Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2a438b0a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2a438b0a
编写于
1月 03, 2023
作者:
X
xiaoting
提交者:
GitHub
1月 03, 2023
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Cherry pick] fix fold for big bs (#49491)
* fix fold for large bs * fix fold for large bs * fix pre-commit
上级
d7855fe8
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
108 addition
and
60 deletion
+108
-60
paddle/phi/kernels/impl/fold_grad_kernel_impl.h
paddle/phi/kernels/impl/fold_grad_kernel_impl.h
+2
-5
paddle/phi/kernels/impl/fold_kernel_impl.h
paddle/phi/kernels/impl/fold_kernel_impl.h
+3
-5
python/paddle/fluid/tests/unittests/test_fold_op.py
python/paddle/fluid/tests/unittests/test_fold_op.py
+103
-50
未找到文件。
paddle/phi/kernels/impl/fold_grad_kernel_impl.h
浏览文件 @
2a438b0a
...
...
@@ -54,11 +54,8 @@ void FoldGradKernel(const Context& ctx,
DDim
out_shape
=
make_ddim
({
n_output_plane
,
output_sizes
[
0
],
output_sizes
[
1
]});
DDim
input_matrix_shape
=
make_ddim
({
x_dims
[
0
],
kernel_sizes
[
0
],
kernel_sizes
[
1
],
output_height
,
output_width
});
DDim
input_matrix_shape
=
make_ddim
(
{
1
,
kernel_sizes
[
0
],
kernel_sizes
[
1
],
output_height
,
output_width
});
paddle
::
operators
::
math
::
Im2ColFunctor
<
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
Context
,
T
>
...
...
paddle/phi/kernels/impl/fold_kernel_impl.h
浏览文件 @
2a438b0a
...
...
@@ -56,11 +56,8 @@ void FoldKernel(const Context& ctx,
DDim
output_shape
=
make_ddim
({
n_output_plane
,
output_sizes
[
0
],
output_sizes
[
1
]});
DDim
input_matrix_shape
=
make_ddim
({
x_dims
[
0
],
kernel_sizes
[
0
],
kernel_sizes
[
1
],
output_height
,
output_width
});
DDim
input_matrix_shape
=
make_ddim
(
{
1
,
kernel_sizes
[
0
],
kernel_sizes
[
1
],
output_height
,
output_width
});
phi
::
funcs
::
SetConstant
<
Context
,
T
>
set_zero
;
set_zero
(
ctx
,
out
,
static_cast
<
T
>
(
0
));
...
...
@@ -68,6 +65,7 @@ void FoldKernel(const Context& ctx,
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
DenseTensor
out_batch
=
out
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// im size=3
DenseTensor
in_batch
=
x
.
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// col size=5
col2im
(
ctx
,
in_batch
,
dilations
,
strides
,
paddings
,
&
out_batch
);
...
...
python/paddle/fluid/tests/unittests/test_fold_op.py
浏览文件 @
2a438b0a
...
...
@@ -14,6 +14,7 @@
from
__future__
import
print_function
import
math
import
numpy
as
np
import
unittest
...
...
@@ -45,34 +46,64 @@ class TestFoldOp(OpTest):
def
calc_fold
(
self
):
output_shape
=
[
0
]
*
4
output_shape
[
0
]
=
self
.
batch_size
output_shape
[
1
]
=
int
(
self
.
input_channels
/
(
self
.
kernel_sizes
[
0
]
*
self
.
kernel_sizes
[
1
]))
output_shape
[
1
]
=
int
(
self
.
input_channels
/
(
self
.
kernel_sizes
[
0
]
*
self
.
kernel_sizes
[
1
])
)
output_shape
[
2
]
=
self
.
output_sizes
[
0
]
output_shape
[
3
]
=
self
.
output_sizes
[
1
]
dkernel_h
=
self
.
dilations
[
0
]
*
(
self
.
kernel_sizes
[
0
]
-
1
)
+
1
dkernel_w
=
self
.
dilations
[
1
]
*
(
self
.
kernel_sizes
[
1
]
-
1
)
+
1
col_height
=
int
((
self
.
output_sizes
[
0
]
+
self
.
paddings
[
0
]
+
self
.
paddings
[
2
]
-
dkernel_h
)
/
self
.
strides
[
0
])
+
1
col_width
=
int
((
self
.
output_sizes
[
1
]
+
self
.
paddings
[
1
]
+
self
.
paddings
[
3
]
-
dkernel_w
)
/
self
.
strides
[
1
])
+
1
col_height
=
(
int
(
(
self
.
output_sizes
[
0
]
+
self
.
paddings
[
0
]
+
self
.
paddings
[
2
]
-
dkernel_h
)
/
self
.
strides
[
0
]
)
+
1
)
col_width
=
(
int
(
(
self
.
output_sizes
[
1
]
+
self
.
paddings
[
1
]
+
self
.
paddings
[
3
]
-
dkernel_w
)
/
self
.
strides
[
1
]
)
+
1
)
output
=
np
.
zeros
(
output_shape
).
astype
(
np
.
float64
)
############ calculate output ##############
for
b
in
range
(
output_shape
[
0
]):
for
c
in
range
(
self
.
input_channels
):
w_offset
=
int
(
c
%
self
.
kernel_sizes
[
1
])
h_offset
=
int
(
(
c
/
self
.
kernel_sizes
[
1
])
%
self
.
kernel_sizes
[
0
])
(
c
/
self
.
kernel_sizes
[
1
])
%
self
.
kernel_sizes
[
0
]
)
c_out
=
int
(
c
/
self
.
kernel_sizes
[
0
]
/
self
.
kernel_sizes
[
1
])
for
h
in
range
(
col_height
):
h_out
=
int
(
h
*
self
.
strides
[
0
]
-
self
.
paddings
[
0
]
+
h_offset
*
self
.
dilations
[
0
])
h_out
=
int
(
h
*
self
.
strides
[
0
]
-
self
.
paddings
[
0
]
+
h_offset
*
self
.
dilations
[
0
]
)
for
w
in
range
(
col_width
):
w_out
=
int
(
w
*
self
.
strides
[
1
]
-
self
.
paddings
[
1
]
+
w_offset
*
self
.
dilations
[
1
])
w_out
=
int
(
w
*
self
.
strides
[
1
]
-
self
.
paddings
[
1
]
+
w_offset
*
self
.
dilations
[
1
]
)
if
(
h_out
>=
0
and
h_out
<
self
.
output_sizes
[
0
])
and
(
w_out
>=
0
and
w_out
<
self
.
output_sizes
[
1
]):
output
[
b
,
c_out
,
h_out
,
w_out
]
+=
self
.
x
[
b
,
c
,
w
+
col_width
*
h
]
w_out
>=
0
and
w_out
<
self
.
output_sizes
[
1
]
):
output
[
b
,
c_out
,
h_out
,
w_out
]
+=
self
.
x
[
b
,
c
,
w
+
col_width
*
h
]
self
.
outputs
=
output
...
...
@@ -85,7 +116,7 @@ class TestFoldOp(OpTest):
'paddings'
:
self
.
paddings
,
'dilations'
:
self
.
dilations
,
'strides'
:
self
.
strides
,
'output_sizes'
:
self
.
output_sizes
'output_sizes'
:
self
.
output_sizes
,
}
self
.
outputs
=
{
'Y'
:
self
.
outputs
}
...
...
@@ -101,9 +132,23 @@ class TestFoldOp(OpTest):
self
.
check_grad
([
'X'
],
'Y'
,
check_eager
=
True
)
class
TestFoldshape
(
TestFoldOp
):
def
init_data
(
self
):
self
.
batch_size
=
8
self
.
input_channels
=
3
*
3
*
3
self
.
length
=
6
self
.
kernel_sizes
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
self
.
paddings
=
[
0
,
0
,
0
,
0
]
self
.
dilations
=
[
1
,
1
]
self
.
output_sizes
=
[
4
,
5
]
input_shape
=
[
self
.
batch_size
,
self
.
input_channels
,
self
.
length
]
self
.
x
=
np
.
random
.
rand
(
*
input_shape
).
astype
(
np
.
float64
)
class
TestFoldAPI
(
TestFoldOp
):
#This is for test on paddle.nn.Fold
#
This is for test on paddle.nn.Fold
def
setUp
(
self
):
self
.
op_type
=
'fold'
...
...
@@ -120,19 +165,19 @@ class TestFoldAPI(TestFoldOp):
m
=
paddle
.
nn
.
Fold
(
**
self
.
attrs
)
m
.
eval
()
result
=
m
(
input
)
np
.
testing
.
assert_allclose
(
result
.
numpy
(),
self
.
outputs
[
'Y'
],
rtol
=
1e-05
)
np
.
testing
.
assert_allclose
(
result
.
numpy
(),
self
.
outputs
[
'Y'
],
rtol
=
1e-05
)
def
test_info
(
self
):
str
(
paddle
.
nn
.
Fold
(
**
self
.
attrs
))
class
TestFoldOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
from
paddle.nn.functional
import
fold
from
paddle.fluid.framework
import
Program
,
program_guard
with
program_guard
(
Program
(),
Program
()):
def
test_input_shape
():
...
...
@@ -148,59 +193,67 @@ class TestFoldOpError(unittest.TestCase):
def
test_padding_shape
():
# padding_size must be 2 or 4
x
=
paddle
.
randn
(
shape
=
[
2
,
6
,
6
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
paddings
=
[
2
,
2
,
3
])
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
paddings
=
[
2
,
2
,
3
],
)
def
test_dilations_shape
():
# dialtions_size must be 2
x
=
paddle
.
randn
(
shape
=
[
2
,
6
,
6
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
dilations
=
[
2
,
2
,
3
])
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
dilations
=
[
2
,
2
,
3
],
)
def
test_strides_shape
():
# strids_size must be 2
x
=
paddle
.
randn
(
shape
=
[
2
,
6
,
6
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
2
,
2
,
3
])
out
=
fold
(
x
,
output_sizes
=
[
2
,
3
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
2
,
2
,
3
],
)
def
test_output_size
():
# im_h * im_w must be L
x
=
paddle
.
randn
(
shape
=
[
2
,
6
,
6
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
6
,
6
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
1
,
1
])
out
=
fold
(
x
,
output_sizes
=
[
6
,
6
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
1
,
1
]
)
def
test_output_size_2
():
# out_size must GT 1
x
=
paddle
.
randn
(
shape
=
[
2
,
6
,
6
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
0.1
,
0.2
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
1
,
1
])
out
=
fold
(
x
,
output_sizes
=
[
0.1
,
0.2
],
kernel_sizes
=
[
2
,
2
],
strides
=
[
1
,
1
],
)
def
test_block_h_w
():
# test_block_h_w GT 0
x
=
paddle
.
randn
(
shape
=
[
2
,
1
,
1
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
1
,
1
],
kernel_sizes
=
[
2
,
2
],
strides
=
1
)
out
=
fold
(
x
,
output_sizes
=
[
1
,
1
],
kernel_sizes
=
[
2
,
2
],
strides
=
1
)
def
test_GT_0
():
x
=
paddle
.
randn
(
shape
=
[
2
,
1
,
1
],
dtype
=
"float32"
)
out
=
fold
(
x
,
output_sizes
=
[
0
,
0
],
kernel_sizes
=
[
0
,
0
],
dilations
=
0
,
paddings
=
[
0
,
0
],
strides
=
0
)
out
=
fold
(
x
,
output_sizes
=
[
0
,
0
],
kernel_sizes
=
[
0
,
0
],
dilations
=
0
,
paddings
=
[
0
,
0
],
strides
=
0
,
)
self
.
assertRaises
(
AssertionError
,
test_input_shape
)
self
.
assertRaises
(
AssertionError
,
test_kernel_shape
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录