Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
29cacee4
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
29cacee4
编写于
9月 10, 2021
作者:
B
baoachun
提交者:
GitHub
9月 10, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add elementwise trt converter test cases (#35552)
上级
0b6623d7
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
370 addition
and
3 deletion
+370
-3
python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
...ddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
+3
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
...ts/unittests/ir/inference/test_trt_convert_elementwise.py
+362
-0
python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py
.../tests/unittests/ir/inference/trt_layer_auto_scan_test.py
+5
-3
未找到文件。
python/paddle/fluid/tests/unittests/ir/inference/auto_scan_test.py
浏览文件 @
29cacee4
...
...
@@ -95,6 +95,9 @@ class AutoScanTest(unittest.TestCase):
first
=
tensors
[
0
]
for
group
in
tensors
[
1
:]:
for
key
,
arr
in
group
.
items
():
self
.
assertTrue
(
first
[
key
].
shape
==
arr
.
shape
,
"The output shape of GPU and TensorRT are not equal."
)
self
.
assertTrue
(
np
.
allclose
(
first
[
key
],
arr
,
atol
=
threshold
),
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_elementwise.py
0 → 100644
浏览文件 @
29cacee4
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
trt_layer_auto_scan_test
import
TrtLayerAutoScanTest
,
SkipReasons
from
program_config
import
TensorConfig
,
ProgramConfig
import
numpy
as
np
import
paddle.inference
as
paddle_infer
from
functools
import
partial
from
typing
import
Optional
,
List
,
Callable
,
Dict
,
Any
,
Set
class
TrtConvertElementwiseTest_one_input
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
def
generate_weight
():
return
np
.
random
.
randn
(
32
).
astype
(
np
.
float32
)
for
batch
in
[
1
,
2
,
4
]:
for
shape
in
[[
32
],
[
batch
,
32
],
[
batch
,
64
,
32
],
[
batch
,
8
,
16
,
32
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
[
len
(
shape
)
-
1
,
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data"
],
"Y"
:
[
"weight"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{
"weight"
:
TensorConfig
(
data_gen
=
partial
(
generate_weight
))
},
inputs
=
{
"input_data"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)),
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
256
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
16
]}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
]}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
16
]}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
,
4
]}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
16
]}
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data"
:
[
1
,
4
,
4
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data"
:
[
4
,
256
,
128
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data"
:
[
2
,
32
,
32
,
16
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
0
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
0
,
3
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
2
),
1e-5
def
test
(
self
):
self
.
run_test
()
class
TrtConvertElementwiseTest_two_input_without_broadcast
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
if
len
(
inputs
[
'input_data1'
].
shape
)
==
1
:
return
False
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
for
shape
in
[[
4
],
[
4
,
32
],
[
2
,
64
,
32
],
[
1
,
8
,
16
,
32
]]:
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
[
0
,
-
1
]:
self
.
dims
=
len
(
shape
)
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
],
"Y"
:
[
"input_data2"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
)),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
shape
))
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
if
self
.
dims
==
1
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
],
"input_data2"
:
[
1
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
256
],
"input_data2"
:
[
128
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
16
],
"input_data2"
:
[
32
]
}
elif
self
.
dims
==
2
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
4
],
"input_data2"
:
[
1
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
128
,
256
],
"input_data2"
:
[
128
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
16
],
"input_data2"
:
[
32
,
64
]
}
elif
self
.
dims
==
3
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
4
,
4
],
"input_data2"
:
[
1
,
4
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
128
,
256
,
128
],
"input_data2"
:
[
128
,
128
,
256
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
32
,
16
],
"input_data2"
:
[
2
,
64
,
64
]
}
elif
self
.
dims
==
4
:
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
[
1
,
4
,
4
,
4
],
"input_data2"
:
[
1
,
4
,
4
,
4
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
[
8
,
32
,
64
,
64
],
"input_data2"
:
[
8
,
128
,
64
,
128
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
[
2
,
32
,
32
,
16
],
"input_data2"
:
[
2
,
64
,
32
,
32
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
def
test
(
self
):
self
.
run_test
()
class
TrtConvertElementwiseTest_two_input_with_broadcast
(
TrtLayerAutoScanTest
):
def
is_program_valid
(
self
,
program_config
:
ProgramConfig
)
->
bool
:
inputs
=
program_config
.
inputs
if
len
(
inputs
[
'input_data1'
].
shape
)
==
1
or
len
(
inputs
[
'input_data2'
]
.
shape
)
==
1
:
return
False
return
True
def
sample_program_configs
(
self
):
def
generate_input
(
shape
):
return
np
.
random
.
random
(
shape
).
astype
(
np
.
float32
)
input1_shape_list
=
[[
4
,
32
],
[
2
,
4
,
32
],
[
4
,
2
,
4
,
32
]]
input2_shape1_list
=
[[
32
],
[
4
,
32
],
[
2
,
4
,
32
]]
input2_shape2_list
=
[[
1
,
32
],
[
1
,
1
,
32
],
[
1
,
1
,
1
,
32
]]
input2_shape3_list
=
[[
1
,
32
],
[
1
,
4
,
32
],
[
4
,
32
]]
input2_shape_list
=
[
input2_shape1_list
,
input2_shape2_list
,
input2_shape3_list
]
axis1_list
=
[[
-
1
],
[
1
,
-
1
],
[
1
,
-
1
]]
axis2_list
=
[[
-
1
],
[
-
1
],
[
-
1
]]
axis3_list
=
[[
-
1
],
[
-
1
],
[
2
,
-
1
]]
axis_list
=
[
axis1_list
,
axis2_list
,
axis3_list
]
for
i
in
range
(
3
):
input1_shape
=
input1_shape_list
[
i
]
for
j
in
range
(
3
):
input2_shape
=
input2_shape_list
[
j
][
i
]
for
op_type
in
[
"elementwise_add"
,
"elementwise_mul"
]:
for
axis
in
axis_list
[
j
][
i
]:
self
.
dims1
=
len
(
input1_shape
)
self
.
dims2
=
len
(
input2_shape
)
dics
=
[{
"axis"
:
axis
}]
ops_config
=
[{
"op_type"
:
op_type
,
"op_inputs"
:
{
"X"
:
[
"input_data1"
],
"Y"
:
[
"input_data2"
]
},
"op_outputs"
:
{
"Out"
:
[
"output_data"
]
},
"op_attrs"
:
dics
[
0
]
}]
ops
=
self
.
generate_op_config
(
ops_config
)
program_config
=
ProgramConfig
(
ops
=
ops
,
weights
=
{},
inputs
=
{
"input_data1"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
input1_shape
)),
"input_data2"
:
TensorConfig
(
data_gen
=
partial
(
generate_input
,
input2_shape
))
},
outputs
=
[
"output_data"
])
yield
program_config
def
sample_predictor_configs
(
self
,
program_config
)
->
(
paddle_infer
.
Config
,
List
[
int
],
float
):
def
generate_dynamic_shape
(
attrs
):
max_shape
=
[[
128
],
[
128
,
128
],
[
128
,
128
,
128
],
[
128
,
128
,
128
,
128
]]
min_shape
=
[[
1
],
[
1
,
1
],
[
1
,
1
,
1
],
[
1
,
1
,
1
,
1
]]
opt_shape
=
[[
32
],
[
32
,
32
],
[
32
,
32
,
32
],
[
32
,
32
,
32
,
32
]]
self
.
dynamic_shape
.
min_input_shape
=
{
"input_data1"
:
min_shape
[
self
.
dims1
-
1
],
"input_data2"
:
min_shape
[
self
.
dims2
-
1
]
}
self
.
dynamic_shape
.
max_input_shape
=
{
"input_data1"
:
max_shape
[
self
.
dims1
-
1
],
"input_data2"
:
max_shape
[
self
.
dims2
-
1
]
}
self
.
dynamic_shape
.
opt_input_shape
=
{
"input_data1"
:
opt_shape
[
self
.
dims1
-
1
],
"input_data2"
:
opt_shape
[
self
.
dims2
-
1
]
}
def
clear_dynamic_shape
():
self
.
dynamic_shape
.
max_input_shape
=
{}
self
.
dynamic_shape
.
min_input_shape
=
{}
self
.
dynamic_shape
.
opt_input_shape
=
{}
attrs
=
[
program_config
.
ops
[
i
].
attrs
for
i
in
range
(
len
(
program_config
.
ops
))
]
# for static_shape
clear_dynamic_shape
()
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
# for dynamic_shape
generate_dynamic_shape
(
attrs
)
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Float32
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
self
.
trt_param
.
precision
=
paddle_infer
.
PrecisionType
.
Half
yield
self
.
create_inference_config
(),
(
1
,
3
),
1e-5
def
test
(
self
):
self
.
run_test
()
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/ir/inference/trt_layer_auto_scan_test.py
浏览文件 @
29cacee4
...
...
@@ -99,6 +99,9 @@ class TrtLayerAutoScanTest(AutoScanTest):
tensor
:
Dict
[
str
,
np
.
array
],
baseline
:
Dict
[
str
,
np
.
array
]):
for
key
,
arr
in
tensor
.
items
():
self
.
assertTrue
(
baseline
[
key
].
shape
==
arr
.
shape
,
"The output shape of GPU and TensorRT are not equal."
)
self
.
assertTrue
(
np
.
allclose
(
baseline
[
key
],
arr
,
atol
=
threshold
),
...
...
@@ -219,6 +222,8 @@ class TrtLayerAutoScanTest(AutoScanTest):
self
.
run_test_config
(
model
,
params
,
prog_config
,
pred_config
,
feed_data
))
self
.
assert_tensors_near
(
threshold
,
results
[
-
1
],
results
[
0
])
if
not
skip_flag
:
self
.
assert_op_size
(
nodes_num
[
0
],
nodes_num
[
1
])
except
Exception
as
e
:
self
.
fail_log
(
str
(
prog_config
)
+
' vs '
+
self
.
inference_config_str
(
...
...
@@ -227,9 +232,6 @@ class TrtLayerAutoScanTest(AutoScanTest):
status
=
False
continue
if
not
skip_flag
:
self
.
assert_op_size
(
nodes_num
[
0
],
nodes_num
[
1
])
self
.
success_log
(
'RUN '
+
str
(
prog_config
)
+
' vs '
+
self
.
inference_config_str
(
pred_config
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录