Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
296b64ac
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
296b64ac
编写于
2月 12, 2023
作者:
W
wangruting
浏览文件
操作
浏览文件
下载
差异文件
fix_conflict
上级
6d73091e
648cb508
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
601 addition
and
54 deletion
+601
-54
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+34
-14
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
+22
-7
paddle/phi/api/yaml/op_compat.yaml
paddle/phi/api/yaml/op_compat.yaml
+37
-5
paddle/phi/backends/xpu/xpu2_op_list.cc
paddle/phi/backends/xpu/xpu2_op_list.cc
+1
-4
paddle/phi/kernels/selected_rows/full_kernel.cc
paddle/phi/kernels/selected_rows/full_kernel.cc
+14
-0
paddle/phi/kernels/xpu/full_kernel.cc
paddle/phi/kernels/xpu/full_kernel.cc
+22
-16
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
.../paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
+1
-0
python/paddle/fluid/tests/unittests/ir/inference/test_trt_inference_predictor.py
...ts/unittests/ir/inference/test_trt_inference_predictor.py
+399
-0
python/paddle/incubate/autograd/composite_rules.py
python/paddle/incubate/autograd/composite_rules.py
+2
-2
python/paddle/incubate/autograd/generate_op_map.py
python/paddle/incubate/autograd/generate_op_map.py
+1
-1
python/paddle/incubate/autograd/primx.py
python/paddle/incubate/autograd/primx.py
+25
-2
python/paddle/incubate/autograd/utils.py
python/paddle/incubate/autograd/utils.py
+43
-3
未找到文件。
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
296b64ac
...
@@ -62,6 +62,7 @@
...
@@ -62,6 +62,7 @@
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/kernels/funcs/data_type_transform.h"
#include "paddle/utils/string/split.h"
#include "paddle/utils/string/split.h"
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
#if defined(PADDLE_WITH_DISTRIBUTE) && defined(PADDLE_WITH_PSCORE)
...
@@ -1890,16 +1891,16 @@ bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
...
@@ -1890,16 +1891,16 @@ bool AnalysisPredictor::ExpRunWithExternalStream(const gpuStream_t stream) {
void
AnalysisPredictor
::
CollectShapeRangeInfo
()
{
void
AnalysisPredictor
::
CollectShapeRangeInfo
()
{
// if use gpu, sync first.
// if use gpu, sync first.
paddle
::
platform
::
DeviceContextPool
&
pool
=
paddle
::
platform
::
DeviceContextPool
::
Instance
();
if
(
config_
.
use_gpu
())
{
if
(
config_
.
use_gpu
())
{
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
paddle
::
platform
::
DeviceContextPool
&
pool
=
auto
*
dev_ctx
=
pool
.
Get
(
place_
);
paddle
::
platform
::
DeviceContextPool
::
Instance
();
auto
stream
=
static_cast
<
phi
::
GPUContext
*>
(
dev_ctx
)
->
stream
();
auto
gpu_place
=
place_
;
auto
*
dev_ctx
=
static_cast
<
const
phi
::
GPUContext
*>
(
pool
.
Get
(
gpu_place
));
#ifdef PADDLE_WITH_HIP
#ifdef PADDLE_WITH_HIP
hipStreamSynchronize
(
dev_ctx
->
stream
()
);
hipStreamSynchronize
(
stream
);
#else
#else
cudaStreamSynchronize
(
dev_ctx
->
stream
()
);
cudaStreamSynchronize
(
stream
);
#endif
#endif
#endif
#endif
}
}
...
@@ -1911,6 +1912,7 @@ void AnalysisPredictor::CollectShapeRangeInfo() {
...
@@ -1911,6 +1912,7 @@ void AnalysisPredictor::CollectShapeRangeInfo() {
continue
;
continue
;
}
}
auto
tensor
=
var
->
Get
<
phi
::
DenseTensor
>
();
auto
tensor
=
var
->
Get
<
phi
::
DenseTensor
>
();
if
(
!
tensor
.
initialized
())
continue
;
framework
::
DDim
dim
=
tensor
.
dims
();
framework
::
DDim
dim
=
tensor
.
dims
();
std
::
vector
<
int32_t
>
shape
(
dim
.
size
());
std
::
vector
<
int32_t
>
shape
(
dim
.
size
());
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
shape
[
i
]
=
dim
[
i
];
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
shape
[
i
]
=
dim
[
i
];
...
@@ -1922,22 +1924,40 @@ void AnalysisPredictor::CollectShapeRangeInfo() {
...
@@ -1922,22 +1924,40 @@ void AnalysisPredictor::CollectShapeRangeInfo() {
// This is a simple method to identify all shape tensors with some
// This is a simple method to identify all shape tensors with some
// mistakes, but it doesn't matter.
// mistakes, but it doesn't matter.
auto
is_shape_tensor
=
tensor
.
numel
()
<=
7
&&
tensor
.
numel
()
>=
1
;
auto
is_shape_tensor
=
tensor
.
numel
()
<=
7
&&
tensor
.
numel
()
>=
1
;
if
(
tensor
.
dtype
()
==
paddle
::
experimental
::
DataType
::
INT32
&&
if
((
tensor
.
dtype
()
==
phi
::
DataType
::
INT32
||
tensor
.
dtype
()
==
phi
::
DataType
::
INT64
)
&&
is_shape_tensor
)
{
is_shape_tensor
)
{
std
::
vector
<
int
>
int32_host
(
tensor
.
numel
());
std
::
vector
<
int
>
int32_host
(
tensor
.
numel
());
if
(
tensor
.
place
()
==
platform
::
CPUPlace
())
{
if
(
platform
::
is_cpu_place
(
tensor
.
place
()))
{
auto
&
int32_tensor
=
tensor
;
if
(
tensor
.
dtype
()
==
phi
::
DataType
::
INT64
)
{
auto
*
cpu_ctx
=
pool
.
Get
(
platform
::
CPUPlace
());
int32_tensor
=
phi
::
funcs
::
TransDataType
(
reinterpret_cast
<
const
phi
::
CPUContext
&>
(
*
cpu_ctx
),
tensor
,
DataType
::
INT32
);
}
paddle
::
memory
::
Copy
(
platform
::
CPUPlace
(),
paddle
::
memory
::
Copy
(
platform
::
CPUPlace
(),
int32_host
.
data
(),
int32_host
.
data
(),
platform
::
CPUPlace
(),
platform
::
CPUPlace
(),
tensor
.
data
<
int
>
(),
int32_
tensor
.
data
<
int
>
(),
tensor
.
numel
()
*
sizeof
(
int
));
int32_
tensor
.
numel
()
*
sizeof
(
int
));
}
else
if
(
tensor
.
place
()
==
platform
::
CUDAPlace
(
))
{
}
else
if
(
platform
::
is_gpu_place
(
tensor
.
place
()
))
{
#if defined(PADDLE_WITH_CUDA)
#if defined(PADDLE_WITH_CUDA)
auto
*
dev_ctx
=
pool
.
Get
(
tensor
.
place
());
auto
&
int32_tensor
=
tensor
;
if
(
tensor
.
dtype
()
==
phi
::
DataType
::
INT64
)
{
int32_tensor
=
phi
::
funcs
::
TransDataType
(
reinterpret_cast
<
const
phi
::
GPUContext
&>
(
*
dev_ctx
),
tensor
,
DataType
::
INT32
);
}
paddle
::
memory
::
Copy
(
platform
::
CPUPlace
(),
paddle
::
memory
::
Copy
(
platform
::
CPUPlace
(),
int32_host
.
data
(),
int32_host
.
data
(),
platform
::
CUDAP
lace
(),
int32_tensor
.
p
lace
(),
tensor
.
data
<
int
>
(),
int32_
tensor
.
data
<
int
>
(),
tensor
.
numel
()
*
sizeof
(
int
),
int32_
tensor
.
numel
()
*
sizeof
(
int
),
nullptr
);
nullptr
);
#endif
#endif
}
}
...
...
paddle/fluid/operators/tensorrt/tensorrt_engine_op.h
浏览文件 @
296b64ac
...
@@ -544,6 +544,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
...
@@ -544,6 +544,7 @@ class TensorRTEngineOp : public framework::OperatorBase {
"index=%d >= total inputs and outputs=%d"
,
"index=%d >= total inputs and outputs=%d"
,
bind_index
,
bind_index
,
num_bindings
));
num_bindings
));
auto
type
=
framework
::
TransToProtoVarType
(
t
.
dtype
());
if
(
!
engine
->
with_dynamic_shape
())
{
if
(
!
engine
->
with_dynamic_shape
())
{
// check if the input shapes are consistent with model.
// check if the input shapes are consistent with model.
if
(
HasAttr
(
x
+
"_shape"
))
{
if
(
HasAttr
(
x
+
"_shape"
))
{
...
@@ -586,12 +587,27 @@ class TensorRTEngineOp : public framework::OperatorBase {
...
@@ -586,12 +587,27 @@ class TensorRTEngineOp : public framework::OperatorBase {
if
(
engine
->
engine
()
->
isShapeBinding
(
bind_index
)
&&
if
(
engine
->
engine
()
->
isShapeBinding
(
bind_index
)
&&
engine
->
engine
()
->
bindingIsInput
(
bind_index
))
{
engine
->
engine
()
->
bindingIsInput
(
bind_index
))
{
std
::
vector
<
int
>
shape_v
(
t
.
numel
());
std
::
vector
<
int
>
shape_v
(
t
.
numel
());
paddle
::
memory
::
Copy
(
platform
::
CPUPlace
(),
if
(
type
==
framework
::
proto
::
VarType
::
INT32
)
{
shape_v
.
data
(),
paddle
::
memory
::
Copy
(
platform
::
CPUPlace
(),
platform
::
CUDAPlace
(),
shape_v
.
data
(),
t
.
data
<
int32_t
>
(),
t
.
place
(),
t
.
numel
()
*
sizeof
(
int
),
t
.
data
<
int32_t
>
(),
nullptr
);
t
.
numel
()
*
sizeof
(
int
),
nullptr
);
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT64
)
{
auto
int32_tensor
=
scope
.
FindVar
(
x
+
"_cast_to_INT32"
)
->
GetMutable
<
phi
::
DenseTensor
>
();
*
int32_tensor
=
phi
::
Cast
<
int64_t
>
(
reinterpret_cast
<
const
phi
::
GPUContext
&>
(
dev_ctx
),
t
,
phi
::
DataType
::
INT32
);
paddle
::
memory
::
Copy
(
platform
::
CPUPlace
(),
shape_v
.
data
(),
int32_tensor
->
place
(),
int32_tensor
->
data
<
int32_t
>
(),
int32_tensor
->
numel
()
*
sizeof
(
int
),
nullptr
);
}
trt_context
->
setInputShapeBinding
(
bind_index
,
shape_v
.
data
());
trt_context
->
setInputShapeBinding
(
bind_index
,
shape_v
.
data
());
}
}
#endif
#endif
...
@@ -608,7 +624,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
...
@@ -608,7 +624,6 @@ class TensorRTEngineOp : public framework::OperatorBase {
"The TRT Engine OP's input type should equal "
"The TRT Engine OP's input type should equal "
"to the input data type"
));
"to the input data type"
));
auto
type
=
framework
::
TransToProtoVarType
(
t
.
dtype
());
if
(
type
==
framework
::
proto
::
VarType
::
FP32
)
{
if
(
type
==
framework
::
proto
::
VarType
::
FP32
)
{
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
t
.
data
<
float
>
());
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
t
.
data
<
float
>
());
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT64
)
{
}
else
if
(
type
==
framework
::
proto
::
VarType
::
INT64
)
{
...
...
paddle/phi/api/yaml/op_compat.yaml
浏览文件 @
296b64ac
...
@@ -145,6 +145,13 @@
...
@@ -145,6 +145,13 @@
variance
:
Variance
variance
:
Variance
scale
:
Scale
scale
:
Scale
bias
:
Bias
bias
:
Bias
outputs
:
out
:
Y
mean_out
:
MeanOut
variance_out
:
VarianceOut
saved_mean
:
SavedMean
saved_variance
:
SavedVariance
reserve_space
:
ReserveSpace
extra
:
extra
:
attrs
:
[
bool use_mkldnn = false
,
bool fuse_with_relu = false
]
attrs
:
[
bool use_mkldnn = false
,
bool fuse_with_relu = false
]
...
@@ -407,6 +414,17 @@
...
@@ -407,6 +414,17 @@
-
op
:
dropout
-
op
:
dropout
backward
:
dropout_grad
backward
:
dropout_grad
inputs
:
x
:
X
outputs
:
out
:
Out
mask
:
Mask
attrs
:
p
:
dropout_prob
is_test
:
is_test
mode
:
dropout_implementation
seed
:
seed
fix_seed
:
fix_seed
extra
:
extra
:
attrs
:
[
bool fix_seed = false
,
int seed = 0
]
attrs
:
[
bool fix_seed = false
,
int seed = 0
]
...
@@ -783,6 +801,14 @@
...
@@ -783,6 +801,14 @@
-
op
:
layer_norm
-
op
:
layer_norm
backward
:
layer_norm_grad
backward
:
layer_norm_grad
inputs
:
x
:
X
scale
:
Scale
bias
:
Bias
outputs
:
out
:
Y
mean
:
Mean
variance
:
Variance
extra
:
extra
:
attrs
:
[
bool use_mkldnn = false
,
str mkldnn_data_type = "float32"
,
bool is_test = false
]
attrs
:
[
bool use_mkldnn = false
,
str mkldnn_data_type = "float32"
,
bool is_test = false
]
...
@@ -933,6 +959,17 @@
...
@@ -933,6 +959,17 @@
outputs
:
outputs
:
out
:
Out
out
:
Out
-
op
:
mean (reduce_mean)
backward
:
reduce_mean_grad
inputs
:
x
:
X
outputs
:
out
:
Out
attrs
:
{
axis
:
dim
,
keepdim
:
keep_dim
}
extra
:
attrs
:
[
bool use_mkldnn = false
]
-
op
:
meshgrid
-
op
:
meshgrid
backward
:
meshgrid_grad
backward
:
meshgrid_grad
inputs
:
inputs
:
...
@@ -1138,11 +1175,6 @@
...
@@ -1138,11 +1175,6 @@
extra
:
extra
:
attrs
:
[
bool use_mkldnn = false
]
attrs
:
[
bool use_mkldnn = false
]
-
op
:
reduce_mean
backward
:
reduce_mean_grad
extra
:
attrs
:
[
bool use_mkldnn = false
]
-
op
:
reduce_min
-
op
:
reduce_min
backward
:
reduce_min_grad
backward
:
reduce_min_grad
extra
:
extra
:
...
...
paddle/phi/backends/xpu/xpu2_op_list.cc
浏览文件 @
296b64ac
...
@@ -248,11 +248,8 @@ XPUOpMap& get_kl2_ops() {
...
@@ -248,11 +248,8 @@ XPUOpMap& get_kl2_ops() {
phi
::
DataType
::
INT16
,
phi
::
DataType
::
INT16
,
phi
::
DataType
::
UINT8
,
phi
::
DataType
::
UINT8
,
phi
::
DataType
::
BOOL
,
phi
::
DataType
::
BOOL
,
phi
::
DataType
::
FLOAT64
,
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT32
,
phi
::
DataType
::
FLOAT16
,
phi
::
DataType
::
FLOAT16
})},
phi
::
DataType
::
COMPLEX64
,
phi
::
DataType
::
COMPLEX128
})},
{
"flatten2_grad"
,
{
"flatten2_grad"
,
XPUKernelSet
({
phi
::
DataType
::
INT64
,
XPUKernelSet
({
phi
::
DataType
::
INT64
,
phi
::
DataType
::
INT32
,
phi
::
DataType
::
INT32
,
...
...
paddle/phi/kernels/selected_rows/full_kernel.cc
浏览文件 @
296b64ac
...
@@ -70,3 +70,17 @@ PD_REGISTER_KERNEL(full_sr,
...
@@ -70,3 +70,17 @@ PD_REGISTER_KERNEL(full_sr,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
phi
::
dtype
::
complex
<
double
>
)
{}
#endif
#endif
#if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP)
PD_REGISTER_KERNEL
(
full_sr
,
XPU
,
ALL_LAYOUT
,
phi
::
sr
::
FullKernel
,
float
,
uint8_t
,
int16_t
,
int
,
int64_t
,
bool
,
phi
::
dtype
::
float16
)
{}
#endif
paddle/phi/kernels/xpu/full_kernel.cc
浏览文件 @
296b64ac
...
@@ -14,6 +14,7 @@
...
@@ -14,6 +14,7 @@
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/kernels/full_kernel.h"
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/complex.h"
...
@@ -59,8 +60,19 @@ void FullKernel(const Context& dev_ctx,
...
@@ -59,8 +60,19 @@ void FullKernel(const Context& dev_ctx,
const
Scalar
&
val
,
const
Scalar
&
val
,
DataType
dtype
,
DataType
dtype
,
DenseTensor
*
out
)
{
DenseTensor
*
out
)
{
using
XPUInTDType
=
typename
XPUTypeTrait
<
T
>::
Type
;
out
->
Resize
(
phi
::
make_ddim
(
shape
.
GetData
()));
out
->
Resize
(
phi
::
make_ddim
(
shape
.
GetData
()));
FullValueXPU
<
T
>
(
dev_ctx
,
out
,
val
.
to
<
T
>
());
int
numel
=
out
->
numel
();
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
value
=
val
.
to
<
double
>
();
auto
out_data
=
reinterpret_cast
<
XPUInTDType
*>
(
out
->
data
<
T
>
());
if
(
numel
>
0
)
{
int
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
out_data
,
out
->
numel
(),
static_cast
<
XPUInTDType
>
(
value
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant"
);
}
}
}
template
<
typename
T
,
typename
Context
>
template
<
typename
T
,
typename
Context
>
...
@@ -103,16 +115,11 @@ void FullLikeKernel(const Context& dev_ctx,
...
@@ -103,16 +115,11 @@ void FullLikeKernel(const Context& dev_ctx,
phi
::
errors
::
InvalidArgument
(
"The filled value is Inf."
));
phi
::
errors
::
InvalidArgument
(
"The filled value is Inf."
));
auto
out_data
=
reinterpret_cast
<
XPUInTDType
*>
(
out
->
data
<
T
>
());
auto
out_data
=
reinterpret_cast
<
XPUInTDType
*>
(
out
->
data
<
T
>
());
int
ret
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
int
r
=
xpu
::
constant
(
dev_ctx
.
x_context
(),
out_data
,
out_data
,
out
->
numel
(),
out
->
numel
(),
static_cast
<
XPUInTDType
>
(
value
));
static_cast
<
XPUInTDType
>
(
value
));
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant"
);
ret
,
XPU_SUCCESS
,
phi
::
errors
::
External
(
"XPU CONSTANT API return wrong value[%d %s]."
,
ret
,
XPUAPIErrorMsg
[
ret
]));
}
}
}
// namespace phi
}
// namespace phi
...
@@ -122,24 +129,23 @@ PD_REGISTER_KERNEL(full,
...
@@ -122,24 +129,23 @@ PD_REGISTER_KERNEL(full,
ALL_LAYOUT
,
ALL_LAYOUT
,
phi
::
FullKernel
,
phi
::
FullKernel
,
float
,
float
,
double
,
uint8_t
,
uint8_t
,
int16_t
,
int16_t
,
int
,
int
,
int64_t
,
int64_t
,
bool
,
bool
,
phi
::
dtype
::
float16
,
phi
::
dtype
::
float16
)
{}
phi
::
dtype
::
bfloat16
,
phi
::
dtype
::
complex
<
float
>
,
phi
::
dtype
::
complex
<
double
>
)
{}
PD_REGISTER_KERNEL
(
full_like
,
PD_REGISTER_KERNEL
(
full_like
,
XPU
,
XPU
,
ALL_LAYOUT
,
ALL_LAYOUT
,
phi
::
FullLikeKernel
,
phi
::
FullLikeKernel
,
float
,
float
,
uint8_t
,
int16_t
,
int
,
int
,
int64_t
,
int64_t
,
bool
,
phi
::
dtype
::
float16
)
{
phi
::
dtype
::
float16
)
{
kernel
->
InputAt
(
0
).
SetBackend
(
phi
::
Backend
::
ALL_BACKEND
);
kernel
->
InputAt
(
0
).
SetBackend
(
phi
::
Backend
::
ALL_BACKEND
);
}
}
python/paddle/fluid/tests/unittests/ir/inference/CMakeLists.txt
浏览文件 @
296b64ac
...
@@ -135,6 +135,7 @@ if(WITH_GPU AND TENSORRT_FOUND)
...
@@ -135,6 +135,7 @@ if(WITH_GPU AND TENSORRT_FOUND)
#set_tests_properties(test_trt_multiclass_nms_op PROPERTIES TIMEOUT 200)
#set_tests_properties(test_trt_multiclass_nms_op PROPERTIES TIMEOUT 200)
set_tests_properties
(
test_trt_dynamic_shape PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_trt_dynamic_shape PROPERTIES TIMEOUT 120
)
set_tests_properties
(
test_trt_inspector PROPERTIES TIMEOUT 60
)
set_tests_properties
(
test_trt_inspector PROPERTIES TIMEOUT 60
)
set_tests_properties
(
test_trt_inference_predictor PROPERTIES TIMEOUT 60
)
if
(
WITH_NV_JETSON
)
if
(
WITH_NV_JETSON
)
set_tests_properties
(
set_tests_properties
(
...
...
python/paddle/fluid/tests/unittests/ir/inference/test_trt_inference_predictor.py
0 → 100644
浏览文件 @
296b64ac
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
os
import
sys
import
tempfile
import
unittest
import
numpy
as
np
import
yaml
import
paddle
import
paddle.nn
as
nn
try
:
import
paddle.inference
as
paddle_infer
except
Exception
as
e
:
sys
.
stderr
.
write
(
"Cannot import paddle, maybe paddle is not installed.
\n
"
)
paddle
.
set_device
(
'cpu'
)
paddle
.
disable_signal_handler
()
def
str2bool
(
v
):
if
v
.
lower
()
==
'true'
:
return
True
else
:
return
False
def
getdtype
(
dtype
=
"float32"
):
if
dtype
==
"float32"
or
dtype
==
"float"
:
return
np
.
float32
if
dtype
==
"float16"
:
return
np
.
float16
if
dtype
==
"float64"
:
return
np
.
float64
if
dtype
==
"int32"
:
return
np
.
int32
if
dtype
==
"int64"
:
return
np
.
int64
class
BackendPaddle
:
def
__init__
(
self
):
super
(
BackendPaddle
,
self
).
__init__
()
self
.
h2d_time
=
[]
self
.
compute_time
=
[]
self
.
d2h_time
=
[]
def
version
(
self
):
return
paddle
.
version
.
full_version
def
name
(
self
):
return
"paddle"
def
load
(
self
,
config_arg
,
inputs
=
None
,
outpus
=
None
):
self
.
args
=
config_arg
if
os
.
path
.
exists
(
self
.
args
.
model_dir
):
model_file
=
os
.
path
.
join
(
self
.
args
.
model_dir
+
"/"
+
self
.
args
.
paddle_model_file
)
model_params
=
os
.
path
.
join
(
self
.
args
.
model_dir
+
"/"
+
self
.
args
.
paddle_params_file
)
config
=
paddle_infer
.
Config
(
model_file
,
model_params
)
else
:
raise
ValueError
(
f
"The model dir
{
self
.
args
.
model_dir
}
does not exists!"
)
# enable memory optim
if
not
self
.
args
.
enable_tune
:
config
.
enable_memory_optim
()
config
.
set_cpu_math_library_num_threads
(
self
.
args
.
cpu_threads
)
config
.
switch_ir_optim
(
True
)
# debug
if
self
.
args
.
enable_debug
:
config
.
switch_ir_debug
()
precision_mode
=
paddle_infer
.
PrecisionType
.
Float32
if
self
.
args
.
precision
==
'fp16'
:
precision_mode
=
paddle_infer
.
PrecisionType
.
Half
elif
self
.
args
.
precision
==
'int8'
:
precision_mode
=
paddle_infer
.
PrecisionType
.
Int8
if
self
.
args
.
enable_mkldnn
and
not
self
.
args
.
enable_gpu
:
config
.
disable_gpu
()
config
.
enable_mkldnn
()
if
self
.
args
.
precision
==
'int8'
:
config
.
enable_mkldnn_int8
(
{
"conv2d"
,
"depthwise_conv2d"
,
"transpose2"
,
"pool2d"
}
)
if
not
self
.
args
.
enable_mkldnn
and
not
self
.
args
.
enable_gpu
:
config
.
disable_gpu
()
# config.enable_mkldnn()
if
self
.
args
.
enable_profile
:
config
.
enable_profile
()
shape_range_file
=
os
.
path
.
join
(
self
.
args
.
model_dir
,
self
.
args
.
shape_range_file
)
if
self
.
args
.
enable_tune
:
config
.
collect_shape_range_info
(
shape_range_file
)
if
self
.
args
.
enable_gpu
:
config
.
enable_use_gpu
(
256
,
self
.
args
.
gpu_id
)
if
self
.
args
.
enable_trt
:
max_batch_size
=
self
.
args
.
batch_size
if
(
self
.
args
.
yaml_config
[
"input_shape"
][
"0"
][
"shape"
][
self
.
args
.
test_num
][
0
]
!=
-
1
):
max_batch_size
=
self
.
args
.
yaml_config
[
"input_shape"
][
"0"
][
"shape"
][
self
.
args
.
test_num
][
0
]
config
.
enable_tensorrt_engine
(
workspace_size
=
1
<<
33
,
precision_mode
=
precision_mode
,
max_batch_size
=
max_batch_size
,
min_subgraph_size
=
self
.
args
.
subgraph_size
,
use_static
=
False
,
use_calib_mode
=
False
if
self
.
args
.
precision
==
'int8'
else
False
,
)
if
self
.
args
.
enable_dynamic_shape
:
if
os
.
path
.
exists
(
shape_range_file
):
config
.
enable_tuned_tensorrt_dynamic_shape
(
shape_range_file
,
True
)
config
.
disable_glog_info
()
config
.
exp_disable_tensorrt_ops
([
"range"
])
self
.
predictor
=
paddle_infer
.
create_predictor
(
config
)
input_shape
=
self
.
args
.
yaml_config
[
"input_shape"
]
if
len
(
input_shape
)
<=
0
:
raise
Exception
(
"input shape is empty."
)
if
"input_data"
in
self
.
args
.
yaml_config
:
input_file
=
self
.
args
.
yaml_config
[
"input_data"
][
"data"
][
self
.
args
.
test_num
]
self
.
numpy_input
=
np
.
load
(
input_file
,
allow_pickle
=
True
)
return
self
def
set_input
(
self
):
# set input tensor
input_names
=
self
.
predictor
.
get_input_names
()
for
i
,
name
in
enumerate
(
input_names
):
input_tensor
=
self
.
predictor
.
get_input_handle
(
name
)
if
"input_data"
not
in
self
.
args
.
yaml_config
:
if
(
self
.
args
.
yaml_config
[
"input_shape"
][
str
(
i
)][
"shape"
][
self
.
args
.
test_num
][
0
]
==
-
1
):
input_shape
=
[
self
.
args
.
batch_size
]
+
self
.
args
.
yaml_config
[
"input_shape"
][
str
(
i
)][
"shape"
][
self
.
args
.
test_num
][
1
:
]
dtype
=
self
.
args
.
yaml_config
[
"input_shape"
][
str
(
i
)][
"dtype"
][
self
.
args
.
test_num
]
else
:
input_shape
=
self
.
args
.
yaml_config
[
"input_shape"
][
str
(
i
)][
"shape"
][
self
.
args
.
test_num
]
dtype
=
self
.
args
.
yaml_config
[
"input_shape"
][
str
(
i
)][
"dtype"
][
self
.
args
.
test_num
]
if
hasattr
(
self
.
args
,
"test_data"
):
fake_input
=
self
.
args
.
test_data
[
i
].
astype
(
getdtype
(
dtype
))
else
:
fake_input
=
np
.
ones
(
input_shape
,
dtype
=
getdtype
(
dtype
))
input_tensor
.
copy_from_cpu
(
fake_input
)
else
:
real_input
=
np
.
expand_dims
(
self
.
numpy_input
[
i
],
0
).
repeat
(
self
.
args
.
batch_size
,
axis
=
0
)
input_tensor
.
copy_from_cpu
(
real_input
)
def
set_output
(
self
):
results
=
[]
# get out data from output tensor
output_names
=
self
.
predictor
.
get_output_names
()
for
i
,
name
in
enumerate
(
output_names
):
output_tensor
=
self
.
predictor
.
get_output_handle
(
name
)
output_data
=
output_tensor
.
copy_to_cpu
()
if
self
.
args
.
return_result
or
self
.
args
.
save_result
:
results
.
append
(
output_data
)
if
self
.
args
.
return_result
or
self
.
args
.
save_result
:
return
results
def
reset
(
self
):
self
.
h2d_time
.
clear
()
self
.
d2h_time
.
clear
()
self
.
compute_time
.
clear
()
def
warmup
(
self
):
pass
def
predict
(
self
,
feed
=
None
):
self
.
set_input
()
self
.
predictor
.
run
()
output
=
self
.
set_output
()
if
self
.
args
.
return_result
or
self
.
args
.
save_result
:
return
output
def
predict_nocopy
(
self
,
feed
=
None
):
self
.
predictor
.
run
()
def
parse_args
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--batch_size'
,
type
=
int
,
default
=
1
)
parser
.
add_argument
(
'--cpu_threads'
,
type
=
int
,
default
=
1
)
parser
.
add_argument
(
'--inter_op_threads'
,
type
=
int
,
default
=
1
)
parser
.
add_argument
(
'--precision'
,
type
=
str
,
choices
=
[
"fp32"
,
"fp16"
,
"int8"
]
)
parser
.
add_argument
(
'--backend_type'
,
type
=
str
,
choices
=
[
"paddle"
,
"onnxruntime"
,
"openvino"
,
"tensorrt"
],
default
=
"paddle"
,
)
parser
.
add_argument
(
'--gpu_id'
,
type
=
int
,
default
=
0
)
parser
.
add_argument
(
'--subgraph_size'
,
type
=
int
,
default
=
1
)
parser
.
add_argument
(
'--model_dir'
,
type
=
str
)
parser
.
add_argument
(
'--paddle_model_file'
,
type
=
str
,
default
=
"model.pdmodel"
)
parser
.
add_argument
(
'--paddle_params_file'
,
type
=
str
,
default
=
"model.pdiparams"
)
parser
.
add_argument
(
'--enable_mkldnn'
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
'--enable_gpu'
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
'--enable_trt'
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
'--enable_dynamic_shape'
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
'--enable_tune'
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
'--enable_profile'
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
'--enable_benchmark'
,
type
=
str2bool
,
default
=
True
)
parser
.
add_argument
(
'--save_result'
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
'--return_result'
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
'--enable_debug'
,
type
=
str2bool
,
default
=
False
)
parser
.
add_argument
(
'--config_file'
,
type
=
str
,
required
=
False
,
default
=
"config/model.yaml"
)
parser
.
add_argument
(
'--shape_range_file'
,
type
=
str
,
default
=
"shape_range.pbtxt"
)
args
,
unknown
=
parser
.
parse_known_args
()
return
args
def
run_infer
(
model_path
):
conf
=
parse_args
()
yaml_config
=
yaml
.
safe_load
(
'''
input_shape:
'0':
dtype: [float32]
shape:
- [-1, 3, 32, 32]
'''
)
conf
.
yaml_config
=
yaml_config
conf
.
test_num
=
0
conf
.
model_dir
=
model_path
conf
.
enable_tune
=
True
# collect shape use CPU
conf
.
enable_gpu
=
False
backend
=
BackendPaddle
()
backend
.
load
(
conf
)
backend
.
predict
()
# collect shape use GPU
conf
.
enable_gpu
=
True
backend
=
BackendPaddle
()
backend
.
load
(
conf
)
backend
.
predict
()
# run inference predictor
conf
.
enable_tune
=
False
backend
=
BackendPaddle
()
backend
.
load
(
conf
)
backend
.
predict
()
class
ConvBNLayer
(
paddle
.
nn
.
Layer
):
def
__init__
(
self
,
num_channels
,
num_filters
,
filter_size
,
stride
=
1
,
groups
=
1
,
act
=
None
,
):
super
().
__init__
()
self
.
_conv
=
paddle
.
nn
.
Conv2D
(
in_channels
=
num_channels
,
out_channels
=
num_filters
,
kernel_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
groups
,
bias_attr
=
False
,
)
self
.
_batch_norm
=
paddle
.
nn
.
BatchNorm
(
num_filters
,
act
=
act
)
def
forward
(
self
,
inputs
):
y
=
self
.
_conv
(
inputs
)
y
=
self
.
_batch_norm
(
y
)
return
y
class
Test
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Test
,
self
).
__init__
()
self
.
conv
=
ConvBNLayer
(
num_channels
=
3
,
num_filters
=
64
,
filter_size
=
3
,
stride
=
2
,
act
=
'relu'
)
self
.
pool2d_max
=
paddle
.
nn
.
MaxPool2D
(
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
pool2d_avg
=
paddle
.
nn
.
AdaptiveAvgPool2D
(
output_size
=
1
)
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
pool2d_avg
(
x
)
x
=
paddle
.
reshape
(
x
,
shape
=
[
paddle
.
to_tensor
([
-
1
],
dtype
=
paddle
.
int64
),
paddle
.
to_tensor
([
8
],
dtype
=
paddle
.
int64
),
],
)
return
x
class
TestInferencePredictor
(
unittest
.
TestCase
):
def
setUp
(
self
):
# enable dygraph mode
paddle
.
disable_static
()
self
.
temp_dir
=
tempfile
.
TemporaryDirectory
()
self
.
path
=
os
.
path
.
join
(
self
.
temp_dir
.
name
,
'./inference/model'
)
self
.
path
=
"./inference/model"
def
tearDown
(
self
):
self
.
temp_dir
.
cleanup
()
def
SaveInferenceModel
(
self
):
paddle
.
disable_static
()
net
=
Test
()
net
.
eval
()
net
(
paddle
.
rand
(
shape
=
[
1
,
3
,
32
,
32
],
dtype
=
'float32'
))
input_spec
=
[
paddle
.
static
.
InputSpec
(
shape
=
[
-
1
,
3
,
32
,
32
],
dtype
=
paddle
.
float32
,
name
=
'input'
)
]
static_model
=
paddle
.
jit
.
to_static
(
net
,
input_spec
=
input_spec
)
paddle
.
jit
.
save
(
static_model
,
self
.
path
)
def
testInferencePredictor
(
self
):
self
.
SaveInferenceModel
()
run_infer
(
os
.
path
.
dirname
(
self
.
path
))
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/incubate/autograd/composite_rules.py
浏览文件 @
296b64ac
...
@@ -98,9 +98,9 @@ def composite_batchnorm(
...
@@ -98,9 +98,9 @@ def composite_batchnorm(
run_mean_
=
assign
(
run_mean
)
run_mean_
=
assign
(
run_mean
)
run_var_
=
assign
(
run_var
)
run_var_
=
assign
(
run_var
)
if
trainable_statistics
or
not
is_test
:
if
trainable_statistics
or
not
is_test
:
return
run_mean_
,
None
,
batch_mean_
,
batch_var_
,
run_var_
,
y
return
y
,
run_mean_
,
run_var_
,
batch_mean_
,
batch_var_
,
None
else
:
else
:
return
run_mean_
,
batch_mean_
,
batch_var_
,
run_var_
,
y
return
y
,
run_mean_
,
run_var_
,
batch_mean_
,
batch_var_
@
REGISTER_COMPOSITE
(
'layer_norm'
)
@
REGISTER_COMPOSITE
(
'layer_norm'
)
...
...
python/paddle/incubate/autograd/generate_op_map.py
浏览文件 @
296b64ac
...
@@ -84,7 +84,7 @@ def generate_code(
...
@@ -84,7 +84,7 @@ def generate_code(
else
:
else
:
op_name
=
key
op_name
=
key
map_dct
[
op_name
]
=
{
"phi_name"
:
op_name
}
map_dct
[
op_name
]
=
{
"phi_name"
:
op_name
}
for
element
in
[
"inputs"
,
"attrs"
]:
for
element
in
[
"inputs"
,
"
outputs"
,
"
attrs"
]:
if
element
in
item
.
keys
():
if
element
in
item
.
keys
():
map_dct
[
op_name
][
element
]
=
item
[
element
]
map_dct
[
op_name
][
element
]
=
item
[
element
]
for
element
in
[
"scalar"
,
"int_array"
]:
for
element
in
[
"scalar"
,
"int_array"
]:
...
...
python/paddle/incubate/autograd/primx.py
浏览文件 @
296b64ac
...
@@ -36,6 +36,7 @@ from .utils import (
...
@@ -36,6 +36,7 @@ from .utils import (
flatten_and_remove_none
,
flatten_and_remove_none
,
get_input_var_list
,
get_input_var_list
,
get_output_var_list
,
get_output_var_list
,
get_output_vars_from_comosite
,
prepare_python_api_arguments
,
prepare_python_api_arguments
,
)
)
...
@@ -596,19 +597,37 @@ def _lower_composite(block, blacklist=[]):
...
@@ -596,19 +597,37 @@ def _lower_composite(block, blacklist=[]):
# if output var of composite rule is None, this means this var is not needed
# if output var of composite rule is None, this means this var is not needed
none_vars_to_remove
=
set
()
none_vars_to_remove
=
set
()
change
=
None
# Step2: Process all ops in the target block
# Step2: Process all ops in the target block
for
op_idx
in
range
(
len
(
block
.
ops
)):
for
op_idx
in
range
(
len
(
block
.
ops
)):
op
=
block
.
ops
[
op_idx
]
op
=
block
.
ops
[
op_idx
]
ops_to_remove
.
append
(
op_idx
)
ops_to_remove
.
append
(
op_idx
)
if
lookup_fn
(
op
.
type
)
is
not
None
and
op
.
type
not
in
blacklist
:
if
lookup_fn
(
op
.
type
)
is
not
None
and
op
.
type
not
in
blacklist
:
change
=
True
op_name
=
op
.
type
input_args
=
prepare_python_api_arguments
(
op
)
input_args
=
prepare_python_api_arguments
(
op
)
bind
(
input_args
,
to_bind
,
value_table
)
bind
(
input_args
,
to_bind
,
value_table
)
orig_outs
=
expand_nested_list
(
get_output_vars_from_comosite
(
op
)
)
new_outs
=
expand_nested_list
(
as_tensors
(
lower_fn
(
op
,
*
input_args
))
)
assert
len
(
orig_outs
)
==
len
(
new_outs
),
(
f
'when replace origin op
{
op_name
}
with composite rule, num of origin outs should be equal to new outs, '
f
'but len(orig_outs) =
{
len
(
orig_outs
)
}
and len(new_outs) =
{
len
(
new_outs
)
}
'
)
for
orig_out
,
new_out
in
zip
(
for
orig_out
,
new_out
in
zip
(
expand_nested_list
(
get_output_var_list
(
op
))
,
orig_outs
,
expand_nested_list
(
as_tensors
(
lower_fn
(
op
,
*
input_args
)))
,
new_outs
,
):
):
if
new_out
is
not
None
:
if
new_out
is
not
None
:
if
orig_out
.
shape
and
new_out
.
shape
:
assert
orig_out
.
shape
==
new_out
.
shape
,
(
f
'when replace origin op
{
op_name
}
with composite rule, origin out shape should be equal to new out shape, '
f
'but orig_out.shape=
{
orig_out
.
shape
}
and new_out.shape=
{
new_out
.
shape
}
'
)
assert
not
(
orig_out
is
None
)
^
(
assert
not
(
orig_out
is
None
)
^
(
new_out
is
None
new_out
is
None
),
"orig_out and new_out should match."
),
"orig_out and new_out should match."
...
@@ -675,6 +694,10 @@ def _lower_composite(block, blacklist=[]):
...
@@ -675,6 +694,10 @@ def _lower_composite(block, blacklist=[]):
block
.
desc
.
_remove_var
(
var_name
.
encode
())
block
.
desc
.
_remove_var
(
var_name
.
encode
())
del
block
.
vars
[
var_name
]
del
block
.
vars
[
var_name
]
block
.
_sync_with_cpp
()
block
.
_sync_with_cpp
()
# composite ops may contain other composite ops, thus, call _lower_composite again.
if
change
:
_lower_composite
(
block
,
blacklist
)
return
return
elif
isinstance
(
block
,
typing
.
Sequence
):
elif
isinstance
(
block
,
typing
.
Sequence
):
...
...
python/paddle/incubate/autograd/utils.py
浏览文件 @
296b64ac
...
@@ -169,6 +169,7 @@ def _get_args_values(op, phi_name):
...
@@ -169,6 +169,7 @@ def _get_args_values(op, phi_name):
arg_type
,
arg_name
=
_solve_arg
(
item
)
arg_type
,
arg_name
=
_solve_arg
(
item
)
op_content
=
op_map
[
op
.
type
]
op_content
=
op_map
[
op
.
type
]
if
arg_type
in
(
"Tensor"
,
"Tensor[]"
):
if
arg_type
in
(
"Tensor"
,
"Tensor[]"
):
# assume Tensor type must belong to inputs
if
(
if
(
"inputs"
in
op_content
.
keys
()
"inputs"
in
op_content
.
keys
()
and
arg_name
in
op_content
[
"inputs"
].
keys
()
and
arg_name
in
op_content
[
"inputs"
].
keys
()
...
@@ -182,8 +183,11 @@ def _get_args_values(op, phi_name):
...
@@ -182,8 +183,11 @@ def _get_args_values(op, phi_name):
"attrs"
in
op_content
.
keys
()
"attrs"
in
op_content
.
keys
()
and
arg_name
in
op_content
[
"attrs"
].
keys
()
and
arg_name
in
op_content
[
"attrs"
].
keys
()
):
):
attrs
.
append
(
op
.
attr
(
op_content
[
"attrs"
][
arg_name
]))
arg_name
=
op_content
[
"attrs"
][
arg_name
]
attrs
.
append
(
op
.
attr
(
arg_name
))
if
arg_name
not
in
op
.
attr_names
:
attrs
.
append
(
None
)
else
:
attrs
.
append
(
op
.
attr
(
arg_name
))
return
inputs
,
attrs
return
inputs
,
attrs
...
@@ -202,7 +206,12 @@ def prepare_python_api_arguments(op):
...
@@ -202,7 +206,12 @@ def prepare_python_api_arguments(op):
else
:
else
:
phi_name
=
op
.
type
phi_name
=
op
.
type
inputs
,
attrs
=
_get_args_values
(
op
,
phi_name
)
inputs
,
attrs
=
_get_args_values
(
op
,
phi_name
)
res
=
[
get_var_block
(
op
.
block
,
op
.
input
(
n
))
for
n
in
inputs
]
res
=
[]
for
item
in
inputs
:
if
item
in
op
.
input_names
:
res
.
append
(
get_var_block
(
op
.
block
,
op
.
input
(
item
)))
else
:
res
.
append
(
None
)
if
attrs
:
if
attrs
:
res
.
extend
(
attrs
)
res
.
extend
(
attrs
)
return
res
return
res
...
@@ -218,6 +227,37 @@ def get_output_var_list(op):
...
@@ -218,6 +227,37 @@ def get_output_var_list(op):
]
]
def
get_output_vars_from_comosite
(
op
):
"""origin op outputs must be mapped into outputs of composite rule."""
origin_output_names
=
op
.
output_names
if
origin_output_names
is
None
:
return
[]
else
:
name
=
op
.
type
res
=
[]
if
op_map
[
name
].
get
(
"outputs"
):
for
item
in
op_map
[
name
][
"outputs"
].
keys
():
origin_output_name
=
op_map
[
name
][
"outputs"
][
item
]
if
origin_output_name
not
in
origin_output_names
:
# in some cases, some output of origin op is optional, so op name may not be in origin_output_names
continue
origin_output_var
=
get_var_block
(
op
.
block
,
op
.
output
(
origin_output_name
)
)
res
.
append
(
origin_output_var
)
elif
len
(
origin_output_names
)
==
1
:
# When origin output num is 1, map info is not needed.
origin_output_var
=
get_var_block
(
op
.
block
,
op
.
output
(
origin_output_names
[
0
])
)
res
.
append
(
origin_output_var
)
else
:
raise
ValueError
(
"When replace op with composite rule, there must exist output map info from origin op to composite rule."
)
return
res
def
flatten
(
inp
):
def
flatten
(
inp
):
if
inp
is
None
or
isinstance
(
inp
,
paddle
.
fluid
.
framework
.
Variable
):
if
inp
is
None
or
isinstance
(
inp
,
paddle
.
fluid
.
framework
.
Variable
):
return
[
inp
]
return
[
inp
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录