'
+
cls
.
download_path
)
cls
.
lenet_url
=
"https://paddle-inference-dist.cdn.bcebos.com/int8/unittest_model_data/lenet_pretrained.tar.gz"
cls
.
lenet_md5
=
"953b802fb73b52fae42896e3c24f0afb"
seed
=
1
np
.
random
.
seed
(
seed
)
paddle
.
static
.
default_main_program
().
random_seed
=
seed
paddle
.
static
.
default_startup_program
().
random_seed
=
seed
@
classmethod
def
tearDownClass
(
cls
):
try
:
shutil
.
rmtree
(
cls
.
root_path
)
except
Exception
as
e
:
print
(
"Failed to delete {} due to {}"
.
format
(
cls
.
root_path
,
str
(
e
)))
def
cache_unzipping
(
self
,
target_folder
,
zip_path
):
if
not
os
.
path
.
exists
(
target_folder
):
cmd
=
'mkdir {0} && tar xf {1} -C {0}'
.
format
(
target_folder
,
zip_path
)
os
.
system
(
cmd
)
def
download_model
(
self
,
data_url
,
data_md5
,
folder_name
):
download
(
data_url
,
self
.
download_path
,
data_md5
)
file_name
=
data_url
.
split
(
'/'
)[
-
1
]
zip_path
=
os
.
path
.
join
(
self
.
cache_folder
,
file_name
)
print
(
'Data is downloaded at {0}'
.
format
(
zip_path
))
data_cache_folder
=
os
.
path
.
join
(
self
.
cache_folder
,
folder_name
)
self
.
cache_unzipping
(
data_cache_folder
,
zip_path
)
return
data_cache_folder
def
set_vars
(
self
):
self
.
ptq
=
ImperativePTQ
(
default_ptq_config
)
self
.
batch_num
=
10
self
.
batch_size
=
10
self
.
eval_acc_top1
=
0.99
self
.
gt_thresholds
=
{
'conv2d_0'
:
[[
1.0
],
[
0.37673383951187134
],
[
0.10933732241392136
]],
'batch_norm2d_0'
:
[[
0.37673383951187134
],
[
0.44249194860458374
]],
're_lu_0'
:
[[
0.44249194860458374
],
[
0.25804123282432556
]],
'max_pool2d_0'
:
[[
0.25804123282432556
],
[
0.25804123282432556
]],
'linear_0'
:
[[
1.7058950662612915
],
[
14.405526161193848
],
[
0.4373355209827423
]],
'add_0'
:
[[
1.7058950662612915
,
0.0
],
[
1.7058950662612915
]],
}
def
model_train
(
self
,
model
,
train_reader
,
max_step
=-
1
):
model
.
train
()
adam
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
0.001
,
parameters
=
model
.
parameters
())
for
batch_id
,
data
in
enumerate
(
train_reader
()):
x_data
=
np
.
array
([
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
-
1
,
1
)
img
=
paddle
.
to_tensor
(
x_data
)
label
=
paddle
.
to_tensor
(
y_data
)
out
=
model
(
img
)
acc
=
fluid
.
layers
.
accuracy
(
out
,
label
)
loss
=
fluid
.
layers
.
cross_entropy
(
out
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
avg_loss
.
backward
()
adam
.
minimize
(
avg_loss
)
model
.
clear_gradients
()
if
batch_id
%
100
==
0
:
_logger
.
info
(
"Train | step {}: loss = {:}, acc= {:}"
.
format
(
batch_id
,
avg_loss
.
numpy
(),
acc
.
numpy
()))
if
max_step
>
0
and
batch_id
>
max_step
:
# For shortening CI time
break
def
model_test
(
self
,
model
,
batch_num
=-
1
,
batch_size
=
8
):
model
.
eval
()
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
eval_acc_top1_list
=
[]
for
batch_id
,
data
in
enumerate
(
test_reader
()):
x_data
=
np
.
array
([
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
-
1
,
1
)
img
=
paddle
.
to_tensor
(
x_data
)
label
=
paddle
.
to_tensor
(
y_data
)
out
=
model
(
img
)
acc_top1
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
1
)
acc_top5
=
fluid
.
layers
.
accuracy
(
input
=
out
,
label
=
label
,
k
=
5
)
if
batch_id
%
100
==
0
:
eval_acc_top1_list
.
append
(
float
(
acc_top1
.
numpy
()))
_logger
.
info
(
"Test | At step {}: acc1 = {:}, acc5 = {:}"
.
format
(
batch_id
,
acc_top1
.
numpy
(),
acc_top5
.
numpy
()))
if
batch_num
>
0
and
batch_id
+
1
>=
batch_num
:
break
eval_acc_top1
=
sum
(
eval_acc_top1_list
)
/
len
(
eval_acc_top1_list
)
return
eval_acc_top1
def
check_thresholds
(
self
,
model
):
check_num
=
0
for
name
,
layer
in
model
.
named_sublayers
():
layer_name
=
layer
.
full_name
()
if
layer_name
in
self
.
gt_thresholds
:
ref_val
=
self
.
gt_thresholds
[
layer_name
]
assert
hasattr
(
layer
,
'_quant_config'
)
quant_config
=
layer
.
_quant_config
in_val
=
quant_config
.
in_act_quantizer
.
thresholds
out_val
=
quant_config
.
out_act_quantizer
.
thresholds
wt_val
=
quant_config
.
wt_quantizer
.
thresholds
check_num
+=
1
self
.
assertTrue
(
np
.
allclose
(
ref_val
[
0
],
in_val
,
atol
=
1e-3
),
"%s | The thresholds(%s) is different "
"from the ground truth(%s)."
%
(
layer_name
,
str
(
in_val
),
str
(
ref_val
[
0
])))
self
.
assertTrue
(
np
.
allclose
(
ref_val
[
1
],
out_val
,
atol
=
1e-3
),
"%s | The thresholds(%s) is different "
"from the ground truth(%s)."
%
(
layer_name
,
str
(
out_val
),
str
(
ref_val
[
1
])))
if
len
(
ref_val
)
>
2
and
ref_val
[
2
]
!=
[]:
self
.
assertTrue
(
np
.
allclose
(
ref_val
[
2
],
wt_val
,
atol
=
1e-3
),
"%s | The thresholds(%s) is different "
"from the ground truth(%s)."
%
(
layer_name
,
str
(
wt_val
),
str
(
ref_val
[
2
])))
self
.
assertTrue
(
check_num
==
len
(
self
.
gt_thresholds
))
def
test_ptq
(
self
):
start_time
=
time
.
time
()
self
.
set_vars
()
params_path
=
self
.
download_model
(
self
.
lenet_url
,
self
.
lenet_md5
,
"lenet"
)
params_path
+=
"/lenet_pretrained/lenet.pdparams"
with
fluid
.
dygraph
.
guard
():
model
=
ImperativeLenet
()
model_state_dict
=
paddle
.
load
(
params_path
)
model
.
set_state_dict
(
model_state_dict
)
self
.
ptq
.
quantize
(
model
,
inplace
=
True
)
acc_top1
=
self
.
model_test
(
model
,
self
.
batch_num
,
self
.
batch_size
)
print
(
'acc_top1: %s'
%
acc_top1
)
self
.
assertTrue
(
acc_top1
>
self
.
eval_acc_top1
,
msg
=
"The test acc {%f} is less than {%f}."
%
(
acc_top1
,
self
.
eval_acc_top1
))
self
.
ptq
.
convert
(
model
)
self
.
check_thresholds
(
model
)
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
None
,
1
,
28
,
28
],
dtype
=
'float32'
)
]
paddle
.
jit
.
save
(
layer
=
model
,
path
=
self
.
save_path
,
input_spec
=
input_spec
)
print
(
'Quantized model saved in {%s}'
%
self
.
save_path
)
end_time
=
time
.
time
()
print
(
"total time: %ss"
%
(
end_time
-
start_time
))
class
TestImperativePTQHist
(
TestImperativePTQ
):
"""
"""
def
set_vars
(
self
):
config
=
PTQConfig
(
HistQuantizer
(),
AbsmaxQuantizer
())
self
.
ptq
=
ImperativePTQ
(
config
)
self
.
batch_num
=
10
self
.
batch_size
=
10
self
.
eval_acc_top1
=
0.99
self
.
gt_thresholds
=
{
'conv2d_0'
:
[[
0.99853515625
],
[
0.35732391771364225
],
[
0.10933732241392136
]],
'batch_norm2d_0'
:
[[
0.35732391771364225
],
[
0.4291427868761275
]],
're_lu_0'
:
[[
0.4291427868761275
],
[
0.2359918110742001
]],
'max_pool2d_0'
:
[[
0.2359918110742001
],
[
0.25665526917146053
]],
'linear_0'
:
[[
1.7037603475152991
],
[
14.395224522473026
],
[
0.4373355209827423
]],
'add_0'
:
[[
1.7037603475152991
,
0.0
],
[
1.7037603475152991
]],
}
class
TestImperativePTQKL
(
TestImperativePTQ
):
"""
"""
def
set_vars
(
self
):
config
=
PTQConfig
(
KLQuantizer
(),
PerChannelAbsmaxQuantizer
())
self
.
ptq
=
ImperativePTQ
(
config
)
self
.
batch_num
=
10
self
.
batch_size
=
10
self
.
eval_acc_top1
=
0.99
conv2d_1_wt_thresholds
=
[
0.18116560578346252
,
0.17079241573810577
,
0.1702047884464264
,
0.179476797580719
,
0.1454375684261322
,
0.22981858253479004
]
self
.
gt_thresholds
=
{
'conv2d_0'
:
[[
0.99267578125
],
[
0.37695913558696836
]],
'conv2d_1'
:
[[
0.19189296757394914
],
[
0.24514256547263358
],
[
conv2d_1_wt_thresholds
]],
'batch_norm2d_0'
:
[[
0.37695913558696836
],
[
0.27462541429440535
]],
're_lu_0'
:
[[
0.27462541429440535
],
[
0.19189296757394914
]],
'max_pool2d_0'
:
[[
0.19189296757394914
],
[
0.19189296757394914
]],
'linear_0'
:
[[
1.2839322163611087
],
[
8.957185942414352
]],
'add_0'
:
[[
1.2839322163611087
,
0.0
],
[
1.2839322163611087
]],
}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录