Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2b0c22ad
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2b0c22ad
编写于
7月 04, 2022
作者:
L
Leo Guo
提交者:
GitHub
7月 04, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Modify the unittests of the conv2d_transpose, gaussian_random op. test=kunlun (#43961)
上级
9e3433bd
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
429 addition
and
166 deletion
+429
-166
python/paddle/fluid/tests/unittests/xpu/test_conv2d_transpose_op_xpu.py
...fluid/tests/unittests/xpu/test_conv2d_transpose_op_xpu.py
+148
-153
python/paddle/fluid/tests/unittests/xpu/test_gaussian_random_op_xpu.py
.../fluid/tests/unittests/xpu/test_gaussian_random_op_xpu.py
+281
-13
未找到文件。
python/paddle/fluid/tests/unittests/xpu/test_conv2d_transpose_op_xpu.py
浏览文件 @
2b0c22ad
...
@@ -22,9 +22,11 @@ import numpy as np
...
@@ -22,9 +22,11 @@ import numpy as np
import
paddle.fluid.core
as
core
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
op_test_xpu
import
XPUOpTest
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
import
paddle
import
paddle
import
paddle.nn
as
nn
import
paddle.nn
as
nn
from
paddle.fluid
import
Program
,
program_guard
paddle
.
enable_static
()
def
conv2dtranspose_forward_naive
(
input_
,
filter_
,
attrs
):
def
conv2dtranspose_forward_naive
(
input_
,
filter_
,
attrs
):
...
@@ -117,166 +119,159 @@ def conv2dtranspose_forward_naive(input_, filter_, attrs):
...
@@ -117,166 +119,159 @@ def conv2dtranspose_forward_naive(input_, filter_, attrs):
return
out
return
out
class
TestConv2DTransposeOp
(
XPUOpTest
):
class
XPUTestConv2DTransposeOp
(
XPUOpTestWrapper
):
def
setUp
(
self
):
def
__init__
(
self
):
# init as conv transpose
self
.
op_name
=
'conv2d_transpose'
self
.
dtype
=
np
.
float32
self
.
use_dynamic_create_class
=
False
self
.
need_check_grad
=
True
self
.
is_test
=
False
class
TestConv2DTransposeOp
(
XPUOpTest
):
self
.
use_cudnn
=
False
self
.
use_mkldnn
=
False
def
setUp
(
self
):
self
.
output_size
=
None
# init as conv transpose
self
.
output_padding
=
[]
self
.
need_check_grad
=
True
self
.
data_format
=
"NCHW"
self
.
is_test
=
False
self
.
pad
=
[
0
,
0
]
self
.
use_cudnn
=
False
self
.
padding_algorithm
=
"EXPLICIT"
self
.
use_mkldnn
=
False
self
.
init_op_type
()
self
.
output_size
=
None
self
.
init_test_case
()
self
.
output_padding
=
[]
self
.
__class__
.
op_type
=
"conv2d_transpose"
self
.
data_format
=
"NCHW"
self
.
pad
=
[
0
,
0
]
input_
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
self
.
padding_algorithm
=
"EXPLICIT"
filter_
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
self
.
init_op_type
()
self
.
init_test_case
()
self
.
inputs
=
{
'Input'
:
input_
,
'Filter'
:
filter_
}
self
.
__class__
.
op_type
=
"conv2d_transpose"
self
.
attrs
=
{
'strides'
:
self
.
stride
,
input_
=
np
.
random
.
random
(
self
.
input_size
).
astype
(
self
.
dtype
)
'paddings'
:
self
.
pad
,
filter_
=
np
.
random
.
random
(
self
.
filter_size
).
astype
(
self
.
dtype
)
'padding_algorithm'
:
self
.
padding_algorithm
,
'groups'
:
self
.
groups
,
self
.
inputs
=
{
'Input'
:
input_
,
'Filter'
:
filter_
}
'dilations'
:
self
.
dilations
,
self
.
attrs
=
{
'use_cudnn'
:
self
.
use_cudnn
,
'strides'
:
self
.
stride
,
'is_test'
:
self
.
is_test
,
'paddings'
:
self
.
pad
,
'use_mkldnn'
:
self
.
use_mkldnn
,
'padding_algorithm'
:
self
.
padding_algorithm
,
'data_format'
:
self
.
data_format
'groups'
:
self
.
groups
,
}
'dilations'
:
self
.
dilations
,
if
self
.
output_size
is
not
None
:
'use_cudnn'
:
self
.
use_cudnn
,
self
.
attrs
[
'output_size'
]
=
self
.
output_size
'is_test'
:
self
.
is_test
,
'use_mkldnn'
:
self
.
use_mkldnn
,
if
len
(
self
.
output_padding
)
>
0
:
'data_format'
:
self
.
data_format
self
.
attrs
[
'output_padding'
]
=
self
.
output_padding
}
if
self
.
output_size
is
not
None
:
output
=
conv2dtranspose_forward_naive
(
input_
,
filter_
,
self
.
attrs
[
'output_size'
]
=
self
.
output_size
self
.
attrs
).
astype
(
self
.
dtype
)
if
len
(
self
.
output_padding
)
>
0
:
self
.
outputs
=
{
'Output'
:
output
}
self
.
attrs
[
'output_padding'
]
=
self
.
output_padding
def
test_check_output
(
self
):
output
=
conv2dtranspose_forward_naive
(
if
core
.
is_compiled_with_xpu
():
input_
,
filter_
,
self
.
attrs
).
astype
(
self
.
dtype
)
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
outputs
=
{
'Output'
:
output
}
self
.
check_output_with_place
(
place
)
def
test_check_output
(
self
):
def
test_check_grad_no_input
(
self
):
self
.
check_output_with_place
(
self
.
place
)
if
self
.
need_check_grad
:
if
core
.
is_compiled_with_xpu
():
def
test_check_grad_no_input
(
self
):
paddle
.
enable_static
()
if
self
.
need_check_grad
:
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
self
.
place
,
[
'Filter'
],
self
.
check_grad_with_place
(
place
,
[
'Filter'
],
'Output'
,
'Output'
,
no_grad_set
=
set
([
'Input'
]))
no_grad_set
=
set
([
'Input'
]))
def
test_check_grad_no_filter
(
self
):
def
test_check_grad_no_filter
(
self
):
if
self
.
need_check_grad
:
if
self
.
need_check_grad
:
if
core
.
is_compiled_with_xpu
():
self
.
check_grad_with_place
(
self
.
place
,
[
'Input'
],
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'Input'
],
'Output'
,
'Output'
,
no_grad_set
=
set
([
'Filter'
]))
no_grad_set
=
set
([
'Filter'
]))
def
test_check_grad
(
self
):
def
test_check_grad
(
self
):
if
self
.
need_check_grad
:
if
self
.
need_check_grad
:
if
core
.
is_compiled_with_xpu
():
self
.
check_grad_with_place
(
self
.
place
,
set
([
'Input'
,
'Filter'
]),
paddle
.
enable_static
()
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
set
([
'Input'
,
'Filter'
]),
'Output'
)
'Output'
)
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
pad
=
[
0
,
0
]
self
.
pad
=
[
0
,
0
]
self
.
stride
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
def
init_op_type
(
self
):
def
init_op_type
(
self
):
self
.
op_type
=
"conv2d_transpose"
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
"conv2d_transpose"
class
TestWithSymmetricPad
(
TestConv2DTransposeOp
):
class
TestWithSymmetricPad
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
self
.
pad
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
groups
=
1
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
1
f_c
=
self
.
input_size
[
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
class
TestWithAsymmetricPad
(
TestConv2DTransposeOp
):
class
TestWithAsymmetricPad
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
0
,
1
,
2
]
self
.
pad
=
[
1
,
0
,
1
,
2
]
self
.
stride
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
dilations
=
[
1
,
1
]
self
.
groups
=
1
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
class
TestWithSAMEPad
(
TestConv2DTransposeOp
):
class
TestWithSAMEPad
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
def
init_test_case
(
self
):
self
.
stride
=
[
2
,
1
]
self
.
stride
=
[
2
,
1
]
self
.
dilations
=
[
1
,
2
]
self
.
dilations
=
[
1
,
2
]
self
.
groups
=
1
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
6
,
5
]
# NCHW
self
.
input_size
=
[
2
,
3
,
6
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
f_c
=
self
.
input_size
[
1
]
self
.
filter_size
=
[
f_c
,
6
,
4
,
3
]
self
.
filter_size
=
[
f_c
,
6
,
4
,
3
]
self
.
padding_algorithm
=
'SAME'
self
.
padding_algorithm
=
'SAME'
class
TestWithVALIDPad
(
TestConv2DTransposeOp
):
class
TestWithVALIDPad
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
self
.
stride
=
[
1
,
1
]
def
init_test_case
(
self
):
self
.
dilations
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
self
.
groups
=
1
self
.
dilations
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
groups
=
1
f_c
=
self
.
input_size
[
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
f_c
=
self
.
input_size
[
1
]
self
.
padding_algorithm
=
'VALID'
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
self
.
padding_algorithm
=
'VALID'
class
TestWithGroups
(
TestConv2DTransposeOp
):
def
init_test_case
(
self
):
class
TestWithGroups
(
TestConv2DTransposeOp
):
self
.
pad
=
[
1
,
1
]
self
.
stride
=
[
1
,
1
]
def
init_test_case
(
self
):
self
.
dilations
=
[
1
,
1
]
self
.
pad
=
[
1
,
1
]
self
.
groups
=
2
self
.
stride
=
[
1
,
1
]
self
.
input_size
=
[
2
,
4
,
5
,
5
]
# NCHW
self
.
dilations
=
[
1
,
1
]
f_c
=
self
.
input_size
[
1
]
self
.
groups
=
2
self
.
filter_size
=
[
f_c
,
3
,
3
,
3
]
self
.
input_size
=
[
2
,
4
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
class
TestWithStride
(
TestConv2DTransposeOp
):
self
.
filter_size
=
[
f_c
,
3
,
3
,
3
]
def
init_test_case
(
self
):
self
.
pad
=
[
1
,
1
]
class
TestWithStride
(
TestConv2DTransposeOp
):
self
.
stride
=
[
2
,
2
]
self
.
dilations
=
[
1
,
1
]
def
init_test_case
(
self
):
self
.
groups
=
1
self
.
pad
=
[
1
,
1
]
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
self
.
stride
=
[
2
,
2
]
f_c
=
self
.
input_size
[
1
]
self
.
dilations
=
[
1
,
1
]
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
self
.
groups
=
1
self
.
input_size
=
[
2
,
3
,
5
,
5
]
# NCHW
f_c
=
self
.
input_size
[
1
]
support_types
=
get_xpu_op_support_types
(
'conv2d_transpose'
)
self
.
filter_size
=
[
f_c
,
6
,
3
,
3
]
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestConv2DTransposeOp
,
stype
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
unittest
.
main
()
unittest
.
main
()
python/paddle/fluid/tests/unittests/xpu/test_gaussian_random_op_xpu.py
浏览文件 @
2b0c22ad
...
@@ -21,25 +21,293 @@ import unittest
...
@@ -21,25 +21,293 @@ import unittest
import
numpy
as
np
import
numpy
as
np
import
paddle
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
import
paddle.fluid.core
as
core
from
op_test_xpu
import
XPUOpTest
from
paddle.fluid.op
import
Operator
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
from
paddle.fluid.executor
import
Executor
import
paddle
from
op_test
import
OpTest
from
test_gaussian_random_op
import
TestGaussianRandomOp
paddle
.
enable_static
()
paddle
.
enable_static
()
class
TestXPUGaussianRandomOp
(
TestGaussianRandomOp
):
class
XPUTestGaussianRandomOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
'gaussian_random'
self
.
use_dynamic_create_class
=
False
class
TestGaussianRandomOp
(
XPUOpTest
):
def
init
(
self
):
self
.
dtype
=
self
.
in_type
self
.
place
=
paddle
.
XPUPlace
(
0
)
self
.
op_type
=
'gaussian_random'
def
setUp
(
self
):
self
.
init
()
self
.
python_api
=
paddle
.
normal
self
.
set_attrs
()
self
.
inputs
=
{}
self
.
use_mkldnn
=
False
self
.
attrs
=
{
"shape"
:
[
123
,
92
],
"mean"
:
self
.
mean
,
"std"
:
self
.
std
,
"seed"
:
10
,
"use_mkldnn"
:
self
.
use_mkldnn
}
paddle
.
seed
(
10
)
self
.
outputs
=
{
'Out'
:
np
.
zeros
((
123
,
92
),
dtype
=
self
.
dtype
)}
def
set_attrs
(
self
):
self
.
mean
=
1.0
self
.
std
=
2.
def
test_check_output
(
self
):
self
.
check_output_with_place_customized
(
self
.
verify_output
,
self
.
place
)
def
verify_output
(
self
,
outs
):
self
.
assertEqual
(
outs
[
0
].
shape
,
(
123
,
92
))
hist
,
_
=
np
.
histogram
(
outs
[
0
],
range
=
(
-
3
,
5
))
hist
=
hist
.
astype
(
"float32"
)
hist
/=
float
(
outs
[
0
].
size
)
data
=
np
.
random
.
normal
(
size
=
(
123
,
92
),
loc
=
1
,
scale
=
2
)
hist2
,
_
=
np
.
histogram
(
data
,
range
=
(
-
3
,
5
))
hist2
=
hist2
.
astype
(
"float32"
)
hist2
/=
float
(
outs
[
0
].
size
)
self
.
assertTrue
(
np
.
allclose
(
hist
,
hist2
,
rtol
=
0
,
atol
=
0.01
),
"hist: "
+
str
(
hist
)
+
" hist2: "
+
str
(
hist2
))
class
TestMeanStdAreInt
(
TestGaussianRandomOp
):
def
set_attrs
(
self
):
self
.
mean
=
1
self
.
std
=
2
# Situation 2: Attr(shape) is a list(with tensor)
class
TestGaussianRandomOp_ShapeTensorList
(
TestGaussianRandomOp
):
def
setUp
(
self
):
'''Test gaussian_random op with specified value
'''
self
.
init
()
self
.
init_data
()
shape_tensor_list
=
[]
for
index
,
ele
in
enumerate
(
self
.
shape
):
shape_tensor_list
.
append
((
"x"
+
str
(
index
),
np
.
ones
(
(
1
)).
astype
(
'int32'
)
*
ele
))
self
.
attrs
=
{
'shape'
:
self
.
infer_shape
,
'mean'
:
self
.
mean
,
'std'
:
self
.
std
,
'seed'
:
self
.
seed
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
inputs
=
{
"ShapeTensorList"
:
shape_tensor_list
}
self
.
outputs
=
{
'Out'
:
np
.
zeros
(
self
.
shape
,
dtype
=
self
.
dtype
)}
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
-
1
,
92
]
self
.
use_mkldnn
=
False
self
.
mean
=
1.0
self
.
std
=
2.0
self
.
seed
=
10
def
test_check_output
(
self
):
self
.
check_output_with_place_customized
(
self
.
verify_output
,
self
.
place
)
class
TestGaussianRandomOp2_ShapeTensorList
(
TestGaussianRandomOp_ShapeTensorList
):
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
-
1
,
-
1
]
self
.
use_mkldnn
=
False
self
.
mean
=
1.0
self
.
std
=
2.0
self
.
seed
=
10
class
TestGaussianRandomOp3_ShapeTensorList
(
TestGaussianRandomOp_ShapeTensorList
):
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
123
,
-
1
]
self
.
use_mkldnn
=
True
self
.
mean
=
1.0
self
.
std
=
2.0
self
.
seed
=
10
class
TestGaussianRandomOp4_ShapeTensorList
(
TestGaussianRandomOp_ShapeTensorList
):
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
infer_shape
=
[
123
,
-
1
]
self
.
use_mkldnn
=
False
self
.
mean
=
1.0
self
.
std
=
2.0
self
.
seed
=
10
# Situation 3: shape is a tensor
class
TestGaussianRandomOp1_ShapeTensor
(
TestGaussianRandomOp
):
def
setUp
(
self
):
'''Test gaussian_random op with specified value
'''
self
.
init
()
self
.
init_data
()
self
.
use_mkldnn
=
False
self
.
inputs
=
{
"ShapeTensor"
:
np
.
array
(
self
.
shape
).
astype
(
"int32"
)}
self
.
attrs
=
{
'mean'
:
self
.
mean
,
'std'
:
self
.
std
,
'seed'
:
self
.
seed
,
'use_mkldnn'
:
self
.
use_mkldnn
}
self
.
outputs
=
{
'Out'
:
np
.
zeros
((
123
,
92
),
dtype
=
self
.
dtype
)}
def
init_data
(
self
):
self
.
shape
=
[
123
,
92
]
self
.
use_mkldnn
=
False
self
.
mean
=
1.0
self
.
std
=
2.0
self
.
seed
=
10
# Test python API
class
TestGaussianRandomAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
positive_2_int32
=
fluid
.
layers
.
fill_constant
([
1
],
"int32"
,
2000
)
positive_2_int64
=
fluid
.
layers
.
fill_constant
([
1
],
"int64"
,
500
)
shape_tensor_int32
=
fluid
.
data
(
name
=
"shape_tensor_int32"
,
shape
=
[
2
],
dtype
=
"int32"
)
shape_tensor_int64
=
fluid
.
data
(
name
=
"shape_tensor_int64"
,
shape
=
[
2
],
dtype
=
"int64"
)
out_1
=
fluid
.
layers
.
gaussian_random
(
shape
=
[
2000
,
500
],
dtype
=
"float32"
,
mean
=
0.0
,
std
=
1.0
,
seed
=
10
)
out_2
=
fluid
.
layers
.
gaussian_random
(
shape
=
[
2000
,
positive_2_int32
],
dtype
=
"float32"
,
mean
=
0.
,
std
=
1.0
,
seed
=
10
)
out_3
=
fluid
.
layers
.
gaussian_random
(
shape
=
[
2000
,
positive_2_int64
],
dtype
=
"float32"
,
mean
=
0.
,
std
=
1.0
,
seed
=
10
)
out_4
=
fluid
.
layers
.
gaussian_random
(
shape
=
shape_tensor_int32
,
dtype
=
"float32"
,
mean
=
0.
,
std
=
1.0
,
seed
=
10
)
out_5
=
fluid
.
layers
.
gaussian_random
(
shape
=
shape_tensor_int64
,
dtype
=
"float32"
,
mean
=
0.
,
std
=
1.0
,
seed
=
10
)
out_6
=
fluid
.
layers
.
gaussian_random
(
shape
=
shape_tensor_int64
,
dtype
=
np
.
float32
,
mean
=
0.
,
std
=
1.0
,
seed
=
10
)
exe
=
fluid
.
Executor
(
place
=
fluid
.
XPUPlace
(
0
))
res_1
,
res_2
,
res_3
,
res_4
,
res_5
,
res_6
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"shape_tensor_int32"
:
np
.
array
([
2000
,
500
]).
astype
(
"int32"
),
"shape_tensor_int64"
:
np
.
array
([
2000
,
500
]).
astype
(
"int64"
),
},
fetch_list
=
[
out_1
,
out_2
,
out_3
,
out_4
,
out_5
,
out_6
])
self
.
assertAlmostEqual
(
np
.
mean
(
res_1
),
0.0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res_1
),
1.
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
mean
(
res_2
),
0.0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res_2
),
1.
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
mean
(
res_3
),
0.0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res_3
),
1.
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
mean
(
res_4
),
0.0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res_5
),
1.
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
mean
(
res_5
),
0.0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res_5
),
1.
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
mean
(
res_6
),
0.0
,
delta
=
0.1
)
self
.
assertAlmostEqual
(
np
.
std
(
res_6
),
1.
,
delta
=
0.1
)
def
test_default_dtype
(
self
):
paddle
.
disable_static
()
def
test_default_fp16
():
paddle
.
framework
.
set_default_dtype
(
'float16'
)
paddle
.
tensor
.
random
.
gaussian
([
2
,
3
])
self
.
assertRaises
(
TypeError
,
test_default_fp16
)
def
test_default_fp32
():
paddle
.
framework
.
set_default_dtype
(
'float32'
)
out
=
paddle
.
tensor
.
random
.
gaussian
([
2
,
3
])
self
.
assertEqual
(
out
.
dtype
,
fluid
.
core
.
VarDesc
.
VarType
.
FP32
)
def
test_default_fp64
():
paddle
.
framework
.
set_default_dtype
(
'float64'
)
out
=
paddle
.
tensor
.
random
.
gaussian
([
2
,
3
])
self
.
assertEqual
(
out
.
dtype
,
fluid
.
core
.
VarDesc
.
VarType
.
FP64
)
test_default_fp64
()
test_default_fp32
()
paddle
.
enable_static
()
class
TestStandardNormalDtype
(
unittest
.
TestCase
):
def
test_default_dtype
(
self
):
paddle
.
disable_static
()
def
test_default_fp16
():
paddle
.
framework
.
set_default_dtype
(
'float16'
)
paddle
.
tensor
.
random
.
standard_normal
([
2
,
3
])
self
.
assertRaises
(
TypeError
,
test_default_fp16
)
def
test_default_fp32
():
paddle
.
framework
.
set_default_dtype
(
'float32'
)
out
=
paddle
.
tensor
.
random
.
standard_normal
([
2
,
3
])
self
.
assertEqual
(
out
.
dtype
,
fluid
.
core
.
VarDesc
.
VarType
.
FP32
)
def
test_default_fp64
():
paddle
.
framework
.
set_default_dtype
(
'float64'
)
out
=
paddle
.
tensor
.
random
.
standard_normal
([
2
,
3
])
self
.
assertEqual
(
out
.
dtype
,
fluid
.
core
.
VarDesc
.
VarType
.
FP64
)
test_default_fp64
()
test_default_fp32
()
paddle
.
enable_static
()
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
outs
=
self
.
calc_output
(
place
)
outs
=
[
np
.
array
(
out
)
for
out
in
outs
]
outs
.
sort
(
key
=
len
)
self
.
verify_output
(
outs
)
support_types
=
get_xpu_op_support_types
(
'gaussian_random'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestGaussianRandomOp
,
stype
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录