Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
29782728
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
29782728
编写于
11月 24, 2022
作者:
W
Wangzheee
提交者:
GitHub
11月 24, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Paddle Inference]optimize token prune for Paddle-TensorRT (#48241)
* optimize token prune
上级
d39f3fb6
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
422 addition
and
185 deletion
+422
-185
paddle/fluid/framework/ir/remove_padding_recover_padding_pass.cc
...fluid/framework/ir/remove_padding_recover_padding_pass.cc
+57
-0
paddle/fluid/framework/ir/remove_padding_recover_padding_pass.h
.../fluid/framework/ir/remove_padding_recover_padding_pass.h
+11
-1
paddle/fluid/inference/tensorrt/convert/fused_token_prune_op.cc
.../fluid/inference/tensorrt/convert/fused_token_prune_op.cc
+14
-1
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
.../inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
+250
-121
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
...d/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
+27
-6
paddle/fluid/inference/tensorrt/plugin/recover_padding_plugin.cu
...fluid/inference/tensorrt/plugin/recover_padding_plugin.cu
+32
-27
paddle/fluid/inference/tensorrt/plugin/remove_padding_plugin.cu
.../fluid/inference/tensorrt/plugin/remove_padding_plugin.cu
+31
-26
paddle/fluid/inference/tensorrt/plugin/test_fused_token_prune_plugin.cc
...nference/tensorrt/plugin/test_fused_token_prune_plugin.cc
+0
-3
未找到文件。
paddle/fluid/framework/ir/remove_padding_recover_padding_pass.cc
浏览文件 @
29782728
...
...
@@ -131,6 +131,21 @@ void Activation::operator()() {
// Add links for activation op.
activation_op
->
LinksFrom
({
activation_input
}).
LinksTo
({
activation_out
});
}
void
FusedTokenPrune
::
operator
()()
{
// Create nodes for fused_token_prune.
auto
*
fused_token_prune_input
=
pattern
->
NewNode
(
fused_token_prune_input_repr
())
->
assert_is_op_input
(
"fused_token_prune"
,
"X"
);
auto
*
fused_token_prune_op
=
pattern
->
NewNode
(
fused_token_prune_op_repr
())
->
assert_is_op
(
"fused_token_prune"
);
auto
*
fused_token_prune_output
=
pattern
->
NewNode
(
fused_token_prune_output_repr
())
->
assert_is_op_output
(
"fused_token_prune"
,
"SlimmedX"
);
fused_token_prune_op
->
LinksFrom
({
fused_token_prune_input
})
.
LinksTo
({
fused_token_prune_output
});
}
}
// namespace patterns
void
RemovePaddingRecoverPaddingPass
::
ApplyImpl
(
ir
::
Graph
*
graph
)
const
{
...
...
@@ -563,6 +578,48 @@ void RemovePaddingRecoverPaddingPass::ApplyImpl(ir::Graph* graph) const {
};
gpd6
(
graph
,
handler6
);
GraphPatternDetector
gpd7
;
patterns
::
FusedTokenPrune
fused_token_prune
(
gpd7
.
mutable_pattern
(),
"remove_padding_recover_padding_pass"
);
fused_token_prune
();
auto
handler7
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
graph
)
{
VLOG
(
3
)
<<
"remove_padding_recover_padding_pass for transformer: "
"fused_token_prune"
;
GET_IR_NODE_FROM_SUBGRAPH
(
fused_token_prune_input
,
fused_token_prune_input
,
fused_token_prune
);
GET_IR_NODE_FROM_SUBGRAPH
(
fused_token_prune_op
,
fused_token_prune_op
,
fused_token_prune
);
GET_IR_NODE_FROM_SUBGRAPH
(
fused_token_prune_output
,
fused_token_prune_output
,
fused_token_prune
);
std
::
vector
<
int64_t
>
fused_token_prune_input_shape
=
fused_token_prune_input
->
Var
()
->
GetShape
();
check_flag
=
true
;
if
(
fused_token_prune_input_shape
.
size
()
!=
multihead_matmul_input_shape
.
size
())
{
check_flag
=
false
;
VLOG
(
3
)
<<
"Transformer model remove_padding shape check failed, return "
"remove_padding pass."
;
return
;
}
for
(
size_t
i
=
0
;
i
<
fused_token_prune_input_shape
.
size
();
++
i
)
{
if
(
fused_token_prune_input_shape
[
i
]
!=
multihead_matmul_input_shape
[
i
])
{
check_flag
=
false
;
}
}
if
(
!
check_flag
)
{
VLOG
(
3
)
<<
"Transformer model remove_padding shape check failed, return "
"remove_padding pass."
;
return
;
}
insert_recover_padding_op
(
fused_token_prune_op
,
fused_token_prune_output
);
found_subgraph_count
++
;
};
gpd7
(
graph
,
handler7
);
AddStatis
(
found_subgraph_count
);
}
...
...
paddle/fluid/framework/ir/remove_padding_recover_padding_pass.h
浏览文件 @
29782728
...
...
@@ -95,7 +95,6 @@ struct Fc : public PatternBase {
PATTERN_DECL_NODE
(
fc_input
);
PATTERN_DECL_NODE
(
fc_op
);
PATTERN_DECL_NODE
(
fc_out
);
};
struct
Activation
:
public
PatternBase
{
...
...
@@ -108,6 +107,17 @@ struct Activation : public PatternBase {
PATTERN_DECL_NODE
(
activation_op
);
PATTERN_DECL_NODE
(
activation_out
);
};
struct
FusedTokenPrune
:
public
PatternBase
{
FusedTokenPrune
(
PDPattern
*
pattern
,
const
std
::
string
&
name_scope
)
:
PatternBase
(
pattern
,
name_scope
,
"fused_token_prune"
)
{}
void
operator
()();
PATTERN_DECL_NODE
(
fused_token_prune_input
);
PATTERN_DECL_NODE
(
fused_token_prune_op
);
PATTERN_DECL_NODE
(
fused_token_prune_output
);
};
}
// namespace patterns
class
RemovePaddingRecoverPaddingPass
:
public
FusePassBase
{
...
...
paddle/fluid/inference/tensorrt/convert/fused_token_prune_op.cc
浏览文件 @
29782728
...
...
@@ -52,8 +52,21 @@ class FusedTokenPruneOpConverter : public OpConverter {
auto
*
word_id
=
engine_
->
GetITensor
(
"word_id"
);
auto
*
pos_id
=
engine_
->
GetITensor
(
"pos_id"
);
auto
*
mask_id
=
engine_
->
GetITensor
(
"mask_id"
);
// reduce_sum: (-1,headsize,token_length,token_length) ->
// (-1,token_length)
uint32_t
reduce_dim
=
0
;
reduce_dim
|=
1
<<
1
;
// 00000000000000000000000000000010
reduce_dim
|=
1
<<
2
;
// 00000000000000000000000000000110
bool
keep_dim
=
false
;
nvinfer1
::
ReduceOperation
reduce_type
=
nvinfer1
::
ReduceOperation
::
kSUM
;
auto
*
reduce_sum_layer
=
TRT_ENGINE_ADD_LAYER
(
engine_
,
Reduce
,
*
Attn
,
reduce_type
,
reduce_dim
,
keep_dim
);
// reduce_sum_layer->getOutput(0)->setType(reduce_sum_layer->getInput(0)->getType());
auto
*
Reduced
=
reduce_sum_layer
->
getOutput
(
0
);
std
::
vector
<
nvinfer1
::
ITensor
*>
itensors
=
{
Attn
,
X
,
Mask
,
NewMask
,
word_id
,
pos_id
,
mask_id
};
Reduced
,
X
,
Mask
,
NewMask
,
word_id
,
pos_id
,
mask_id
};
layer
=
engine_
->
AddDynamicPlugin
(
itensors
.
data
(),
7
,
plugin
);
layer
->
getOutput
(
0
)
->
setName
(
output_name
.
c_str
());
...
...
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.cu
浏览文件 @
29782728
...
...
@@ -31,19 +31,15 @@ namespace inference {
namespace
tensorrt
{
namespace
plugin
{
#if IS_TRT_VERSION_GE(6000)
template
<
typename
T
>
__global__
void
ElementwiseMask
(
const
T
*
a
,
const
T
*
b
,
T
*
res
,
int
num_elements
)
{
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
auto
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
if
(
tid
>=
num_elements
)
return
;
const
T
zero
=
0
;
res
[
tid
]
=
b
[
tid
]
>=
zero
?
a
[
tid
]
:
zero
;
#endif
}
template
<
typename
T
>
...
...
@@ -123,7 +119,6 @@ __global__ void ReduceSum2(
template
<
>
__global__
void
ReduceSum2
<
half
>
(
const
half
*
src
,
half
*
dst
,
int
bsz
,
int
nb_head
,
int
max_seq_len
)
{
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
int
tid
=
threadIdx
.
x
;
int
bid
=
blockIdx
.
x
;
int
num_blocks_per_head
=
((
max_seq_len
/
blockDim
.
x
)
*
max_seq_len
);
...
...
@@ -155,7 +150,6 @@ __global__ void ReduceSum2<half>(
static_cast
<
size_t
>
(
bsz
*
max_seq_len
),
static_cast
<
platform
::
float16
>
(
res_half
[
0
]));
}
#endif
}
template
<
typename
T
>
...
...
@@ -177,14 +171,81 @@ __global__ void TakeAlongAxis(const T* src,
}
}
__global__
void
pos_id_prune_kernel
(
const
int32_t
*
src
,
int32_t
*
dst
,
int
pos_nums
,
float
scale
)
{
dst
[
0
]
=
0
;
for
(
int
i
=
1
;
i
<
pos_nums
;
i
++
)
{
dst
[
i
]
=
dst
[
i
-
1
]
+
max
(
static_cast
<
int
>
((
src
[
i
]
-
src
[
i
-
1
])
*
scale
),
2
);
__global__
void
compute_token_length
(
const
int32_t
*
src
,
int32_t
*
dst
,
float
scale
)
{
int32_t
it
=
threadIdx
.
x
;
dst
[
it
]
=
max
(
static_cast
<
int
>
((
src
[
it
+
1
]
-
src
[
it
])
*
scale
),
1
);
}
__global__
void
fill_index_padding_score
(
int32_t
*
token_index
,
const
half
*
scores
,
int32_t
scores_size
,
half
*
padding_scores
)
{
int
tid
=
threadIdx
.
x
+
blockIdx
.
x
*
blockDim
.
x
;
token_index
[
tid
]
=
threadIdx
.
x
;
if
(
tid
<
scores_size
)
{
padding_scores
[
tid
]
=
scores
[
tid
];
}
else
{
padding_scores
[
tid
]
=
0
;
}
}
template
<
typename
T
,
int
BLOCK_THREADS
,
int
ITEMS_PER_THREAD
>
__global__
void
general_topk_pair_sort
(
T
*
in_keys
,
int32_t
*
in_out_values
)
{
typedef
cub
::
BlockRadixSort
<
T
,
BLOCK_THREADS
,
ITEMS_PER_THREAD
,
int
>
BlockRadixSort
;
typedef
cub
::
BlockLoad
<
T
,
BLOCK_THREADS
,
ITEMS_PER_THREAD
,
cub
::
BLOCK_LOAD_TRANSPOSE
>
BlockLoadKey
;
typedef
cub
::
BlockLoad
<
int
,
BLOCK_THREADS
,
ITEMS_PER_THREAD
,
cub
::
BLOCK_LOAD_TRANSPOSE
>
BlockLoadValue
;
typedef
cub
::
BlockStore
<
T
,
BLOCK_THREADS
,
ITEMS_PER_THREAD
,
cub
::
BLOCK_STORE_TRANSPOSE
>
BlockStoreKey
;
typedef
cub
::
BlockStore
<
int
,
BLOCK_THREADS
,
ITEMS_PER_THREAD
,
cub
::
BLOCK_STORE_TRANSPOSE
>
BlockStoreValue
;
__shared__
union
{
typename
BlockRadixSort
::
TempStorage
sort
;
typename
BlockLoadKey
::
TempStorage
loadkey
;
typename
BlockLoadValue
::
TempStorage
loadvalue
;
typename
BlockStoreKey
::
TempStorage
storekey
;
typename
BlockStoreValue
::
TempStorage
storevalue
;
}
temp_storage
;
int
block_offset
=
blockIdx
.
x
*
BLOCK_THREADS
*
ITEMS_PER_THREAD
;
T
thread_keys
[
ITEMS_PER_THREAD
];
int
thread_values
[
ITEMS_PER_THREAD
];
BlockLoadKey
(
temp_storage
.
loadkey
).
Load
(
in_keys
+
block_offset
,
thread_keys
);
BlockLoadValue
(
temp_storage
.
loadvalue
)
.
Load
(
in_out_values
+
block_offset
,
thread_values
);
__syncthreads
();
BlockRadixSort
(
temp_storage
.
sort
).
SortDescending
(
thread_keys
,
thread_values
);
__syncthreads
();
BlockStoreValue
(
temp_storage
.
storevalue
)
.
Store
(
in_out_values
+
block_offset
,
thread_values
);
}
__global__
void
varlen_prune_token
(
const
half
*
tokens
,
const
int32_t
*
token_pos
,
const
int32_t
*
token_index
,
half
*
output
)
{
int
batch
=
blockIdx
.
x
;
int
token_it
=
batch
*
gridDim
.
y
+
blockIdx
.
y
;
int
pre_value_it
=
token_it
*
gridDim
.
z
*
blockDim
.
x
+
blockIdx
.
z
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
token_index
[
token_it
]
<
token_pos
[
batch
+
1
]
-
token_pos
[
batch
])
{
output
[(
token_index
[
token_it
]
+
token_pos
[
batch
])
*
gridDim
.
z
*
blockDim
.
x
+
blockIdx
.
z
*
blockDim
.
x
+
threadIdx
.
x
]
=
tokens
[
pre_value_it
];
}
}
...
...
@@ -195,9 +256,29 @@ nvinfer1::DimsExprs FusedTokenPrunePluginDynamic::getOutputDimensions(
nvinfer1
::
IExprBuilder
&
expr_builder
)
TRT_NOEXCEPT
{
auto
x_dims
=
inputs
[
1
],
new_mask_dims
=
inputs
[
3
];
if
(
flag_varseqlen_
)
{
// max sum of seqlen: ceil(sum / scale) + n -1 >= for(i=0;i<n;i++) {sum +=
// floor(num(i) / scale)} auto
// pruned_sum_length=std::ceil(inputs[4].d[0]*new_mask_dims.d[2]/inputs[6].d[1])+
// inputs[1].d[0] - 1;
auto
pruned_sum_length
=
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUB
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kCEIL_DIV
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kPROD
,
*
inputs
[
4
].
d
[
0
],
*
new_mask_dims
.
d
[
2
]),
*
inputs
[
6
].
d
[
1
]),
*
inputs
[
1
].
d
[
0
]),
*
expr_builder
.
constant
(
1
));
if
(
output_index
==
0
)
{
nvinfer1
::
DimsExprs
ret
=
x_dims
;
ret
.
d
[
1
]
=
new_mask_dims
.
d
[
2
];
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
4
;
ret
.
d
[
0
]
=
pruned_sum_length
;
ret
.
d
[
1
]
=
x_dims
.
d
[
2
];
ret
.
d
[
2
]
=
expr_builder
.
constant
(
1
);
ret
.
d
[
3
]
=
expr_builder
.
constant
(
1
);
return
ret
;
}
else
if
(
output_index
==
1
)
{
nvinfer1
::
DimsExprs
ret
;
...
...
@@ -209,18 +290,7 @@ nvinfer1::DimsExprs FusedTokenPrunePluginDynamic::getOutputDimensions(
// word id
nvinfer1
::
DimsExprs
ret
;
ret
.
nbDims
=
1
;
// max sum of seqlen: pre_seqlen * new_mask[2] / mask[1] + 2 * batchs
const
auto
*
two
=
expr_builder
.
constant
(
2
);
ret
.
d
[
0
]
=
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kSUM
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kFLOOR_DIV
,
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kPROD
,
*
inputs
[
4
].
d
[
0
],
*
new_mask_dims
.
d
[
2
]),
*
inputs
[
6
].
d
[
1
]),
*
expr_builder
.
operation
(
nvinfer1
::
DimensionOperation
::
kPROD
,
*
two
,
*
inputs
[
6
].
d
[
0
]));
ret
.
d
[
0
]
=
pruned_sum_length
;
return
ret
;
}
else
if
(
output_index
==
3
)
{
// pos id
...
...
@@ -269,26 +339,18 @@ bool FusedTokenPrunePluginDynamic::supportsFormatCombination(
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
flag_varseqlen_
)
{
if
(
pos
==
0
)
{
if
(
pos
<=
3
||
pos
==
7
)
{
if
(
with_fp16_
)
{
#ifdef TRT_PLUGIN_FP16_AVALIABLE
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
return
(
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
else
{
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The FusedTokenPrune TRT Plugin's input type "
"should be half for varseqlen."
));
}
}
else
if
(
pos
<=
3
||
pos
==
7
)
{
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
0
];
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
else
if
(
pos
==
6
||
pos
==
11
)
{
// mask_id, mask_id_out
return
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
&&
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
)
;
}
else
{
return
in
.
type
==
nvinfer1
::
DataType
::
kINT32
&&
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
...
...
@@ -296,14 +358,9 @@ bool FusedTokenPrunePluginDynamic::supportsFormatCombination(
}
else
{
if
(
pos
==
0
)
{
if
(
with_fp16_
)
{
#ifdef TRT_PLUGIN_FP16_AVALIABLE
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
return
(
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
else
{
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
...
...
@@ -324,9 +381,9 @@ nvinfer1::DataType FusedTokenPrunePluginDynamic::getOutputDataType(
int
nb_inputs
)
const
TRT_NOEXCEPT
{
if
(
flag_varseqlen_
)
{
if
(
index
==
0
)
{
return
input_types
[
1
]
;
}
else
if
(
index
==
4
)
{
return
nvinfer1
::
DataType
::
kFLOAT
;
return
nvinfer1
::
DataType
::
kHALF
;
}
else
if
(
index
==
4
)
{
// mask id
return
input_types
[
6
]
;
}
else
{
// index = 1,2,3
return
nvinfer1
::
DataType
::
kINT32
;
...
...
@@ -557,14 +614,6 @@ inline void enqueueImpl(const nvinfer1::PluginTensorDesc* input_desc,
}
}
inline
void
pos_id_prune
(
const
int32_t
*
input
,
int32_t
*
output
,
int
pos_nums
,
float
scale
,
cudaStream_t
stream
)
{
pos_id_prune_kernel
<<<
1
,
1
,
0
,
stream
>>>
(
input
,
output
,
pos_nums
,
scale
);
}
int
FusedTokenPrunePluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
...
...
@@ -572,73 +621,153 @@ int FusedTokenPrunePluginDynamic::enqueue(
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
{
auto
input_type
=
input_desc
[
0
].
type
;
auto
attn_dims
=
input_desc
[
0
].
dims
;
auto
bsz
=
attn_dims
.
d
[
0
],
nb_head
=
attn_dims
.
d
[
1
],
max_seq_len
=
attn_dims
.
d
[
2
];
int
device_id
;
cudaGetDevice
(
&
device_id
);
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
VLOG
(
1
)
<<
"TRT Plugin DataType selected. FusedTokenPrune-->fp32"
;
float
max
=
std
::
numeric_limits
<
float
>::
max
();
enqueueImpl
<
float
>
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
,
device_id
,
max
,
keep_first_token_
,
keep_order_
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef TRT_PLUGIN_FP16_AVALIABLE
VLOG
(
1
)
<<
"TRT Plugin DataType selected. FusedTokenPrune-->fp16"
;
half
max
=
65504.0
;
enqueueImpl
<
half
>
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
,
device_id
,
max
,
keep_first_token_
,
keep_order_
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The Ernie(Bert) TensorRT Plugin should be "
"complied with CUDA version >= 10.0 when running with fp16. "
"Please recomplie it or try to use fp32 by set "
"config.SetTRTDynamicShapeInfo(min_input_shape, "
"max_input_shape, opt_input_shape, true"
));
#endif
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The FusedTokenPrune TRT Plugin's input type "
"should be float or half."
));
}
if
(
flag_varseqlen_
)
{
if
(
!
(
input_desc
[
0
].
type
==
nvinfer1
::
DataType
::
kHALF
&&
input_desc
[
1
].
type
==
nvinfer1
::
DataType
::
kHALF
))
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Token_prune'type must half"
));
}
float
scale
=
static_cast
<
float
>
(
input_desc
[
3
].
dims
.
d
[
2
])
/
input_desc
[
6
].
dims
.
d
[
1
];
// outputs[2]=inputs[4]; // word_id
const
int32_t
*
inputs5
=
static_cast
<
const
int32_t
*>
(
inputs
[
5
]);
int32_t
*
outputs3
=
static_cast
<
int32_t
*>
(
outputs
[
3
]);
pos_id_prune
(
inputs5
,
outputs3
,
input_desc
[
5
].
dims
.
d
[
0
],
scale
,
stream
);
// pos_id
// outputs[4]=inputs[6]; // new_mask
const
int32_t
*
inputs5
=
static_cast
<
const
int32_t
*>
(
inputs
[
5
]);
// pre pos id
int32_t
*
outputs3
=
static_cast
<
int32_t
*>
(
outputs
[
3
]);
// new pos id
half
*
outputs0
=
static_cast
<
half
*>
(
outputs
[
0
]);
const
int32_t
B
=
input_desc
[
1
].
dims
.
d
[
0
];
// batchs
const
int32_t
max_sequnce_length
=
input_desc
[
1
].
dims
.
d
[
1
];
// max sequnce length
const
int32_t
length
=
input_desc
[
1
].
dims
.
d
[
2
];
// vector length
const
half
*
scores
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
// reduce sum
const
half
*
tokens
=
static_cast
<
const
half
*>
(
inputs
[
1
]);
const
int32_t
scores_size
=
B
*
max_sequnce_length
;
int32_t
padding_token_length
;
if
(
max_sequnce_length
<=
128
)
{
padding_token_length
=
128
;
}
else
if
(
max_sequnce_length
<=
256
)
{
padding_token_length
=
256
;
}
else
if
(
max_sequnce_length
<=
384
)
{
padding_token_length
=
384
;
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Token_prune'token_length must <= 384"
));
}
// 1. Compute the token length after pruning.
compute_token_length
<<<
1
,
B
,
0
,
stream
>>>
(
inputs5
,
pruned_token_lengths_
,
scale
);
fill_index_padding_score
<<<
B
,
padding_token_length
,
0
,
stream
>>>
(
token_index_
,
scores
,
scores_size
,
padding_scores_
);
// Determine temporary device storage requirements
void
*
d_temp_storage
=
NULL
;
size_t
temp_storage_bytes
=
0
;
cub
::
DeviceScan
::
ExclusiveSum
(
d_temp_storage
,
temp_storage_bytes
,
pruned_token_lengths_
,
outputs3
,
B
+
1
);
// Allocate temporary storage
cudaMalloc
(
&
d_temp_storage
,
temp_storage_bytes
);
// Run exclusive prefix sum
cub
::
DeviceScan
::
ExclusiveSum
(
d_temp_storage
,
temp_storage_bytes
,
pruned_token_lengths_
,
outputs3
,
B
+
1
);
if
(
padding_token_length
==
128
)
{
general_topk_pair_sort
<
half
,
32
,
4
>
<<<
B
,
32
,
0
,
stream
>>>
(
padding_scores_
,
token_index_
);
// 128
}
else
if
(
padding_token_length
==
256
)
{
general_topk_pair_sort
<
half
,
64
,
4
>
<<<
B
,
64
,
0
,
stream
>>>
(
padding_scores_
,
token_index_
);
// 256
}
else
{
general_topk_pair_sort
<
half
,
96
,
4
>
<<<
B
,
96
,
0
,
stream
>>>
(
padding_scores_
,
token_index_
);
// 384
}
int32_t
num_threads
;
if
(
length
<
1024
)
{
num_threads
=
length
;
}
else
{
if
(
length
%
512
==
0
)
{
num_threads
=
512
;
}
else
if
(
length
%
256
==
0
)
{
num_threads
=
256
;
}
else
if
(
length
%
128
==
0
)
{
num_threads
=
128
;
}
else
if
(
length
%
64
==
0
)
{
num_threads
=
64
;
}
else
if
(
length
%
32
==
0
)
{
num_threads
=
32
;
}
else
if
(
length
%
16
==
0
)
{
num_threads
=
16
;
}
else
if
(
length
%
8
==
0
)
{
num_threads
=
8
;
}
else
if
(
length
%
4
==
0
)
{
num_threads
=
4
;
}
else
if
(
length
%
2
==
0
)
{
num_threads
=
2
;
}
else
{
num_threads
=
1
;
}
}
const
dim3
num_blocks
(
B
,
max_sequnce_length
,
length
/
num_threads
);
// batchs, max_sequnce_length, vector_ength/***
varlen_prune_token
<<<
num_blocks
,
num_threads
,
0
,
stream
>>>
(
tokens
,
outputs3
,
token_index_
,
outputs0
);
}
else
{
auto
input_type
=
input_desc
[
0
].
type
;
auto
attn_dims
=
input_desc
[
0
].
dims
;
auto
bsz
=
attn_dims
.
d
[
0
],
nb_head
=
attn_dims
.
d
[
1
],
max_seq_len
=
attn_dims
.
d
[
2
];
int
device_id
;
cudaGetDevice
(
&
device_id
);
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
VLOG
(
1
)
<<
"TRT Plugin DataType selected. FusedTokenPrune-->fp32"
;
float
max
=
std
::
numeric_limits
<
float
>::
max
();
enqueueImpl
<
float
>
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
,
device_id
,
max
,
keep_first_token_
,
keep_order_
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
VLOG
(
1
)
<<
"TRT Plugin DataType selected. FusedTokenPrune-->fp16"
;
half
max
=
65504.0
;
enqueueImpl
<
half
>
(
input_desc
,
output_desc
,
inputs
,
outputs
,
workspace
,
stream
,
device_id
,
max
,
keep_first_token_
,
keep_order_
);
}
else
{
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The FusedTokenPrune TRT Plugin's input type "
"should be float or half."
));
}
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tensorrt/plugin/fused_token_prune_op_plugin.h
浏览文件 @
29782728
...
...
@@ -16,6 +16,7 @@
#include "paddle/fluid/inference/tensorrt/engine.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
#include "paddle/fluid/platform/enforce.h"
namespace
paddle
{
namespace
inference
{
...
...
@@ -30,11 +31,10 @@ class FusedTokenPrunePluginDynamic : public DynamicPluginTensorRT {
bool
keep_first_token
,
bool
keep_order
,
bool
flag_varseqlen
)
:
keep_first_token_
(
keep_first_token
),
:
with_fp16_
(
with_fp16
),
keep_first_token_
(
keep_first_token
),
keep_order_
(
keep_order
),
flag_varseqlen_
(
flag_varseqlen
)
{
with_fp16_
=
with_fp16
;
}
flag_varseqlen_
(
flag_varseqlen
)
{}
FusedTokenPrunePluginDynamic
(
void
const
*
serial_data
,
size_t
serial_length
)
{
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
with_fp16_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
keep_first_token_
);
...
...
@@ -42,8 +42,14 @@ class FusedTokenPrunePluginDynamic : public DynamicPluginTensorRT {
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
flag_varseqlen_
);
}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
TRT_NOEXCEPT
override
{
return
new
FusedTokenPrunePluginDynamic
(
FusedTokenPrunePluginDynamic
*
ptr
=
new
FusedTokenPrunePluginDynamic
(
with_fp16_
,
keep_first_token_
,
keep_order_
,
flag_varseqlen_
);
ptr
->
max_batchs_
=
max_batchs_
;
ptr
->
max_token_length_
=
max_token_length_
;
ptr
->
pruned_token_lengths_
=
pruned_token_lengths_
;
ptr
->
token_index_
=
token_index_
;
ptr
->
padding_scores_
=
padding_scores_
;
return
ptr
;
}
const
char
*
getPluginType
()
const
TRT_NOEXCEPT
override
{
...
...
@@ -84,7 +90,16 @@ class FusedTokenPrunePluginDynamic : public DynamicPluginTensorRT {
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nb_inputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nb_outputs
)
TRT_NOEXCEPT
override
{}
int
nb_outputs
)
TRT_NOEXCEPT
override
{
max_batchs_
=
in
[
1
].
max
.
d
[
0
];
max_token_length_
=
in
[
1
].
max
.
d
[
1
];
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaMalloc
(
&
pruned_token_lengths_
,
(
max_batchs_
+
1
)
*
sizeof
(
int32_t
)));
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaMalloc
(
&
token_index_
,
max_batchs_
*
max_token_length_
*
sizeof
(
int32_t
)));
PADDLE_ENFORCE_GPU_SUCCESS
(
cudaMalloc
(
&
padding_scores_
,
max_batchs_
*
max_token_length_
*
sizeof
(
half
)));
}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nb_inputs
,
...
...
@@ -106,9 +121,15 @@ class FusedTokenPrunePluginDynamic : public DynamicPluginTensorRT {
void
destroy
()
TRT_NOEXCEPT
override
{
delete
this
;
}
private:
bool
with_fp16_
;
bool
keep_first_token_
;
bool
keep_order_
;
bool
flag_varseqlen_
;
int32_t
*
pruned_token_lengths_
;
int32_t
*
token_index_
;
int32_t
max_batchs_
;
int32_t
max_token_length_
;
half
*
padding_scores_
;
};
class
FusedTokenPrunePluginDynamicCreator
:
public
nvinfer1
::
IPluginCreator
{
...
...
paddle/fluid/inference/tensorrt/plugin/recover_padding_plugin.cu
浏览文件 @
29782728
...
...
@@ -19,9 +19,9 @@ namespace inference {
namespace
tensorrt
{
namespace
plugin
{
__global__
void
RecoverPaddingKernel
(
const
float
*
input0
,
__global__
void
RecoverPaddingKernel
(
const
half
*
input0
,
const
int32_t
*
input1
,
float
*
output
)
{
half
*
output
)
{
int
word_id
=
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
;
int32_t
seqence_length
=
input1
[
blockIdx
.
x
+
1
]
-
input1
[
blockIdx
.
x
];
if
(
blockIdx
.
y
<
seqence_length
)
{
...
...
@@ -79,7 +79,7 @@ bool RecoverPaddingPlugin::supportsFormatCombination(
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
kFLOAT
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
else
{
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
k
FLOAT
&&
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
k
HALF
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
// return (inOut[pos].type == nvinfer1::DataType::kFLOAT && inOut[pos].format
...
...
@@ -114,38 +114,43 @@ int RecoverPaddingPlugin::enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
const
auto
input0_desc
=
inputDesc
[
0
];
const
auto
input1_desc
=
inputDesc
[
1
];
const
auto
input2_desc
=
inputDesc
[
2
];
const
float
*
input0
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
const
half
*
input0
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
const
int32_t
*
input1
=
static_cast
<
const
int32_t
*>
(
inputs
[
1
]);
// pos_id_tensor
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
const
int32_t
vector_length
=
input0_desc
.
dims
.
d
[
1
];
int32_t
num_threads
;
if
(
input0_desc
.
dims
.
d
[
1
]
%
512
==
0
)
{
num_threads
=
512
;
}
else
if
(
input0_desc
.
dims
.
d
[
1
]
%
256
==
0
)
{
num_threads
=
256
;
}
else
if
(
input0_desc
.
dims
.
d
[
1
]
%
128
==
0
)
{
num_threads
=
128
;
}
else
if
(
input0_desc
.
dims
.
d
[
1
]
%
64
==
0
)
{
num_threads
=
64
;
}
else
if
(
input0_desc
.
dims
.
d
[
1
]
%
32
==
0
)
{
num_threads
=
32
;
}
else
if
(
input0_desc
.
dims
.
d
[
1
]
%
16
==
0
)
{
num_threads
=
16
;
}
else
if
(
input0_desc
.
dims
.
d
[
1
]
%
8
==
0
)
{
num_threads
=
8
;
}
else
if
(
input0_desc
.
dims
.
d
[
1
]
%
4
==
0
)
{
num_threads
=
4
;
}
else
if
(
input0_desc
.
dims
.
d
[
1
]
%
2
==
0
)
{
num_threads
=
2
;
if
(
vector_length
<
1024
)
{
num_threads
=
vector_length
;
}
else
{
num_threads
=
1
;
if
(
vector_length
%
512
==
0
)
{
num_threads
=
512
;
}
else
if
(
vector_length
%
256
==
0
)
{
num_threads
=
256
;
}
else
if
(
vector_length
%
128
==
0
)
{
num_threads
=
128
;
}
else
if
(
vector_length
%
64
==
0
)
{
num_threads
=
64
;
}
else
if
(
vector_length
%
32
==
0
)
{
num_threads
=
32
;
}
else
if
(
vector_length
%
16
==
0
)
{
num_threads
=
16
;
}
else
if
(
vector_length
%
8
==
0
)
{
num_threads
=
8
;
}
else
if
(
vector_length
%
4
==
0
)
{
num_threads
=
4
;
}
else
if
(
vector_length
%
2
==
0
)
{
num_threads
=
2
;
}
else
{
num_threads
=
1
;
}
}
const
dim3
num_blocks
(
input1_desc
.
dims
.
d
[
0
]
-
1
,
input2_desc
.
dims
.
d
[
1
],
input0_desc
.
dims
.
d
[
1
]
/
num_threads
);
// batchs, max sequnce length
// (mask_id.dims.d[1]),
// input.dims.d[1]/256
vector_length
/
num_threads
);
// batchs, max sequnce length
// (mask_id.dims.d[1]),
// input.dims.d[1]/***
RecoverPaddingKernel
<<<
num_blocks
,
num_threads
,
0
,
stream
>>>
(
input0
,
input1
,
output
);
return
cudaGetLastError
()
!=
cudaSuccess
;
...
...
paddle/fluid/inference/tensorrt/plugin/remove_padding_plugin.cu
浏览文件 @
29782728
...
...
@@ -19,9 +19,9 @@ namespace inference {
namespace
tensorrt
{
namespace
plugin
{
__global__
void
RemovePaddingKernel
(
const
float
*
input0
,
__global__
void
RemovePaddingKernel
(
const
half
*
input0
,
const
int32_t
*
input1
,
float
*
output
)
{
half
*
output
)
{
int
word_id
=
blockIdx
.
x
*
gridDim
.
y
+
blockIdx
.
y
;
int32_t
seqence_length
=
input1
[
blockIdx
.
x
+
1
]
-
input1
[
blockIdx
.
x
];
if
(
blockIdx
.
y
<
seqence_length
)
{
...
...
@@ -73,7 +73,7 @@ bool RemovePaddingPlugin::supportsFormatCombination(
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
kINT32
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
else
{
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
k
FLOAT
&&
return
inOut
[
pos
].
type
==
nvinfer1
::
DataType
::
k
HALF
&&
inOut
[
pos
].
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
;
}
// return (inOut[pos].type == nvinfer1::DataType::kFLOAT && inOut[pos].format
...
...
@@ -106,38 +106,43 @@ int RemovePaddingPlugin::enqueue(const nvinfer1::PluginTensorDesc* inputDesc,
void
*
workspace
,
cudaStream_t
stream
)
TRT_NOEXCEPT
{
const
auto
input_desc
=
inputDesc
[
0
];
const
float
*
input0
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
const
half
*
input0
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
const
int32_t
*
input1
=
static_cast
<
const
int32_t
*>
(
inputs
[
1
]);
// pos_id_tensor
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
const
auto
input0_desc
=
inputDesc
[
0
];
const
int32_t
vector_length
=
input0_desc
.
dims
.
d
[
2
];
int32_t
num_threads
;
if
(
input0_desc
.
dims
.
d
[
2
]
%
512
==
0
)
{
num_threads
=
512
;
}
else
if
(
input0_desc
.
dims
.
d
[
2
]
%
256
==
0
)
{
num_threads
=
256
;
}
else
if
(
input0_desc
.
dims
.
d
[
2
]
%
128
==
0
)
{
num_threads
=
128
;
}
else
if
(
input0_desc
.
dims
.
d
[
2
]
%
64
==
0
)
{
num_threads
=
64
;
}
else
if
(
input0_desc
.
dims
.
d
[
2
]
%
32
==
0
)
{
num_threads
=
32
;
}
else
if
(
input0_desc
.
dims
.
d
[
2
]
%
16
==
0
)
{
num_threads
=
16
;
}
else
if
(
input0_desc
.
dims
.
d
[
2
]
%
8
==
0
)
{
num_threads
=
8
;
}
else
if
(
input0_desc
.
dims
.
d
[
2
]
%
4
==
0
)
{
num_threads
=
4
;
}
else
if
(
input0_desc
.
dims
.
d
[
2
]
%
2
==
0
)
{
num_threads
=
2
;
if
(
vector_length
<
1024
)
{
num_threads
=
vector_length
;
}
else
{
num_threads
=
1
;
if
(
vector_length
%
512
==
0
)
{
num_threads
=
512
;
}
else
if
(
vector_length
%
256
==
0
)
{
num_threads
=
256
;
}
else
if
(
vector_length
%
128
==
0
)
{
num_threads
=
128
;
}
else
if
(
vector_length
%
64
==
0
)
{
num_threads
=
64
;
}
else
if
(
vector_length
%
32
==
0
)
{
num_threads
=
32
;
}
else
if
(
vector_length
%
16
==
0
)
{
num_threads
=
16
;
}
else
if
(
vector_length
%
8
==
0
)
{
num_threads
=
8
;
}
else
if
(
vector_length
%
4
==
0
)
{
num_threads
=
4
;
}
else
if
(
vector_length
%
2
==
0
)
{
num_threads
=
2
;
}
else
{
num_threads
=
1
;
}
}
const
dim3
num_blocks
(
input0_desc
.
dims
.
d
[
0
],
input0_desc
.
dims
.
d
[
1
],
input0_desc
.
dims
.
d
[
2
]
/
num_threads
);
// batchs, max sequnce length, input
.dims.d[2]/256
vector_length
/
num_threads
);
// batchs, max sequnce length, input
0.dims.d[2]/***
RemovePaddingKernel
<<<
num_blocks
,
num_threads
,
0
,
stream
>>>
(
input0
,
input1
,
output
);
...
...
paddle/fluid/inference/tensorrt/plugin/test_fused_token_prune_plugin.cc
浏览文件 @
29782728
...
...
@@ -26,12 +26,9 @@ TEST(fused_token_prune_op_plugin, test_plugin) {
/*keep_first_token*/
false
,
/*keep_order*/
true
,
/*flag_varseqlen*/
false
);
plugin
.
configurePlugin
(
nullptr
,
4
,
nullptr
,
2
);
plugin
.
initialize
();
plugin
.
getPluginType
();
plugin
.
getNbOutputs
();
auto
clone_plugin
=
plugin
.
clone
();
clone_plugin
->
destroy
();
size_t
buf_size
=
plugin
.
getSerializationSize
();
std
::
vector
<
char
>
buf
(
buf_size
);
plugin
.
serialize
(
buf
.
data
());
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录