未验证 提交 277c9a55 编写于 作者: N Nyakku Shigure 提交者: GitHub

add resnext (#36070)

* add resnext model
* add zh docs
* add unittest
* test performance
Co-authored-by: Ainavo's avatarAinavo <ainavo@163.com>
Co-authored-by: Npithygit <pyg20200403@163.com>
Co-authored-by: Ainavo's avatarAinavo <ainavo@163.com>
Co-authored-by: Npithygit <pyg20200403@163.com>
上级 37257d6a
...@@ -53,7 +53,8 @@ class TestPretrainedModel(unittest.TestCase): ...@@ -53,7 +53,8 @@ class TestPretrainedModel(unittest.TestCase):
def test_models(self): def test_models(self):
arches = [ arches = [
'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet' 'mobilenet_v1', 'mobilenet_v2', 'resnet18', 'vgg16', 'alexnet',
'resnext50_32x4d'
] ]
for arch in arches: for arch in arches:
self.infer(arch) self.infer(arch)
......
...@@ -73,6 +73,24 @@ class TestVisonModels(unittest.TestCase): ...@@ -73,6 +73,24 @@ class TestVisonModels(unittest.TestCase):
def test_alexnet(self): def test_alexnet(self):
self.models_infer('alexnet') self.models_infer('alexnet')
def test_resnext50_32x4d(self):
self.models_infer('resnext50_32x4d')
def test_resnext50_64x4d(self):
self.models_infer('resnext50_64x4d')
def test_resnext101_32x4d(self):
self.models_infer('resnext101_32x4d')
def test_resnext101_64x4d(self):
self.models_infer('resnext101_64x4d')
def test_resnext152_32x4d(self):
self.models_infer('resnext152_32x4d')
def test_resnext152_64x4d(self):
self.models_infer('resnext152_64x4d')
def test_vgg16_num_classes(self): def test_vgg16_num_classes(self):
vgg16 = models.__dict__['vgg16'](pretrained=False, num_classes=10) vgg16 = models.__dict__['vgg16'](pretrained=False, num_classes=10)
......
...@@ -46,6 +46,13 @@ from .models import vgg19 # noqa: F401 ...@@ -46,6 +46,13 @@ from .models import vgg19 # noqa: F401
from .models import LeNet # noqa: F401 from .models import LeNet # noqa: F401
from .models import AlexNet # noqa: F401 from .models import AlexNet # noqa: F401
from .models import alexnet # noqa: F401 from .models import alexnet # noqa: F401
from .models import ResNeXt # noqa: F401
from .models import resnext50_32x4d # noqa: F401
from .models import resnext50_64x4d # noqa: F401
from .models import resnext101_32x4d # noqa: F401
from .models import resnext101_64x4d # noqa: F401
from .models import resnext152_32x4d # noqa: F401
from .models import resnext152_64x4d # noqa: F401
from .transforms import BaseTransform # noqa: F401 from .transforms import BaseTransform # noqa: F401
from .transforms import Compose # noqa: F401 from .transforms import Compose # noqa: F401
from .transforms import Resize # noqa: F401 from .transforms import Resize # noqa: F401
......
...@@ -30,6 +30,13 @@ from .vgg import vgg19 # noqa: F401 ...@@ -30,6 +30,13 @@ from .vgg import vgg19 # noqa: F401
from .lenet import LeNet # noqa: F401 from .lenet import LeNet # noqa: F401
from .alexnet import AlexNet # noqa: F401 from .alexnet import AlexNet # noqa: F401
from .alexnet import alexnet # noqa: F401 from .alexnet import alexnet # noqa: F401
from .resnext import ResNeXt # noqa: F401
from .resnext import resnext50_32x4d # noqa: F401
from .resnext import resnext50_64x4d # noqa: F401
from .resnext import resnext101_32x4d # noqa: F401
from .resnext import resnext101_64x4d # noqa: F401
from .resnext import resnext152_32x4d # noqa: F401
from .resnext import resnext152_64x4d # noqa: F401
__all__ = [ #noqa __all__ = [ #noqa
'ResNet', 'ResNet',
...@@ -49,5 +56,12 @@ __all__ = [ #noqa ...@@ -49,5 +56,12 @@ __all__ = [ #noqa
'mobilenet_v2', 'mobilenet_v2',
'LeNet', 'LeNet',
'AlexNet', 'AlexNet',
'alexnet' 'alexnet',
'ResNeXt',
'resnext50_32x4d',
'resnext50_64x4d',
'resnext101_32x4d',
'resnext101_64x4d',
'resnext152_32x4d',
'resnext152_64x4d'
] ]
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.fluid.param_attr import ParamAttr
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Linear, MaxPool2D
from paddle.nn.initializer import Uniform
from paddle.utils.download import get_weights_path_from_url
__all__ = []
model_urls = {
'resnext50_32x4d':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_32x4d_pretrained.pdparams',
'bf04add2f7fd22efcbe91511bcd1eebe'),
"resnext50_64x4d":
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt50_64x4d_pretrained.pdparams',
'46307df0e2d6d41d3b1c1d22b00abc69'),
'resnext101_32x4d':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_32x4d_pretrained.pdparams',
'078ca145b3bea964ba0544303a43c36d'),
'resnext101_64x4d':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt101_64x4d_pretrained.pdparams',
'4edc0eb32d3cc5d80eff7cab32cd5c64'),
'resnext152_32x4d':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_32x4d_pretrained.pdparams',
'7971cc994d459af167c502366f866378'),
'resnext152_64x4d':
('https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNeXt152_64x4d_pretrained.pdparams',
'836943f03709efec364d486c57d132de'),
}
class ConvBNLayer(nn.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
stride=1,
groups=1,
act=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
in_channels=num_channels,
out_channels=num_filters,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
bias_attr=False)
self._batch_norm = BatchNorm(num_filters, act=act)
def forward(self, inputs):
x = self._conv(inputs)
x = self._batch_norm(x)
return x
class BottleneckBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride,
cardinality,
shortcut=True):
super(BottleneckBlock, self).__init__()
self.conv0 = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters,
filter_size=1,
act='relu')
self.conv1 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters,
filter_size=3,
groups=cardinality,
stride=stride,
act='relu')
self.conv2 = ConvBNLayer(
num_channels=num_filters,
num_filters=num_filters * 2 if cardinality == 32 else num_filters,
filter_size=1,
act=None)
if not shortcut:
self.short = ConvBNLayer(
num_channels=num_channels,
num_filters=num_filters * 2
if cardinality == 32 else num_filters,
filter_size=1,
stride=stride)
self.shortcut = shortcut
def forward(self, inputs):
x = self.conv0(inputs)
conv1 = self.conv1(x)
conv2 = self.conv2(conv1)
if self.shortcut:
short = inputs
else:
short = self.short(inputs)
x = paddle.add(x=short, y=conv2)
x = F.relu(x)
return x
class ResNeXt(nn.Layer):
"""ResNeXt model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
depth (int, optional): depth of resnext. Default: 50.
cardinality (int, optional): cardinality of resnext. Default: 32.
num_classes (int, optional): output dim of last fc layer. If num_classes <=0, last fc layer
will not be defined. Default: 1000.
with_pool (bool, optional): use pool before the last fc layer or not. Default: True.
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import ResNeXt
resnext50_32x4d = ResNeXt(depth=50, cardinality=32)
"""
def __init__(self,
depth=50,
cardinality=32,
num_classes=1000,
with_pool=True):
super(ResNeXt, self).__init__()
self.depth = depth
self.cardinality = cardinality
self.num_classes = num_classes
self.with_pool = with_pool
supported_depth = [50, 101, 152]
assert depth in supported_depth, \
"supported layers are {} but input layer is {}".format(
supported_depth, depth)
supported_cardinality = [32, 64]
assert cardinality in supported_cardinality, \
"supported cardinality is {} but input cardinality is {}" \
.format(supported_cardinality, cardinality)
layer_cfg = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}
layers = layer_cfg[depth]
num_channels = [64, 256, 512, 1024]
num_filters = [128, 256, 512,
1024] if cardinality == 32 else [256, 512, 1024, 2048]
self.conv = ConvBNLayer(
num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu')
self.pool2d_max = MaxPool2D(kernel_size=3, stride=2, padding=1)
self.block_list = []
for block in range(len(layers)):
shortcut = False
for i in range(layers[block]):
bottleneck_block = self.add_sublayer(
'bb_%d_%d' % (block, i),
BottleneckBlock(
num_channels=num_channels[block] if i == 0 else
num_filters[block] * int(64 // self.cardinality),
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1,
cardinality=self.cardinality,
shortcut=shortcut))
self.block_list.append(bottleneck_block)
shortcut = True
if with_pool:
self.pool2d_avg = AdaptiveAvgPool2D(1)
if num_classes > 0:
self.pool2d_avg_channels = num_channels[-1] * 2
stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)
self.out = Linear(
self.pool2d_avg_channels,
num_classes,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
def forward(self, inputs):
with paddle.static.amp.fp16_guard():
x = self.conv(inputs)
x = self.pool2d_max(x)
for block in self.block_list:
x = block(x)
if self.with_pool:
x = self.pool2d_avg(x)
if self.num_classes > 0:
x = paddle.reshape(x, shape=[-1, self.pool2d_avg_channels])
x = self.out(x)
return x
def _resnext(arch, depth, cardinality, pretrained, **kwargs):
model = ResNeXt(depth=depth, cardinality=cardinality, **kwargs)
if pretrained:
assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
arch)
weight_path = get_weights_path_from_url(model_urls[arch][0],
model_urls[arch][1])
param = paddle.load(weight_path)
model.set_dict(param)
return model
def resnext50_32x4d(pretrained=False, **kwargs):
"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext50_32x4d
# build model
model = resnext50_32x4d()
# build model and load imagenet pretrained weight
# model = resnext50_32x4d(pretrained=True)
"""
return _resnext('resnext50_32x4d', 50, 32, pretrained, **kwargs)
def resnext50_64x4d(pretrained=False, **kwargs):
"""ResNeXt-50 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext50_64x4d
# build model
model = resnext50_64x4d()
# build model and load imagenet pretrained weight
# model = resnext50_64x4d(pretrained=True)
"""
return _resnext('resnext50_64x4d', 50, 64, pretrained, **kwargs)
def resnext101_32x4d(pretrained=False, **kwargs):
"""ResNeXt-101 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext101_32x4d
# build model
model = resnext101_32x4d()
# build model and load imagenet pretrained weight
# model = resnext101_32x4d(pretrained=True)
"""
return _resnext('resnext101_32x4d', 101, 32, pretrained, **kwargs)
def resnext101_64x4d(pretrained=False, **kwargs):
"""ResNeXt-101 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext101_64x4d
# build model
model = resnext101_64x4d()
# build model and load imagenet pretrained weight
# model = resnext101_64x4d(pretrained=True)
"""
return _resnext('resnext101_64x4d', 101, 64, pretrained, **kwargs)
def resnext152_32x4d(pretrained=False, **kwargs):
"""ResNeXt-152 32x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext152_32x4d
# build model
model = resnext152_32x4d()
# build model and load imagenet pretrained weight
# model = resnext152_32x4d(pretrained=True)
"""
return _resnext('resnext152_32x4d', 152, 32, pretrained, **kwargs)
def resnext152_64x4d(pretrained=False, **kwargs):
"""ResNeXt-152 64x4d model from
`"Aggregated Residual Transformations for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
Examples:
.. code-block:: python
import paddle
from paddle.vision.models import resnext152_64x4d
# build model
model = resnext152_64x4d()
# build model and load imagenet pretrained weight
# model = resnext152_64x4d(pretrained=True)
"""
return _resnext('resnext152_64x4d', 152, 64, pretrained, **kwargs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册