Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2883e4b2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
2883e4b2
编写于
7月 20, 2022
作者:
L
lyq
提交者:
GitHub
7月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Phi] migrate clip_by_norm to phi (#44458)
上级
dafe855e
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
429 addition
and
203 deletion
+429
-203
paddle/fluid/operators/clip_by_norm_op.cc
paddle/fluid/operators/clip_by_norm_op.cc
+10
-4
paddle/fluid/operators/clip_by_norm_op.cu
paddle/fluid/operators/clip_by_norm_op.cu
+0
-122
paddle/fluid/operators/clip_by_norm_op.h
paddle/fluid/operators/clip_by_norm_op.h
+0
-70
paddle/fluid/operators/dgc_clip_by_norm_op.h
paddle/fluid/operators/dgc_clip_by_norm_op.h
+32
-5
paddle/phi/api/yaml/legacy_api.yaml
paddle/phi/api/yaml/legacy_api.yaml
+8
-0
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+12
-0
paddle/phi/infermeta/unary.h
paddle/phi/infermeta/unary.h
+2
-0
paddle/phi/kernels/clip_by_norm_kernel.h
paddle/phi/kernels/clip_by_norm_kernel.h
+27
-0
paddle/phi/kernels/cpu/clip_by_norm_kernel.cc
paddle/phi/kernels/cpu/clip_by_norm_kernel.cc
+34
-0
paddle/phi/kernels/gpu/clip_by_norm_kernel.cu
paddle/phi/kernels/gpu/clip_by_norm_kernel.cu
+89
-0
paddle/phi/kernels/impl/clip_by_norm_kernel_impl.h
paddle/phi/kernels/impl/clip_by_norm_kernel_impl.h
+55
-0
paddle/phi/kernels/selected_rows/clip_by_norm_kernel.h
paddle/phi/kernels/selected_rows/clip_by_norm_kernel.h
+29
-0
paddle/phi/kernels/selected_rows/cpu/clip_by_norm_kernel.cc
paddle/phi/kernels/selected_rows/cpu/clip_by_norm_kernel.cc
+22
-0
paddle/phi/kernels/selected_rows/gpu/clip_by_norm_kernel.cu
paddle/phi/kernels/selected_rows/gpu/clip_by_norm_kernel.cu
+27
-0
paddle/phi/kernels/selected_rows/impl/clip_by_norm_kernel_impl.h
...phi/kernels/selected_rows/impl/clip_by_norm_kernel_impl.h
+45
-0
paddle/phi/ops/compat/clip_by_norm_sig.cc
paddle/phi/ops/compat/clip_by_norm_sig.cc
+30
-0
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+2
-0
python/paddle/fluid/tests/unittests/test_clip_by_norm_op.py
python/paddle/fluid/tests/unittests/test_clip_by_norm_op.py
+5
-2
未找到文件。
paddle/fluid/operators/clip_by_norm_op.cc
浏览文件 @
2883e4b2
...
...
@@ -13,11 +13,17 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/clip_by_norm_op.h"
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
namespace
ops
=
paddle
::
operators
;
DECLARE_INFER_SHAPE_FUNCTOR
(
clip_by_norm
,
ClipByNormInferShapeFunctor
,
PD_INFER_META
(
phi
::
ClipByNormInferMeta
));
REGISTER_OP_WITHOUT_GRADIENT
(
clip_by_norm
,
ops
::
ClipByNormOp
,
ops
::
ClipByNormOpMaker
);
REGISTER_OP_CPU_KERNEL
(
clip_by_norm
,
ops
::
ClipByNormKernel
<
phi
::
CPUContext
,
float
>
);
ops
::
ClipByNormOpMaker
,
ClipByNormInferShapeFunctor
);
paddle/fluid/operators/clip_by_norm_op.cu
已删除
100644 → 0
浏览文件 @
dafe855e
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/clip_by_norm_op.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
>
class
ClipByNormKernel
<
platform
::
CUDADeviceContext
,
platform
::
float16
>
:
public
framework
::
OpKernel
<
platform
::
float16
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
max_norm
=
context
.
Attr
<
float
>
(
"max_norm"
);
auto
in_var
=
context
.
InputVar
(
"X"
);
auto
&
dev_ctx
=
context
.
template
device_context
<
platform
::
CUDADeviceContext
>();
Tensor
*
output
=
nullptr
;
const
Tensor
*
input
=
nullptr
;
if
(
in_var
->
IsType
<
framework
::
LoDTensor
>
())
{
input
=
context
.
Input
<
Tensor
>
(
"X"
);
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
platform
::
float16
>
(
context
.
GetPlace
());
}
else
if
(
in_var
->
IsType
<
phi
::
SelectedRows
>
())
{
auto
*
x
=
context
.
Input
<
phi
::
SelectedRows
>
(
"X"
);
// merge ids in selected rows first
math
::
scatter
::
MergeAdd
<
platform
::
CUDADeviceContext
,
platform
::
float16
>
merge_func
;
phi
::
SelectedRows
*
merged_input
=
const_cast
<
framework
::
Scope
&>
(
context
.
scope
())
.
Var
()
->
GetMutable
<
phi
::
SelectedRows
>
();
merge_func
(
context
.
template
device_context
<
platform
::
CUDADeviceContext
>(),
*
x
,
merged_input
);
input
=
&
(
merged_input
->
value
());
phi
::
SelectedRows
*
output_selected_rows
=
context
.
Output
<
phi
::
SelectedRows
>
(
"Out"
);
output_selected_rows
->
set_rows
(
merged_input
->
rows
());
output_selected_rows
->
set_height
(
merged_input
->
height
());
output
=
output_selected_rows
->
mutable_value
();
output
->
Resize
(
merged_input
->
value
().
dims
());
output
->
mutable_data
<
platform
::
float16
>
(
context
.
GetPlace
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Invalid input variable type, only support LodTensor and "
"SelectedRows types, but got type is %s."
,
framework
::
ToTypeName
(
in_var
->
Type
())));
}
PADDLE_ENFORCE_NOT_NULL
(
input
,
platform
::
errors
::
InvalidArgument
(
"Input(X) of ClipByNormOp should not be null. "
"Please check if it is created correctly."
));
std
::
vector
<
int
>
reduce_dims
;
reduce_dims
.
resize
(
input
->
dims
().
size
());
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
{
reduce_dims
[
i
]
=
i
;
}
Tensor
tmp
=
context
.
AllocateTmpTensor
<
float
,
platform
::
CUDADeviceContext
>
(
{
1
},
dev_ctx
);
TensorReduceImpl
<
platform
::
float16
,
float
,
kps
::
AddFunctor
,
kps
::
SquareFunctor
<
platform
::
float16
,
float
>>
(
dev_ctx
,
*
input
,
&
tmp
,
kps
::
SquareFunctor
<
platform
::
float16
,
float
>
(),
reduce_dims
,
dev_ctx
.
stream
());
auto
tmp_eigen
=
EigenVector
<
float
>::
Flatten
(
tmp
);
auto
x_norm
=
tmp_eigen
.
sqrt
();
auto
x
=
EigenVector
<
platform
::
float16
>::
Flatten
(
*
input
);
auto
out
=
EigenVector
<
platform
::
float16
>::
Flatten
(
*
output
);
auto
&
place
=
*
context
.
template
device_context
<
platform
::
CUDADeviceContext
>()
.
eigen_device
();
auto
temp
=
(
x_norm
<=
max_norm
).
template
cast
<
float
>();
auto
epsilon
=
((
x_norm
<=
static_cast
<
float
>
(
1e-30
)).
all
().
template
cast
<
float
>())
*
static_cast
<
float
>
(
1e-6
);
auto
scaling
=
(
temp
+
(
static_cast
<
float
>
(
1
)
-
temp
)
*
max_norm
/
(
x_norm
+
epsilon
))
.
template
cast
<
platform
::
float16
>();
Eigen
::
array
<
int
,
1
>
one_dim
{{
1
}};
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
input
->
numel
());
out
.
device
(
place
)
=
x
*
scaling
.
reshape
(
one_dim
).
broadcast
(
m_dsize
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
clip_by_norm
,
ops
::
ClipByNormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
ClipByNormKernel
<
paddle
::
platform
::
CUDADeviceContext
,
plat
::
float16
>
);
paddle/fluid/operators/clip_by_norm_op.h
浏览文件 @
2883e4b2
...
...
@@ -30,76 +30,6 @@ template <typename T,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
>
class
ClipByNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
max_norm
=
context
.
Attr
<
T
>
(
"max_norm"
);
auto
in_var
=
context
.
InputVar
(
"X"
);
Tensor
*
output
=
nullptr
;
const
Tensor
*
input
=
nullptr
;
if
(
in_var
->
IsType
<
framework
::
LoDTensor
>
())
{
input
=
context
.
Input
<
Tensor
>
(
"X"
);
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
else
if
(
in_var
->
IsType
<
phi
::
SelectedRows
>
())
{
auto
*
x
=
context
.
Input
<
phi
::
SelectedRows
>
(
"X"
);
// merge ids in selected rows first
math
::
scatter
::
MergeAdd
<
DeviceContext
,
T
>
merge_func
;
phi
::
SelectedRows
*
merged_input
=
const_cast
<
framework
::
Scope
&>
(
context
.
scope
())
.
Var
()
->
GetMutable
<
phi
::
SelectedRows
>
();
merge_func
(
context
.
template
device_context
<
DeviceContext
>(),
*
x
,
merged_input
);
input
=
&
(
merged_input
->
value
());
phi
::
SelectedRows
*
output_selected_rows
=
context
.
Output
<
phi
::
SelectedRows
>
(
"Out"
);
output_selected_rows
->
set_rows
(
merged_input
->
rows
());
output_selected_rows
->
set_height
(
merged_input
->
height
());
output
=
output_selected_rows
->
mutable_value
();
output
->
Resize
(
merged_input
->
value
().
dims
());
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"Invalid input variable type, only support LodTensor and "
"SelectedRows types, but got type is %s."
,
framework
::
ToTypeName
(
in_var
->
Type
())));
}
PADDLE_ENFORCE_NOT_NULL
(
input
,
platform
::
errors
::
InvalidArgument
(
"Input(X) of ClipByNormOp should not be null. "
"Please check if it is created correctly."
));
auto
x
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
out
=
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
x_norm
=
x
.
square
().
sum
().
sqrt
();
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
temp
=
(
x_norm
<=
max_norm
).
template
cast
<
T
>();
auto
epsilon
=
((
x_norm
<=
static_cast
<
T
>
(
1e-30
)).
all
().
template
cast
<
T
>())
*
static_cast
<
T
>
(
1e-6
);
auto
scaling
=
temp
+
(
static_cast
<
T
>
(
1
)
-
temp
)
*
max_norm
/
(
x_norm
+
epsilon
);
Eigen
::
array
<
int
,
1
>
one_dim
{{
1
}};
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
input
->
numel
());
if
(
context
.
GetPlace
()
==
platform
::
CPUPlace
())
{
out
.
device
(
place
)
=
x
*
scaling
.
reshape
(
one_dim
).
eval
().
broadcast
(
m_dsize
);
}
else
{
out
.
device
(
place
)
=
x
*
scaling
.
reshape
(
one_dim
).
broadcast
(
m_dsize
);
}
}
};
class
ClipByNormOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
paddle/fluid/operators/dgc_clip_by_norm_op.h
浏览文件 @
2883e4b2
...
...
@@ -15,20 +15,24 @@ limitations under the License. */
#pragma once
#include "paddle/fluid/operators/clip_by_norm_op.h"
#include "paddle/phi/kernels/clip_by_norm_kernel.h"
#include "paddle/phi/kernels/selected_rows/clip_by_norm_kernel.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
DGCClipByNormKernel
:
public
ClipByNormKernel
<
DeviceContext
,
T
>
{
class
DGCClipByNormKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
c
ontext
)
const
override
{
auto
rampup_begin_step
=
c
ontext
.
Attr
<
float
>
(
"rampup_begin_step"
);
void
Compute
(
const
framework
::
ExecutionContext
&
c
tx
)
const
override
{
auto
rampup_begin_step
=
c
tx
.
Attr
<
float
>
(
"rampup_begin_step"
);
if
(
static_cast
<
int
>
(
rampup_begin_step
)
<
0
)
{
return
;
}
auto
current_step_tensor
=
c
ontext
.
Input
<
framework
::
Tensor
>
(
"current_step"
);
auto
current_step_tensor
=
c
tx
.
Input
<
framework
::
Tensor
>
(
"current_step"
);
auto
*
current_step
=
current_step_tensor
->
data
<
T
>
();
VLOG
(
10
)
<<
"current_step:"
<<
*
current_step
...
...
@@ -41,7 +45,30 @@ class DGCClipByNormKernel : public ClipByNormKernel<DeviceContext, T> {
return
;
}
return
ClipByNormKernel
<
DeviceContext
,
T
>::
Compute
(
context
);
auto
in_var
=
ctx
.
InputVar
(
"X"
);
auto
max_norm
=
ctx
.
Attr
<
float
>
(
"max_norm"
);
auto
&
dev_ctx
=
ctx
.
device_context
<
DeviceContext
>
();
if
(
in_var
->
IsType
<
framework
::
LoDTensor
>
())
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
return
phi
::
ClipByNormKernel
<
T
>
(
static_cast
<
const
typename
framework
::
ConvertToPhiContext
<
DeviceContext
>::
TYPE
&>
(
dev_ctx
),
*
x
,
max_norm
,
y
);
}
else
if
(
in_var
->
IsType
<
phi
::
SelectedRows
>
())
{
auto
*
x
=
ctx
.
Input
<
phi
::
SelectedRows
>
(
"X"
);
phi
::
SelectedRows
*
output_selected_rows
=
ctx
.
Output
<
phi
::
SelectedRows
>
(
"Out"
);
return
phi
::
sr
::
ClipByNormKernel
<
T
>
(
static_cast
<
const
typename
framework
::
ConvertToPhiContext
<
DeviceContext
>::
TYPE
&>
(
dev_ctx
),
*
x
,
max_norm
,
output_selected_rows
);
}
};
};
...
...
paddle/phi/api/yaml/legacy_api.yaml
浏览文件 @
2883e4b2
...
...
@@ -368,6 +368,14 @@
func
:
clip
backward
:
clip_grad
-
api
:
clip_by_norm
args
:
(Tensor x, float max_norm)
output
:
Tensor(out)
infer_meta
:
func
:
ClipByNormInferMeta
kernel
:
func
:
clip_by_norm
-
api
:
complex
args
:
(Tensor x, Tensor y)
output
:
Tensor
...
...
paddle/phi/infermeta/unary.cc
浏览文件 @
2883e4b2
...
...
@@ -264,6 +264,18 @@ void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out) {
out
->
set_dtype
(
x
.
dtype
());
}
void
ClipByNormInferMeta
(
const
MetaTensor
&
x
,
float
max_norm
,
MetaTensor
*
out
)
{
PADDLE_ENFORCE_GT
(
max_norm
,
0
,
phi
::
errors
::
InvalidArgument
(
"max_norm should be greater than 0. "
"Received max_norm is %f."
,
max_norm
));
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
x
.
dtype
());
out
->
share_lod
(
x
);
}
void
CreateLikeInferMeta
(
const
MetaTensor
&
x
,
DataType
dtype
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
dtype
==
DataType
::
UNDEFINED
?
x
.
dtype
()
:
dtype
);
...
...
paddle/phi/infermeta/unary.h
浏览文件 @
2883e4b2
...
...
@@ -62,6 +62,8 @@ void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
void
CholeskyInferMeta
(
const
MetaTensor
&
x
,
bool
upper
,
MetaTensor
*
out
);
void
ClipByNormInferMeta
(
const
MetaTensor
&
x
,
float
max_norm
,
MetaTensor
*
out
);
void
CreateLikeInferMeta
(
const
MetaTensor
&
x
,
DataType
dtype
,
MetaTensor
*
out
);
void
CumInferMeta
(
const
MetaTensor
&
x
,
...
...
paddle/phi/kernels/clip_by_norm_kernel.h
0 → 100644
浏览文件 @
2883e4b2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ClipByNormKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
x
,
float
max_norm
,
DenseTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/cpu/clip_by_norm_kernel.cc
0 → 100644
浏览文件 @
2883e4b2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/clip_by_norm_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/impl/clip_by_norm_kernel_impl.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ClipByNormKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
in
,
float
max_norm
,
DenseTensor
*
output
)
{
return
ClipByNormFunctor
<
T
,
Context
>
(
dev_ctx
,
in
,
max_norm
,
output
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
clip_by_norm
,
CPU
,
ALL_LAYOUT
,
phi
::
ClipByNormKernel
,
float
)
{}
paddle/phi/kernels/gpu/clip_by_norm_kernel.cu
0 → 100644
浏览文件 @
2883e4b2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/clip_by_norm_kernel.h"
#include <typeinfo>
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/reduce_function.h"
#include "paddle/phi/kernels/impl/clip_by_norm_kernel_impl.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ClipByNormKernel
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
in
,
float
max_norm
,
DenseTensor
*
output
)
{
if
(
typeid
(
T
)
==
typeid
(
float
))
{
return
ClipByNormFunctor
<
float
,
Context
>
(
dev_ctx
,
in
,
max_norm
,
output
);
}
auto
input
=
&
in
;
dev_ctx
.
template
Alloc
<
dtype
::
float16
>(
output
);
PADDLE_ENFORCE_NOT_NULL
(
input
,
phi
::
errors
::
InvalidArgument
(
"Input(X) of ClipByNormOp should not be null. "
"Please check if it is created correctly."
));
std
::
vector
<
int
>
reduce_dims
;
reduce_dims
.
resize
(
input
->
dims
().
size
());
for
(
int
i
=
0
;
i
<
reduce_dims
.
size
();
++
i
)
{
reduce_dims
[
i
]
=
i
;
}
DenseTensor
tmp_tensor
;
auto
*
tmp
=
&
tmp_tensor
;
tmp
->
Resize
({
1
});
dev_ctx
.
template
Alloc
<
float
>(
tmp
);
phi
::
funcs
::
ReduceKernel
<
dtype
::
float16
,
float
,
kps
::
AddFunctor
,
kps
::
SquareFunctor
<
dtype
::
float16
,
float
>>
(
dev_ctx
,
*
input
,
tmp
,
kps
::
SquareFunctor
<
dtype
::
float16
,
float
>
(),
reduce_dims
);
auto
tmp_eigen
=
phi
::
EigenVector
<
float
>::
Flatten
(
*
tmp
);
auto
x_norm
=
tmp_eigen
.
sqrt
();
auto
x
=
phi
::
EigenVector
<
dtype
::
float16
>::
Flatten
(
*
input
);
auto
out
=
phi
::
EigenVector
<
dtype
::
float16
>::
Flatten
(
*
output
);
auto
*
place
=
dev_ctx
.
eigen_device
();
auto
temp
=
(
x_norm
<=
max_norm
).
template
cast
<
float
>();
auto
epsilon
=
((
x_norm
<=
static_cast
<
float
>
(
1e-30
)).
all
().
template
cast
<
float
>())
*
static_cast
<
float
>
(
1e-6
);
auto
scaling
=
(
temp
+
(
static_cast
<
float
>
(
1
)
-
temp
)
*
max_norm
/
(
x_norm
+
epsilon
))
.
template
cast
<
dtype
::
float16
>();
Eigen
::
array
<
int
,
1
>
one_dim
{{
1
}};
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
input
->
numel
());
out
.
device
(
*
place
)
=
x
*
scaling
.
reshape
(
one_dim
).
broadcast
(
m_dsize
);
}
}
// namespace phi
PD_REGISTER_KERNEL
(
clip_by_norm
,
GPU
,
ALL_LAYOUT
,
phi
::
ClipByNormKernel
,
float
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/impl/clip_by_norm_kernel_impl.h
0 → 100644
浏览文件 @
2883e4b2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
namespace
phi
{
template
<
typename
T
,
typename
Context
>
void
ClipByNormFunctor
(
const
Context
&
dev_ctx
,
const
DenseTensor
&
in
,
float
max_norm
,
DenseTensor
*
output
)
{
auto
input
=
&
in
;
dev_ctx
.
template
Alloc
<
T
>(
output
);
PADDLE_ENFORCE_NOT_NULL
(
input
,
phi
::
errors
::
InvalidArgument
(
"Input(X) of ClipByNormOp should not be null. "
"Please check if it is created correctly."
));
auto
x
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
out
=
phi
::
EigenVector
<
T
>::
Flatten
(
*
output
);
auto
x_norm
=
x
.
square
().
sum
().
sqrt
();
auto
*
place
=
dev_ctx
.
eigen_device
();
auto
temp
=
(
x_norm
<=
max_norm
).
template
cast
<
T
>();
auto
epsilon
=
((
x_norm
<=
static_cast
<
T
>
(
1e-30
)).
all
().
template
cast
<
T
>())
*
static_cast
<
T
>
(
1e-6
);
auto
scaling
=
temp
+
(
static_cast
<
T
>
(
1
)
-
temp
)
*
max_norm
/
(
x_norm
+
epsilon
);
Eigen
::
array
<
int
,
1
>
one_dim
{{
1
}};
Eigen
::
DSizes
<
int
,
1
>
m_dsize
(
input
->
numel
());
if
(
dev_ctx
.
GetPlace
()
==
phi
::
CPUPlace
())
{
out
.
device
(
*
place
)
=
x
*
scaling
.
reshape
(
one_dim
).
eval
().
broadcast
(
m_dsize
);
}
else
{
out
.
device
(
*
place
)
=
x
*
scaling
.
reshape
(
one_dim
).
broadcast
(
m_dsize
);
}
}
}
// namespace phi
paddle/phi/kernels/selected_rows/clip_by_norm_kernel.h
0 → 100644
浏览文件 @
2883e4b2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/selected_rows.h"
namespace
phi
{
namespace
sr
{
template
<
typename
T
,
typename
Context
>
void
ClipByNormKernel
(
const
Context
&
dev_ctx
,
const
SelectedRows
&
x
,
float
max_norm
,
SelectedRows
*
out
);
}
// namespace sr
}
// namespace phi
paddle/phi/kernels/selected_rows/cpu/clip_by_norm_kernel.cc
0 → 100644
浏览文件 @
2883e4b2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/selected_rows/clip_by_norm_kernel.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/selected_rows/impl/clip_by_norm_kernel_impl.h"
PD_REGISTER_KERNEL
(
clip_by_norm_sr
,
CPU
,
ALL_LAYOUT
,
phi
::
sr
::
ClipByNormKernel
,
float
)
{}
paddle/phi/kernels/selected_rows/gpu/clip_by_norm_kernel.cu
0 → 100644
浏览文件 @
2883e4b2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/selected_rows/clip_by_norm_kernel.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/selected_rows/impl/clip_by_norm_kernel_impl.h"
PD_REGISTER_KERNEL
(
clip_by_norm_sr
,
GPU
,
ALL_LAYOUT
,
phi
::
sr
::
ClipByNormKernel
,
float
,
phi
::
dtype
::
float16
)
{}
paddle/phi/kernels/selected_rows/impl/clip_by_norm_kernel_impl.h
0 → 100644
浏览文件 @
2883e4b2
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/device_context.h"
#include "paddle/phi/core/selected_rows.h"
#include "paddle/phi/kernels/clip_by_norm_kernel.h"
#include "paddle/phi/kernels/selected_rows/clip_by_norm_kernel.h"
namespace
phi
{
namespace
sr
{
template
<
typename
T
,
typename
Context
>
void
ClipByNormKernel
(
const
Context
&
dev_ctx
,
const
SelectedRows
&
x
,
float
max_norm
,
SelectedRows
*
out
)
{
phi
::
SelectedRows
merged_input
;
paddle
::
operators
::
math
::
scatter
::
MergeAdd
<
Context
,
T
>
merge_func
;
merge_func
(
dev_ctx
,
x
,
&
merged_input
);
auto
input
=
&
(
merged_input
.
value
());
out
->
set_rows
(
merged_input
.
rows
());
out
->
set_height
(
merged_input
.
height
());
auto
out_tensor
=
out
->
mutable_value
();
out_tensor
->
Resize
(
merged_input
.
value
().
dims
());
return
phi
::
ClipByNormKernel
<
T
,
Context
>
(
dev_ctx
,
*
input
,
max_norm
,
out_tensor
);
}
}
// namespace sr
}
// namespace phi
paddle/phi/ops/compat/clip_by_norm_sig.cc
0 → 100644
浏览文件 @
2883e4b2
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/core/compat/op_utils.h"
namespace
phi
{
KernelSignature
ClipByNormOpArgumentMapping
(
const
ArgumentMappingContext
&
ctx
)
{
if
(
ctx
.
IsDenseTensorInput
(
"X"
))
{
return
KernelSignature
(
"clip_by_norm"
,
{
"X"
},
{
"max_norm"
},
{
"Out"
});
}
else
if
(
ctx
.
IsSelectedRowsInput
(
"X"
))
{
return
KernelSignature
(
"clip_by_norm_sr"
,
{
"X"
},
{
"max_norm"
},
{
"Out"
});
}
return
KernelSignature
(
"unregistered"
,
{},
{},
{});
}
}
// namespace phi
PD_REGISTER_ARG_MAPPING_FN
(
clip_by_norm
,
phi
::
ClipByNormOpArgumentMapping
);
python/paddle/fluid/layers/nn.py
浏览文件 @
2883e4b2
...
...
@@ -13043,6 +13043,8 @@ def clip_by_norm(x, max_norm, name=None):
# [[0.5, 0.5], [0.5, 0.5]]
"""
if in_dygraph_mode():
return _C_ops.final_state_clip_by_norm(x, max_norm)
if _non_static_mode():
return _C_ops.clip_by_norm(x, 'max_norm', max_norm)
...
...
python/paddle/fluid/tests/unittests/test_clip_by_norm_op.py
浏览文件 @
2883e4b2
...
...
@@ -27,6 +27,7 @@ class TestClipByNormOp(OpTest):
def
setUp
(
self
):
self
.
max_relative_error
=
0.006
self
.
python_api
=
fluid
.
layers
.
clip_by_norm
self
.
init_dtype
()
self
.
initTestCase
()
input
=
np
.
random
.
random
(
self
.
shape
).
astype
(
self
.
dtype
)
...
...
@@ -45,7 +46,7 @@ class TestClipByNormOp(OpTest):
self
.
outputs
=
{
'Out'
:
output
}
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
(
check_eager
=
True
)
def
initTestCase
(
self
):
self
.
shape
=
(
100
,
)
...
...
@@ -85,7 +86,9 @@ class TestClipByNormOpFp16(TestClipByNormOp):
if
core
.
is_compiled_with_cuda
():
place
=
core
.
CUDAPlace
(
0
)
if
core
.
is_float16_supported
(
place
):
self
.
check_output_with_place
(
place
,
atol
=
0.001
)
self
.
check_output_with_place
(
place
,
atol
=
0.001
,
check_eager
=
True
)
class
TestClipByNormOpFp16Case1
(
TestClipByNormOpFp16
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录