Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
29e71d29
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
29e71d29
编写于
1月 16, 2018
作者:
S
shinejiang
提交者:
GitHub
1月 16, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7454 from jhtsing/develop
add bim method for generating adversarail sample
上级
1511a049
7a0f3fdd
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
36 addition
and
0 deletion
+36
-0
adversarial/advbox/attacks/gradientsign.py
adversarial/advbox/attacks/gradientsign.py
+36
-0
未找到文件。
adversarial/advbox/attacks/gradientsign.py
浏览文件 @
29e71d29
...
...
@@ -49,3 +49,39 @@ class GradientSignAttack(Attack):
FGSM
=
GradientSignAttack
class
IteratorGradientSignAttack
(
Attack
):
"""
This attack was originally implemented by Alexey Kurakin(Google Brain).
Paper link: https://arxiv.org/pdf/1607.02533.pdf
"""
def
_apply
(
self
,
image_label
,
epsilons
=
100
,
steps
=
10
):
"""
Apply the iterative gradient sign attack.
Args:
image_label(list): The image and label tuple list of one element.
epsilons(list|tuple|int): The epsilon (input variation parameter).
steps(int): The number of iterator steps.
Return:
numpy.ndarray: The adversarail sample generated by the algorithm.
"""
assert
len
(
image_label
)
==
1
pre_label
=
np
.
argmax
(
self
.
model
.
predict
(
image_label
))
gradient
=
self
.
model
.
gradient
(
image_label
)
min_
,
max_
=
self
.
model
.
bounds
()
if
not
isinstance
(
epsilons
,
Iterable
):
epsilons
=
np
.
linspace
(
0
,
1
,
num
=
epsilons
+
1
)
for
epsilon
in
epsilons
:
adv_img
=
image_label
[
0
][
0
].
reshape
(
gradient
.
shape
)
for
_
in
range
(
steps
):
gradient
=
self
.
model
.
gradient
([(
adv_img
,
image_label
[
0
][
1
])])
gradient_sign
=
np
.
sign
(
gradient
)
*
(
max_
-
min_
)
adv_img
=
adv_img
+
epsilon
*
gradient_sign
adv_img
=
np
.
clip
(
adv_img
,
min_
,
max_
)
adv_label
=
np
.
argmax
(
self
.
model
.
predict
([(
adv_img
,
0
)]))
if
pre_label
!=
adv_label
:
return
adv_img
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录