未验证 提交 28927209 编写于 作者: W Wang Xin 提交者: GitHub

add autogen code support for spectral_norm (#52145)

* add autogen code support for spectral_norm

* bug fixed

* fix PR-CI-Static-Check fail
上级 8ca86d72
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/ternary.h"
namespace paddle {
namespace operators {
class SpectralNormOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(
OperatorWithKernel::IndicateVarDataType(ctx, "Weight"), ctx.GetPlace());
}
};
class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Weight",
"The input weight tensor of spectral_norm operator, "
"This can be a 2-D, 3-D, 4-D, 5-D tensor which is the "
"weights of fc, conv1d, conv2d, conv3d layer. "
"The data type is float32 or float64.");
AddInput("U",
"The weight_u tensor of spectral_norm operator, "
"This can be a 1-D tensor in shape [H, 1],"
"H is the 1st dimensions of Weight after reshape"
"corresponding by Attr(dim). As for Attr(dim) = 1"
"in conv2d layer with weight shape [M, C, K1, K2]"
"Weight will be reshape to [C, M*K1*K2], U will"
"be in shape [C, 1].");
AddInput("V",
"The weight_v tensor of spectral_norm operator, "
"This can be a 1-D tensor in shape [W, 1], "
"W is the 2nd dimensions of Weight after reshape "
"corresponding by Attr(dim). As for Attr(dim) = 1 "
"in conv2d layer with weight shape [M, C, K1, K2] "
"Weight will be reshape to [C, M*K1*K2], V will "
"be in shape [M*K1*K2, 1].");
AddOutput("Out",
"The output weight tensor of spectral_norm operator, "
"This tensor is in same shape with Input(Weight).");
AddAttr<int>("dim",
"The index of dimension which should be permuted "
"to the first before reshaping Input(Weight) to "
"matrix, it should be set as 0 if Input(Weight) is "
"the weight of fc layer, and should be set as 1 if "
"Input(Weight) is the weight of conv layer, "
"default 0.")
.SetDefault(0);
AddAttr<int>("power_iters",
"number of power iterations to calculate "
"spectral norm, default 1.")
.SetDefault(1);
AddAttr<float>("eps",
"epsilon for numerical stability in "
"calculating norms, it will be added to "
"the denominator to aviod divide zero. "
"Default 1e-12.")
.SetDefault(1e-12);
AddComment(R"DOC(
This layer calculates the spectral normalization value of weight of
fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
tensor.
Spectral normalization stabilizes the training of critic in GANs
(Generative Adversarial Networks). This layer rescaling weight tensor
with spectral normalize value.
For spectral normalization calculations, we rescaling weight
tensor with :math:`\sigma`, while :math:`\sigma{\mathbf{W}}` is
$$\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \\frac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}$$
We calculate :math:`\sigma{\mathbf{W}}` through power iterations as
$$
\mathbf{v} = \mathbf{W}^{T} \mathbf{u}
$$
$$
\mathbf{v} = \\frac{\mathbf{v}}{\|\mathbf{v}\|_2}
$$
$$
\mathbf{u} = \mathbf{W}^{T} \mathbf{v}
$$
$$
\mathbf{u} = \\frac{\mathbf{u}}{\|\mathbf{u}\|_2}
$$
And :math:`\sigma` should be
$$\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}$$
For details of spectral normalization, please refer to paper:
`Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
)DOC");
}
};
template <typename T>
class SpectralNormGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("spectral_norm_grad");
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetInput("Weight", this->Input("Weight"));
op->SetInput("U", this->Input("U"));
op->SetInput("V", this->Input("V"));
op->SetOutput(framework::GradVarName("Weight"), this->InputGrad("Weight"));
op->SetAttrMap(this->Attrs());
}
};
class SpectralNormOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
phi::KernelKey GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return phi::KernelKey(
OperatorWithKernel::IndicateVarDataType(ctx, "Weight"), ctx.GetPlace());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(spectral_norm,
SpectralNormInferMetaFunctor,
PD_INFER_META(phi::SpectralNormInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(spectral_norm_grad,
SpectralNormGradInferMetaFunctor,
PD_INFER_META(phi::SpectralNormGradInferMeta));
REGISTER_OPERATOR(spectral_norm,
ops::SpectralNormOp,
ops::SpectralNormOpMaker,
ops::SpectralNormGradOpMaker<paddle::framework::OpDesc>,
ops::SpectralNormGradOpMaker<paddle::imperative::OpBase>,
SpectralNormInferMetaFunctor);
REGISTER_OPERATOR(spectral_norm_grad,
ops::SpectralNormOpGrad,
SpectralNormGradInferMetaFunctor);
...@@ -1557,6 +1557,16 @@ ...@@ -1557,6 +1557,16 @@
kernel : kernel :
func : solve_grad func : solve_grad
- backward_op : spectral_norm_grad
forward : spectral_norm (Tensor weight, Tensor u, Tensor v, int dim = 0, int power_iters = 1, float eps=1e-12f) -> Tensor(out)
args : (Tensor weight, Tensor u, Tensor v, Tensor out_grad, int dim, int power_iters, float eps)
output : Tensor(weight_grad)
infer_meta :
func : SpectralNormGradInferMeta
kernel :
func : spectral_norm_grad
data_type : weight
- backward_op : sqrt_double_grad - backward_op : sqrt_double_grad
forward : sqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x) forward : sqrt_grad (Tensor out, Tensor grad_out) -> Tensor(grad_x)
args : (Tensor out, Tensor grad_x, Tensor grad_x_grad) args : (Tensor out, Tensor grad_x, Tensor grad_x_grad)
......
...@@ -1044,16 +1044,6 @@ ...@@ -1044,16 +1044,6 @@
func : softmax_grad func : softmax_grad
composite : softmax_grad(out, out_grad, axis, x_grad) composite : softmax_grad(out, out_grad, axis, x_grad)
- backward_op : spectral_norm_grad
forward : spectral_norm (Tensor weight, Tensor u, Tensor v, int dim, int power_iters, float eps) -> Tensor(out)
args : (Tensor weight, Tensor u, Tensor v, Tensor out_grad, int dim, int power_iters, float eps)
output : Tensor(weight_grad)
infer_meta :
func : SpectralNormGradInferMeta
kernel :
func : spectral_norm_grad
data_type : out_grad
- backward_op : split_grad - backward_op : split_grad
forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out) forward : split (Tensor x, IntArray num_or_sections, Scalar axis) -> Tensor[](out)
args : (Tensor[] out_grad, Scalar axis = -1) args : (Tensor[] out_grad, Scalar axis = -1)
......
...@@ -1400,16 +1400,6 @@ ...@@ -1400,16 +1400,6 @@
inplace : (x -> out) inplace : (x -> out)
backward : softmax_grad backward : softmax_grad
- op : spectral_norm
args : (Tensor weight, Tensor u, Tensor v, int dim, int power_iters, float eps)
output : Tensor
infer_meta :
func : SpectralNormInferMeta
kernel :
func : spectral_norm
data_type : weight
backward : spectral_norm_grad
- op : split - op : split
args : (Tensor x, IntArray sections, Scalar(int) axis) args : (Tensor x, IntArray sections, Scalar(int) axis)
output : Tensor[]{sections.size()} output : Tensor[]{sections.size()}
......
...@@ -1795,6 +1795,13 @@ ...@@ -1795,6 +1795,13 @@
outputs : outputs :
out : Out out : Out
- op : spectral_norm
backward : spectral_norm_grad
inputs :
{weight : Weight, u : U, v : V}
outputs :
out : Out
- op : sqrt - op : sqrt
backward : sqrt_grad, sqrt_double_grad (sqrt_grad_grad) backward : sqrt_grad, sqrt_double_grad (sqrt_grad_grad)
inputs : inputs :
......
...@@ -1499,6 +1499,16 @@ ...@@ -1499,6 +1499,16 @@
data_type : x data_type : x
backward : solve_grad backward : solve_grad
- op : spectral_norm
args : (Tensor weight, Tensor u, Tensor v, int dim = 0, int power_iters = 1, float eps = 1e-12f)
output : Tensor
infer_meta :
func : SpectralNormInferMeta
kernel :
func : spectral_norm
data_type : weight
backward : spectral_norm_grad
- op : sqrt - op : sqrt
args : (Tensor x) args : (Tensor x)
output : Tensor(out) output : Tensor(out)
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/core/compat/op_utils.h"
namespace phi {
KernelSignature SpectralNormOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("spectral_norm",
{"Weight", "U", "V"},
{"dim", "power_iters", "eps"},
{"Out"});
}
KernelSignature SpectralNormGradOpArgumentMapping(
const ArgumentMappingContext& ctx) {
return KernelSignature("spectral_norm_grad",
{"Weight", "U", "V", "Out@GRAD"},
{"dim", "power_iters", "eps"},
{"Weight@GRAD"});
}
} // namespace phi
PD_REGISTER_ARG_MAPPING_FN(spectral_norm, phi::SpectralNormOpArgumentMapping);
PD_REGISTER_ARG_MAPPING_FN(spectral_norm_grad,
phi::SpectralNormGradOpArgumentMapping);
...@@ -3376,7 +3376,6 @@ def row_conv(input, future_context_size, param_attr=None, act=None): ...@@ -3376,7 +3376,6 @@ def row_conv(input, future_context_size, param_attr=None, act=None):
return helper.append_activation(out) return helper.append_activation(out)
@templatedoc()
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None): def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
r""" r"""
:api_attr: Static Graph :api_attr: Static Graph
...@@ -3417,10 +3416,18 @@ def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None): ...@@ -3417,10 +3416,18 @@ def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ . Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
Args: Args:
weight(Tensor): ${weight_comment} weight(Tensor): The input weight tensor of spectral_norm operator,
dim(int): ${dim_comment} This can be a 2-D, 3-D, 4-D, 5-D tensor which is the
power_iters(int): ${power_iters_comment} weights of fc, conv1d, conv2d, conv3d layer.
eps(float): ${eps_comment} The data type is float32 or float64.
dim(int): The index of dimension which should be permuted
to the first before reshaping Input(Weight) to
matrix, it should be set as 0 if Input(Weight) is
the weight of fc layer, and should be set as 1 if
Input(Weight) is the weight of conv layer, default 0.
power_iters(int): number of power iterations to calculate spectral norm, default 1.
eps(float): epsilon for numerical stability in calculating norms, it will be added to
the denominator to aviod divide zero. Default 1e-12.
name(str, optional): For detailed information, please refer name(str, optional): For detailed information, please refer
to :ref:`api_guide_Name`. Usually name is no need to set and to :ref:`api_guide_Name`. Usually name is no need to set and
None by default. None by default.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册