Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
27a5f52b
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
27a5f52b
编写于
11月 29, 2021
作者:
T
Thunderbrook
提交者:
GitHub
11月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[HeterPs] fix allocation (#37476)
* auc temp * cuballocator * code format * code format
上级
5b962bd9
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
56 addition
and
29 deletion
+56
-29
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
+6
-4
paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h
paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h
+50
-25
未找到文件。
paddle/fluid/framework/fleet/heter_ps/heter_comm.h
浏览文件 @
27a5f52b
...
...
@@ -16,6 +16,7 @@ limitations under the License. */
#include <thread>
#include <vector>
#include "cub/cub.cuh"
#include "cub/util_allocator.cuh"
#include "hashtable.h"
#include "heter_resource.h"
#include "paddle/fluid/framework/fleet/heter_ps/optimizer.cuh.h"
...
...
@@ -163,9 +164,9 @@ class HeterComm {
};
void
init_path
();
void
create_storage
(
int
start_index
,
int
end_index
,
int
keylen
,
int
vallen
,
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>&
local_strorage
);
void
create_storage
(
int
start_index
,
int
end_index
,
int
keylen
,
int
vallen
);
void
destroy_storage
(
int
start_index
,
int
end_index
);
void
walk_to_dest
(
int
start_index
,
int
gpu_num
,
int
*
h_left
,
int
*
h_right
,
KeyType
*
src_key
,
GradType
*
src_val
);
void
walk_to_src
(
int
start_index
,
int
gpu_num
,
int
*
h_left
,
int
*
h_right
,
...
...
@@ -178,7 +179,7 @@ class HeterComm {
std
::
vector
<
Table
*>
tables_
;
std
::
shared_ptr
<
HeterPsResource
>
resource_
;
CustomGradMerger
merger_
;
int
topo_aware_
{
1
};
int
topo_aware_
{
0
};
std
::
vector
<
std
::
vector
<
Path
>>
path_
;
std
::
vector
<
LocalStorage
>
storage_
;
int
feanum_
{
1800
*
2048
};
...
...
@@ -186,6 +187,7 @@ class HeterComm {
std
::
vector
<
ncclComm_t
>
nccl_inner_comms_
;
std
::
vector
<
ncclComm_t
>
nccl_inter_comms_
;
int
node_size_
;
std
::
vector
<
std
::
shared_ptr
<
cub
::
CachingDeviceAllocator
>>
allocators_
;
};
}
// end namespace framework
...
...
paddle/fluid/framework/fleet/heter_ps/heter_comm_inl.h
浏览文件 @
27a5f52b
...
...
@@ -100,6 +100,8 @@ HeterComm<KeyType, ValType, GradType>::HeterComm(
storage_
.
resize
(
resource_
->
total_gpu
());
for
(
int
i
=
0
;
i
<
resource_
->
total_gpu
();
++
i
)
{
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
i
));
allocators_
.
push_back
(
std
::
make_shared
<
cub
::
CachingDeviceAllocator
>
(
8
,
1
,
(
unsigned
int
)
-
1
,
(
size_t
)
-
1
,
false
,
false
));
auto
table
=
new
Table
(
capacity
/
load_factor_
);
tables_
.
push_back
(
table
);
if
(
multi_node_
)
{
...
...
@@ -115,14 +117,14 @@ void HeterComm<KeyType, ValType, GradType>::init_path() {
path_
.
resize
(
total_gpu
);
if
(
!
topo_aware_
)
{
VLOG
(
3
)
<<
"init path without topo aware"
;
VLOG
(
0
)
<<
"init path without topo aware"
;
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
path_
[
i
].
resize
(
total_gpu
);
for
(
int
j
=
0
;
j
<
total_gpu
;
++
j
)
{
auto
&
nodes
=
path_
[
i
][
j
].
nodes_
;
nodes
.
resize
(
1
);
nodes
[
0
].
in_stream
=
resource_
->
comm_stream
(
i
,
j
);
nodes
[
0
].
out_stream
=
resource_
->
comm_stream
(
j
,
i
);
nodes
[
0
].
out_stream
=
resource_
->
comm_stream
(
i
,
j
);
nodes
[
0
].
key_storage
=
NULL
;
nodes
[
0
].
val_storage
=
NULL
;
nodes
[
0
].
sync
=
0
;
...
...
@@ -130,7 +132,7 @@ void HeterComm<KeyType, ValType, GradType>::init_path() {
}
}
}
else
{
VLOG
(
3
)
<<
"init path with topo aware"
;
VLOG
(
0
)
<<
"init path with topo aware"
;
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
path_
[
i
].
resize
(
total_gpu
);
for
(
int
j
=
0
;
j
<
total_gpu
;
++
j
)
{
...
...
@@ -163,26 +165,41 @@ void HeterComm<KeyType, ValType, GradType>::init_path() {
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
create_storage
(
int
start_index
,
int
end_index
,
int
keylen
,
int
vallen
,
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>&
local_storage
)
{
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
create_storage
(
int
start_index
,
int
end_index
,
int
keylen
,
int
vallen
)
{
auto
&
allocator
=
allocators_
[
start_index
];
auto
&
nodes
=
path_
[
start_index
][
end_index
].
nodes_
;
for
(
size_t
i
=
0
;
i
<
nodes
.
size
();
++
i
)
{
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
nodes
[
i
].
gpu_num
));
platform
::
CUDAPlace
remote_place
=
platform
::
CUDAPlace
(
resource_
->
dev_id
(
nodes
[
i
].
gpu_num
));
auto
key_mem
=
memory
::
AllocShared
(
remote_place
,
keylen
);
local_storage
.
push_back
(
key_mem
);
nodes
[
i
].
key_storage
=
reinterpret_cast
<
char
*>
(
key_mem
->
ptr
());
auto
val_mem
=
memory
::
AllocShared
(
remote_place
,
vallen
);
local_storage
.
push_back
(
val_mem
);
nodes
[
i
].
val_storage
=
reinterpret_cast
<
char
*>
(
val_mem
->
ptr
());
allocator
->
DeviceAllocate
(
resource_
->
dev_id
(
nodes
[
i
].
gpu_num
),
(
void
**
)
&
(
nodes
[
i
].
key_storage
),
keylen
,
resource_
->
remote_stream
(
nodes
[
i
].
gpu_num
,
start_index
));
allocator
->
DeviceAllocate
(
resource_
->
dev_id
(
nodes
[
i
].
gpu_num
),
(
void
**
)
&
(
nodes
[
i
].
val_storage
),
vallen
,
resource_
->
remote_stream
(
nodes
[
i
].
gpu_num
,
start_index
));
nodes
[
i
].
key_bytes_len
=
keylen
;
nodes
[
i
].
val_bytes_len
=
vallen
;
}
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
destroy_storage
(
int
start_index
,
int
end_index
)
{
auto
&
allocator
=
allocators_
[
start_index
];
auto
&
nodes
=
path_
[
start_index
][
end_index
].
nodes_
;
for
(
size_t
i
=
0
;
i
<
nodes
.
size
();
++
i
)
{
platform
::
CUDADeviceGuard
guard
(
resource_
->
dev_id
(
nodes
[
i
].
gpu_num
));
allocator
->
DeviceFree
(
resource_
->
dev_id
(
nodes
[
i
].
gpu_num
),
nodes
[
i
].
key_storage
);
allocator
->
DeviceFree
(
resource_
->
dev_id
(
nodes
[
i
].
gpu_num
),
nodes
[
i
].
val_storage
);
}
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
void
HeterComm
<
KeyType
,
ValType
,
GradType
>::
walk_to_dest
(
int
start_index
,
int
gpu_num
,
int
*
h_left
,
int
*
h_right
,
KeyType
*
src_key
,
...
...
@@ -482,8 +499,8 @@ void HeterComm<KeyType, ValType, GradType>::pull_sparse(int num,
int
*
d_left_ptr
=
reinterpret_cast
<
int
*>
(
d_left
->
ptr
());
int
*
d_right_ptr
=
reinterpret_cast
<
int
*>
(
d_right
->
ptr
());
cudaMemset
(
d_left_ptr
,
-
1
,
total_gpu
*
sizeof
(
int
)
);
cudaMemset
(
d_right_ptr
,
-
1
,
total_gpu
*
sizeof
(
int
)
);
cudaMemset
Async
(
d_left_ptr
,
-
1
,
total_gpu
*
sizeof
(
int
),
stream
);
cudaMemset
Async
(
d_right_ptr
,
-
1
,
total_gpu
*
sizeof
(
int
),
stream
);
//
auto
d_idx
=
memory
::
AllocShared
(
place
,
len
*
sizeof
(
int
));
int
*
d_idx_ptr
=
reinterpret_cast
<
int
*>
(
d_idx
->
ptr
());
...
...
@@ -505,15 +522,13 @@ void HeterComm<KeyType, ValType, GradType>::pull_sparse(int num,
cudaMemcpy
(
h_right
,
d_right_ptr
,
total_gpu
*
sizeof
(
int
),
cudaMemcpyDeviceToHost
);
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>
local_storage
;
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
int
shard_len
=
h_right
[
i
]
-
h_left
[
i
]
+
1
;
if
(
shard_len
==
0
)
{
continue
;
}
create_storage
(
num
,
i
,
shard_len
*
sizeof
(
KeyType
),
shard_len
*
sizeof
(
ValType
)
,
local_storage
);
shard_len
*
sizeof
(
ValType
));
}
walk_to_dest
(
num
,
total_gpu
,
h_left
,
h_right
,
d_shard_keys_ptr
,
NULL
);
...
...
@@ -533,6 +548,9 @@ void HeterComm<KeyType, ValType, GradType>::pull_sparse(int num,
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
cudaStreamSynchronize
(
resource_
->
remote_stream
(
i
,
num
));
if
(
h_left
[
i
]
==
-
1
)
{
continue
;
}
tables_
[
i
]
->
rwlock_
->
UNLock
();
}
...
...
@@ -546,6 +564,9 @@ void HeterComm<KeyType, ValType, GradType>::pull_sparse(int num,
fill_dvals
<<<
grid_size
,
block_size_
,
0
,
stream
>>>
(
d_shard_vals_ptr
,
d_vals
,
d_idx_ptr
,
len
);
cudaStreamSynchronize
(
stream
);
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
destroy_storage
(
num
,
i
);
}
}
template
<
typename
KeyType
,
typename
ValType
,
typename
GradType
>
...
...
@@ -572,8 +593,8 @@ void HeterComm<KeyType, ValType, GradType>::push_sparse(int gpu_num,
int
*
d_left_ptr
=
reinterpret_cast
<
int
*>
(
d_left
->
ptr
());
int
*
d_right_ptr
=
reinterpret_cast
<
int
*>
(
d_right
->
ptr
());
cudaMemset
(
d_left_ptr
,
-
1
,
total_gpu
*
sizeof
(
int
)
);
cudaMemset
(
d_right_ptr
,
-
1
,
total_gpu
*
sizeof
(
int
)
);
cudaMemset
Async
(
d_left_ptr
,
-
1
,
total_gpu
*
sizeof
(
int
),
stream
);
cudaMemset
Async
(
d_right_ptr
,
-
1
,
total_gpu
*
sizeof
(
int
),
stream
);
//
auto
d_idx
=
memory
::
AllocShared
(
place
,
len
*
sizeof
(
int
));
int
*
d_idx_ptr
=
reinterpret_cast
<
int
*>
(
d_idx
->
ptr
());
...
...
@@ -603,14 +624,13 @@ void HeterComm<KeyType, ValType, GradType>::push_sparse(int gpu_num,
cudaMemcpy
(
h_right
,
d_right_ptr
,
total_gpu
*
sizeof
(
int
),
cudaMemcpyDeviceToHost
);
std
::
vector
<
std
::
shared_ptr
<
memory
::
Allocation
>>
local_storage
;
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
int
shard_len
=
h_right
[
i
]
-
h_left
[
i
]
+
1
;
if
(
h_left
[
i
]
==
-
1
||
h_right
[
i
]
==
-
1
)
{
continue
;
}
create_storage
(
gpu_num
,
i
,
shard_len
*
sizeof
(
KeyType
),
shard_len
*
sizeof
(
GradType
)
,
local_storage
);
shard_len
*
sizeof
(
GradType
));
}
walk_to_dest
(
gpu_num
,
total_gpu
,
h_left
,
h_right
,
d_shard_keys_ptr
,
...
...
@@ -632,7 +652,12 @@ void HeterComm<KeyType, ValType, GradType>::push_sparse(int gpu_num,
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
cudaStreamSynchronize
(
resource_
->
remote_stream
(
i
,
gpu_num
));
tables_
[
i
]
->
rwlock_
->
UNLock
();
if
(
h_left
[
i
]
!=
-
1
)
{
tables_
[
i
]
->
rwlock_
->
UNLock
();
}
}
for
(
int
i
=
0
;
i
<
total_gpu
;
++
i
)
{
destroy_storage
(
gpu_num
,
i
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录