Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
27536a32
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
27536a32
编写于
2月 28, 2022
作者:
W
Wilber
提交者:
GitHub
2月 28, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
infrt add trt engine (#39885)
上级
aceb25e1
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
993 addition
and
8 deletion
+993
-8
paddle/fluid/platform/dynload/tensorrt.h
paddle/fluid/platform/dynload/tensorrt.h
+6
-6
paddle/infrt/CMakeLists.txt
paddle/infrt/CMakeLists.txt
+1
-0
paddle/infrt/backends/CMakeLists.txt
paddle/infrt/backends/CMakeLists.txt
+3
-0
paddle/infrt/backends/tensorrt/CMakeLists.txt
paddle/infrt/backends/tensorrt/CMakeLists.txt
+3
-0
paddle/infrt/backends/tensorrt/test_trt_engine.cc
paddle/infrt/backends/tensorrt/test_trt_engine.cc
+254
-0
paddle/infrt/backends/tensorrt/trt_engine.cc
paddle/infrt/backends/tensorrt/trt_engine.cc
+365
-0
paddle/infrt/backends/tensorrt/trt_engine.h
paddle/infrt/backends/tensorrt/trt_engine.h
+114
-0
paddle/infrt/backends/tensorrt/trt_options.h
paddle/infrt/backends/tensorrt/trt_options.h
+94
-0
paddle/infrt/backends/tensorrt/trt_utils.h
paddle/infrt/backends/tensorrt/trt_utils.h
+147
-0
paddle/infrt/kernel/phi/CMakeLists.txt
paddle/infrt/kernel/phi/CMakeLists.txt
+4
-0
paddle/infrt/kernel/phi/infershaped/infershape_launchers_test.cc
...infrt/kernel/phi/infershaped/infershape_launchers_test.cc
+1
-1
tools/infrt/get_phi_kernel_info.py
tools/infrt/get_phi_kernel_info.py
+1
-1
未找到文件。
paddle/fluid/platform/dynload/tensorrt.h
浏览文件 @
27536a32
...
...
@@ -37,7 +37,7 @@ void* GetTensorRtPluginHandle();
extern
std
::
once_flag
tensorrt_plugin_dso_flag
;
extern
void
*
tensorrt_plugin_dso_handle
;
#define DECLARE_DYNAMIC_LOAD_TENSORRT_POINTER_WRAP
(__name)
\
#define DECLARE_DYNAMIC_LOAD_TENSORRT_POINTER_WRAP
_(__name)
\
struct DynLoad__##__name { \
template <typename... Args> \
void* operator()(Args... args) { \
...
...
@@ -55,7 +55,7 @@ extern void* tensorrt_plugin_dso_handle;
}; \
extern DynLoad__##__name __name
#define DECLARE_DYNAMIC_LOAD_TENSORRT_NON_POINTER_WRAP
(__name)
\
#define DECLARE_DYNAMIC_LOAD_TENSORRT_NON_POINTER_WRAP
_(__name)
\
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> DECLARE_TYPE(__name, args...) { \
...
...
@@ -72,7 +72,7 @@ extern void* tensorrt_plugin_dso_handle;
}; \
extern DynLoad__##__name __name
#define DECLARE_DYNAMIC_LOAD_TENSORRT_PLUGIN_WRAP
(__name)
\
#define DECLARE_DYNAMIC_LOAD_TENSORRT_PLUGIN_WRAP
_(__name)
\
struct DynLoad__##__name { \
template <typename... Args> \
auto operator()(Args... args) -> DECLARE_TYPE(__name, args...) { \
...
...
@@ -109,10 +109,10 @@ extern void* tensorrt_plugin_dso_handle;
#define TENSORRT_PLUGIN_RAND_ROUTINE_EACH(__macro) \
__macro(initLibNvInferPlugins);
TENSORRT_RAND_ROUTINE_EACH_POINTER
(
DECLARE_DYNAMIC_LOAD_TENSORRT_POINTER_WRAP
)
TENSORRT_RAND_ROUTINE_EACH_POINTER
(
DECLARE_DYNAMIC_LOAD_TENSORRT_POINTER_WRAP
_
)
TENSORRT_RAND_ROUTINE_EACH_NON_POINTER
(
DECLARE_DYNAMIC_LOAD_TENSORRT_NON_POINTER_WRAP
)
TENSORRT_PLUGIN_RAND_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_TENSORRT_PLUGIN_WRAP
)
DECLARE_DYNAMIC_LOAD_TENSORRT_NON_POINTER_WRAP
_
)
TENSORRT_PLUGIN_RAND_ROUTINE_EACH
(
DECLARE_DYNAMIC_LOAD_TENSORRT_PLUGIN_WRAP
_
)
#endif // end of NV_TENSORRT_MAJOR
...
...
paddle/infrt/CMakeLists.txt
浏览文件 @
27536a32
...
...
@@ -74,6 +74,7 @@ endif()
add_subdirectory
(
api
)
add_subdirectory
(
backends
)
add_subdirectory
(
common
)
add_subdirectory
(
dialect
)
add_subdirectory
(
host_context
)
...
...
paddle/infrt/backends/CMakeLists.txt
0 → 100644
浏览文件 @
27536a32
if
(
INFRT_WITH_PHI AND WITH_GPU AND WITH_TENSORRT
)
add_subdirectory
(
tensorrt
)
endif
()
paddle/infrt/backends/tensorrt/CMakeLists.txt
0 → 100644
浏览文件 @
27536a32
cc_library
(
infrt_trt SRCS trt_engine.cc DEPS glog phi_dynload_cuda phi
)
cc_test_tiny
(
test_infrt_trt SRCS test_trt_engine.cc DEPS infrt_trt phi_dynload_cuda tensorrt_converter
)
paddle/infrt/backends/tensorrt/test_trt_engine.cc
0 → 100644
浏览文件 @
27536a32
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <math.h>
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <NvInferRuntimeCommon.h>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
#include "paddle/fluid/memory/allocation/allocator_facade.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/infrt/backends/tensorrt/trt_engine.h"
#include "paddle/infrt/backends/tensorrt/trt_options.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/allocator.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/meta_tensor.h"
namespace
infrt
{
namespace
backends
{
namespace
tensorrt
{
const
char
*
model_input
=
"model_input"
;
const
char
*
model_output
=
"model_output1"
;
const
char
*
model_output2
=
"model_output2"
;
TrtUniquePtr
<
nvinfer1
::
INetworkDefinition
>
ConstructNetwork
(
nvinfer1
::
IBuilder
*
builder
,
nvinfer1
::
Dims
dims
,
bool
is_static_shape
)
{
TrtUniquePtr
<
nvinfer1
::
INetworkDefinition
>
network
;
if
(
is_static_shape
)
{
network
.
reset
(
builder
->
createNetworkV2
(
0U
));
}
else
{
auto
networkFlags
=
1U
<<
static_cast
<
uint32_t
>
(
nvinfer1
::
NetworkDefinitionCreationFlag
::
kEXPLICIT_BATCH
);
network
.
reset
(
builder
->
createNetworkV2
(
networkFlags
));
}
ITensor
*
data
=
network
->
addInput
(
model_input
,
nvinfer1
::
DataType
::
kFLOAT
,
dims
);
CHECK_NOTNULL
(
data
);
IActivationLayer
*
act
=
network
->
addActivation
(
*
data
,
ActivationType
::
kSIGMOID
);
CHECK_NOTNULL
(
act
);
auto
*
act_out
=
act
->
getOutput
(
0
);
std
::
vector
<
int
>
output_length
{
1
,
2
};
int
axis
;
nvinfer1
::
IPluginV2Layer
*
split_layer
;
if
(
is_static_shape
)
{
axis
=
0
;
paddle
::
inference
::
tensorrt
::
plugin
::
SplitPlugin
plugin
(
axis
,
output_length
,
false
);
split_layer
=
network
->
addPluginV2
(
&
act_out
,
1
,
plugin
);
}
else
{
axis
=
1
;
paddle
::
inference
::
tensorrt
::
plugin
::
SplitPluginDynamic
plugin
(
axis
,
output_length
,
false
);
split_layer
=
network
->
addPluginV2
(
&
act_out
,
1
,
plugin
);
}
split_layer
->
getOutput
(
0
)
->
setName
(
model_output
);
split_layer
->
getOutput
(
1
)
->
setName
(
model_output2
);
network
->
markOutput
(
*
split_layer
->
getOutput
(
0
));
network
->
markOutput
(
*
split_layer
->
getOutput
(
1
));
return
network
;
}
// sigmoid(x) = 1 / (1 + exp(-x))
inline
float
sigmoid
(
float
x
)
{
return
1.
f
/
(
1.
f
+
exp
(
-
1
*
x
));
}
TEST
(
trt
,
run_static
)
{
TRTEngine
static_trt_engine
(
0
);
auto
net
=
ConstructNetwork
(
static_trt_engine
.
GetTrtBuilder
(),
nvinfer1
::
Dims3
{
3
,
28
,
28
},
true
);
BuildOptions
static_build_options
;
static_build_options
.
max_batch
=
4
;
static_trt_engine
.
Build
(
std
::
move
(
net
),
static_build_options
);
InferenceOptions
inference_options
;
inference_options
.
batch
=
2
;
phi
::
GPUPlace
place
;
phi
::
GPUContext
context
;
context
.
PartialInitWithoutAllocator
();
context
.
SetAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
place
,
context
.
stream
())
.
get
());
context
.
PartialInitWithAllocator
();
phi
::
DenseTensorMeta
meta
(
phi
::
DataType
::
FLOAT32
,
phi
::
make_ddim
({
inference_options
.
batch
,
3
,
28
,
28
}));
phi
::
DenseTensor
input
;
input
.
set_meta
(
meta
);
context
.
Alloc
<
float
>
(
&
input
,
input
.
numel
()
*
sizeof
(
float
));
std
::
vector
<
float
>
host_data
(
inference_options
.
batch
*
3
*
28
*
28
,
0
);
for
(
size_t
i
=
0
;
i
<
host_data
.
size
();
++
i
)
{
host_data
[
i
]
=
i
%
100
*
0.016
f
;
}
paddle
::
memory
::
Copy
(
place
,
input
.
data
<
float
>
(),
phi
::
CPUPlace
(),
host_data
.
data
(),
sizeof
(
float
)
*
host_data
.
size
(),
context
.
stream
());
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>
inputs
;
inputs
.
emplace
(
std
::
make_pair
(
model_input
,
&
input
));
phi
::
DenseTensor
output
,
output2
;
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>
outputs
;
outputs
.
emplace
(
std
::
make_pair
(
model_output
,
&
output
));
outputs
.
emplace
(
std
::
make_pair
(
model_output2
,
&
output2
));
static_trt_engine
.
SetUpInference
(
inference_options
,
inputs
,
&
outputs
);
static_trt_engine
.
GetEngineInfo
();
static_trt_engine
.
Run
(
context
);
std
::
vector
<
float
>
output_data1
(
inference_options
.
batch
*
1
*
28
*
28
,
0
);
std
::
vector
<
float
>
output_data2
(
inference_options
.
batch
*
2
*
28
*
28
,
0
);
paddle
::
memory
::
Copy
(
phi
::
CPUPlace
(),
output_data1
.
data
(),
place
,
output
.
data
<
float
>
(),
sizeof
(
float
)
*
output_data1
.
size
(),
context
.
stream
());
paddle
::
memory
::
Copy
(
phi
::
CPUPlace
(),
output_data2
.
data
(),
place
,
output2
.
data
<
float
>
(),
sizeof
(
float
)
*
output_data2
.
size
(),
context
.
stream
());
cudaStreamSynchronize
(
context
.
stream
());
for
(
size_t
i
=
0
;
i
<
host_data
.
size
();
++
i
)
{
int
w
=
i
%
28
;
int
h
=
(
i
/
28
)
%
28
;
int
c
=
i
/
(
28
*
28
)
%
3
;
int
n
=
i
/
(
28
*
28
*
3
);
if
(
c
==
0
)
{
CHECK_NEAR
(
sigmoid
(
host_data
[
i
]),
output_data1
[
n
*
28
*
28
+
h
*
28
+
w
],
1e-5
);
}
else
{
CHECK_NEAR
(
sigmoid
(
host_data
[
i
]),
output_data2
[
n
*
28
*
28
*
2
+
(
c
-
1
)
*
28
*
28
+
h
*
28
+
w
],
1e-5
);
}
}
}
TEST
(
trt
,
run_dynamic
)
{
TRTEngine
engine
(
0
);
auto
net
=
ConstructNetwork
(
engine
.
GetTrtBuilder
(),
nvinfer1
::
Dims4
{
-
1
,
3
,
-
1
,
-
1
},
false
);
BuildOptions
build_options
;
build_options
.
max_batch
=
4
;
build_options
.
workspace
=
32
;
// build_options.fp16 = true;
std
::
vector
<
int32_t
>
min_shape
{
1
,
3
,
16
,
16
};
std
::
vector
<
int32_t
>
opt_shape
{
2
,
3
,
28
,
28
};
std
::
vector
<
int32_t
>
max_shape
{
4
,
3
,
28
,
28
};
build_options
.
shapes
[
model_input
][
0
]
=
min_shape
;
build_options
.
shapes
[
model_input
][
1
]
=
opt_shape
;
build_options
.
shapes
[
model_input
][
2
]
=
max_shape
;
engine
.
Build
(
std
::
move
(
net
),
build_options
);
InferenceOptions
inference_options
;
inference_options
.
batch
=
2
;
phi
::
GPUPlace
place
;
phi
::
GPUContext
context
;
context
.
PartialInitWithoutAllocator
();
context
.
SetAllocator
(
paddle
::
memory
::
allocation
::
AllocatorFacade
::
Instance
()
.
GetAllocator
(
place
,
context
.
stream
())
.
get
());
context
.
PartialInitWithAllocator
();
phi
::
DenseTensorMeta
meta
(
phi
::
DataType
::
FLOAT32
,
phi
::
make_ddim
({
inference_options
.
batch
,
3
,
16
,
16
}));
phi
::
DenseTensor
input
,
output
,
output2
;
input
.
set_meta
(
meta
);
context
.
Alloc
<
float
>
(
&
input
,
input
.
numel
()
*
sizeof
(
float
));
std
::
vector
<
float
>
host_data
(
inference_options
.
batch
*
3
*
16
*
16
,
0
);
for
(
size_t
i
=
0
;
i
<
host_data
.
size
();
++
i
)
{
host_data
[
i
]
=
i
%
100
*
0.016
f
;
}
paddle
::
memory
::
Copy
(
place
,
input
.
data
<
float
>
(),
phi
::
CPUPlace
(),
host_data
.
data
(),
sizeof
(
float
)
*
host_data
.
size
(),
context
.
stream
());
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>
inputs
;
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>
outputs
;
inputs
.
emplace
(
std
::
make_pair
(
model_input
,
&
input
));
outputs
.
emplace
(
std
::
make_pair
(
model_output
,
&
output
));
outputs
.
emplace
(
std
::
make_pair
(
model_output2
,
&
output2
));
engine
.
SetUpInference
(
inference_options
,
inputs
,
&
outputs
);
engine
.
GetEngineInfo
();
engine
.
Run
(
context
);
std
::
vector
<
float
>
output_data1
(
inference_options
.
batch
*
1
*
16
*
16
,
0
);
std
::
vector
<
float
>
output_data2
(
inference_options
.
batch
*
2
*
16
*
16
,
0
);
paddle
::
memory
::
Copy
(
phi
::
CPUPlace
(),
output_data1
.
data
(),
place
,
output
.
data
<
float
>
(),
sizeof
(
float
)
*
output_data1
.
size
(),
context
.
stream
());
paddle
::
memory
::
Copy
(
phi
::
CPUPlace
(),
output_data2
.
data
(),
place
,
output2
.
data
<
float
>
(),
sizeof
(
float
)
*
output_data2
.
size
(),
context
.
stream
());
cudaStreamSynchronize
(
context
.
stream
());
for
(
size_t
i
=
0
;
i
<
host_data
.
size
();
++
i
)
{
int
w
=
i
%
16
;
int
h
=
(
i
/
16
)
%
16
;
int
c
=
i
/
(
16
*
16
)
%
3
;
int
n
=
i
/
(
16
*
16
*
3
);
if
(
c
==
0
)
{
CHECK_NEAR
(
sigmoid
(
host_data
[
i
]),
output_data1
[
n
*
16
*
16
+
h
*
16
+
w
],
1e-5
);
}
else
{
CHECK_NEAR
(
sigmoid
(
host_data
[
i
]),
output_data2
[
n
*
16
*
16
*
2
+
(
c
-
1
)
*
16
*
16
+
h
*
16
+
w
],
1e-5
);
}
}
}
}
// namespace tensorrt
}
// namespace backends
}
// namespace infrt
paddle/infrt/backends/tensorrt/trt_engine.cc
0 → 100644
浏览文件 @
27536a32
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/infrt/backends/tensorrt/trt_engine.h"
#include <NvInferRuntime.h>
#include <NvInferRuntimeCommon.h>
#include "glog/logging.h"
#include "paddle/phi/backends/dynload/tensorrt.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/ddim.h"
namespace
infrt
{
namespace
backends
{
namespace
tensorrt
{
// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
static
nvinfer1
::
IBuilder
*
createInferBuilder
(
nvinfer1
::
ILogger
&
logger
)
{
// NOLINT
return
static_cast
<
nvinfer1
::
IBuilder
*>
(
phi
::
dynload
::
createInferBuilder_INTERNAL
(
&
logger
,
NV_TENSORRT_VERSION
));
}
static
nvinfer1
::
IRuntime
*
createInferRuntime
(
nvinfer1
::
ILogger
&
logger
)
{
// NOLINT
return
static_cast
<
nvinfer1
::
IRuntime
*>
(
phi
::
dynload
::
createInferRuntime_INTERNAL
(
&
logger
,
NV_TENSORRT_VERSION
));
}
TRTEngine
::
TRTEngine
(
int
device_id
)
:
device_id_
(
device_id
)
{
FreshDeviceId
();
logger_
.
reset
(
new
TrtLogger
());
builder_
.
reset
(
createInferBuilder
(
logger_
->
GetTrtLogger
()));
phi
::
dynload
::
initLibNvInferPlugins
(
&
logger_
->
GetTrtLogger
(),
""
);
}
nvinfer1
::
IBuilder
*
TRTEngine
::
GetTrtBuilder
()
{
CHECK_NOTNULL
(
builder_
);
return
builder_
.
get
();
}
void
TRTEngine
::
Build
(
TrtUniquePtr
<
nvinfer1
::
INetworkDefinition
>
network
,
const
BuildOptions
&
build_options
)
{
FreshDeviceId
();
ModelToBuildEnv
(
std
::
move
(
network
),
build_options
);
CHECK_NOTNULL
(
engine_
);
}
bool
TRTEngine
::
ModelToBuildEnv
(
TrtUniquePtr
<
nvinfer1
::
INetworkDefinition
>
network
,
const
BuildOptions
&
build
)
{
CHECK_NOTNULL
(
builder_
);
std
::
swap
(
network
,
network_
);
CHECK_NOTNULL
(
network_
);
// ModelToNetwork(network_, logger);
NetworkToEngine
(
build
);
return
true
;
}
bool
TRTEngine
::
NetworkToEngine
(
const
BuildOptions
&
build
)
{
TrtUniquePtr
<
IBuilderConfig
>
config
{
builder_
->
createBuilderConfig
()};
CHECK_NOTNULL
(
config
);
CHECK
(
SetupNetworkAndConfig
(
build
,
*
network_
,
*
config
));
#if IS_TRT_VERSION_LT(8000)
engine_
.
reset
(
builder_
->
buildEngineWithConfig
(
*
network_
,
*
config
));
#else
serialized_engine_
.
reset
(
builder_
->
buildSerializedNetwork
(
*
network_
,
*
config
));
CHECK_NOTNULL
(
serialized_engine_
);
TrtUniquePtr
<
IRuntime
>
runtime
{
createInferRuntime
(
logger_
->
GetTrtLogger
())};
CHECK_NOTNULL
(
runtime
);
engine_
.
reset
(
runtime
->
deserializeCudaEngine
(
serialized_engine_
->
data
(),
serialized_engine_
->
size
()));
CHECK_NOTNULL
(
engine_
);
#endif
return
true
;
}
bool
TRTEngine
::
SetupNetworkAndConfig
(
const
BuildOptions
&
build
,
INetworkDefinition
&
network
,
IBuilderConfig
&
config
)
{
builder_
->
setMaxBatchSize
(
build
.
max_batch
);
// TODO(wilber): handle one engine - multi execution context case.
IOptimizationProfile
*
profile
{
nullptr
};
if
(
!
build
.
shapes
.
empty
())
{
profile
=
builder_
->
createOptimizationProfile
();
CHECK_NOTNULL
(
profile
);
}
// Set formats and data types of inputs
for
(
int32_t
i
=
0
;
i
<
network
.
getNbInputs
();
++
i
)
{
auto
*
input
=
network
.
getInput
(
i
);
if
(
!
build
.
input_formats
.
empty
())
{
input
->
setType
(
build
.
input_formats
[
i
].
first
);
input
->
setAllowedFormats
(
build
.
input_formats
[
i
].
second
);
}
else
{
switch
(
input
->
getType
())
{
case
DataType
::
kINT32
:
case
DataType
::
kBOOL
:
case
DataType
::
kHALF
:
// Leave these as is.
break
;
case
DataType
::
kFLOAT
:
case
DataType
::
kINT8
:
// User did not specify a floating-point format. Default to kFLOAT.
input
->
setType
(
DataType
::
kFLOAT
);
break
;
}
input
->
setAllowedFormats
(
1U
<<
static_cast
<
int
>
(
TensorFormat
::
kLINEAR
));
}
if
(
profile
)
{
Dims
dims
=
input
->
getDimensions
();
// TODO(wilber): shape tensor.
const
bool
is_dynamic_input
=
std
::
any_of
(
dims
.
d
,
dims
.
d
+
dims
.
nbDims
,
[](
int
dim
)
{
return
dim
==
-
1
;
});
if
(
is_dynamic_input
)
{
is_dynamic_shape_
=
true
;
auto
shape
=
build
.
shapes
.
find
(
input
->
getName
());
// If no shape is provided
if
(
shape
==
build
.
shapes
.
end
())
{
// TODO(wilber): add infomation.
CHECK
(
false
);
}
LOG
(
INFO
)
<<
"Run Paddle-TRT Dynamic Shape mode."
;
std
::
vector
<
int
>
profile_dims
{};
profile_dims
=
shape
->
second
[
static_cast
<
size_t
>
(
OptProfileSelector
::
kMIN
)];
CHECK
(
profile
->
setDimensions
(
input
->
getName
(),
OptProfileSelector
::
kMIN
,
VecToDims
(
profile_dims
)));
profile_dims
=
shape
->
second
[
static_cast
<
size_t
>
(
OptProfileSelector
::
kOPT
)];
CHECK
(
profile
->
setDimensions
(
input
->
getName
(),
OptProfileSelector
::
kOPT
,
VecToDims
(
profile_dims
)));
profile_dims
=
shape
->
second
[
static_cast
<
size_t
>
(
OptProfileSelector
::
kMAX
)];
CHECK
(
profile
->
setDimensions
(
input
->
getName
(),
OptProfileSelector
::
kMAX
,
VecToDims
(
profile_dims
)));
}
}
}
if
(
profile
&&
is_dynamic_shape_
)
{
CHECK
(
profile
->
isValid
());
// Required optimization profile is invalid
CHECK_NE
(
config
.
addOptimizationProfile
(
profile
),
-
1
);
}
// Set formats and data types of outputs
for
(
int32_t
i
=
0
,
n
=
network
.
getNbOutputs
();
i
<
n
;
i
++
)
{
auto
*
output
=
network
.
getOutput
(
i
);
if
(
!
build
.
output_formats
.
empty
())
{
// int outputFormatIndex = broadcastOutputFormats ? 0 : i;
output
->
setType
(
build
.
output_formats
[
i
].
first
);
output
->
setAllowedFormats
(
build
.
output_formats
[
i
].
second
);
}
else
{
output
->
setAllowedFormats
(
1U
<<
static_cast
<
int
>
(
TensorFormat
::
kLINEAR
));
}
}
config
.
setMaxWorkspaceSize
(
static_cast
<
size_t
>
(
build
.
workspace
)
<<
20
);
if
(
build
.
fp16
)
{
config
.
setFlag
(
BuilderFlag
::
kFP16
);
bool
support_fp16
=
builder_
->
platformHasFastFp16
();
if
(
support_fp16
)
{
LOG
(
INFO
)
<<
"Run INFRT-TRT FP16 mode"
;
}
else
{
LOG
(
INFO
)
<<
"You specify FP16 mode, but the hardware do not support "
"FP16 speed up, use FP32 instead."
;
}
}
if
(
build
.
tf32
)
{
config
.
setFlag
(
BuilderFlag
::
kTF32
);
bool
support_tf32
=
builder_
->
platformHasTf32
();
if
(
support_tf32
)
{
LOG
(
INFO
)
<<
"Run INFRT-TRT TF32 mode"
;
}
else
{
LOG
(
INFO
)
<<
"You specify TF32 mode, but the hardware do not support "
"TF32 speed up, use FP32 instead."
;
}
}
// TODO(wilber): other precision.
// TODO(wilber): precision config.
switch
(
build
.
precision_constraints
)
{
case
PrecisionConstraints
::
kNONE
:
// It's the default for TensorRT.
break
;
case
PrecisionConstraints
::
kOBEY
:
config
.
setFlag
(
BuilderFlag
::
kOBEY_PRECISION_CONSTRAINTS
);
break
;
case
PrecisionConstraints
::
kPREFER
:
config
.
setFlag
(
BuilderFlag
::
kPREFER_PRECISION_CONSTRAINTS
);
break
;
}
// TODO(TRT): DLA config.
// TODO(TRT): int8 config.
// TODO(TRT): support int8
if
(
build
.
int8
)
{
assert
(
false
);
config
.
setFlag
(
BuilderFlag
::
kINT8
);
bool
support_int8
=
builder_
->
platformHasFastInt8
();
if
(
support_int8
)
{
LOG
(
INFO
)
<<
"Run INFRT-TRT FP16 mode"
;
}
}
// TODO(TRT): calib config.
// TODO(TRT): sparse config.
return
true
;
}
bool
TRTEngine
::
SetUpInference
(
const
InferenceOptions
&
inference
,
const
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>&
inputs
,
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>*
outputs
)
{
// TODO(wilber): now only create one exec_context
FreshDeviceId
();
CHECK
(
engine_
!=
nullptr
);
nvinfer1
::
IExecutionContext
*
ec
=
engine_
->
createExecutionContext
();
CHECK
(
ec
!=
nullptr
);
contexts_
.
emplace_back
(
ec
);
bindings_
.
emplace_back
(
new
Bindings
());
for
(
const
auto
&
it
:
inputs
)
{
const
int
bind_index
=
engine_
->
getBindingIndex
(
it
.
first
.
c_str
());
bindings_
.
front
()
->
AddBinding
(
bind_index
,
it
.
first
,
true
,
it
.
second
,
nvinfer1
::
DataType
::
kFLOAT
);
}
for
(
auto
&
it
:
*
outputs
)
{
const
int
bind_index
=
engine_
->
getBindingIndex
(
it
.
first
.
c_str
());
bindings_
.
front
()
->
AddBinding
(
bind_index
,
it
.
first
,
false
,
it
.
second
,
nvinfer1
::
DataType
::
kFLOAT
);
}
return
true
;
}
void
TRTEngine
::
Run
(
const
phi
::
GPUContext
&
ctx
)
{
if
(
is_dynamic_shape_
)
{
DynamicRun
(
ctx
);
}
else
{
StaticRun
(
ctx
);
}
}
void
TRTEngine
::
StaticRun
(
const
phi
::
GPUContext
&
ctx
)
{
const
int
num_bindings
=
engine_
->
getNbBindings
();
std
::
vector
<
void
*>
buffers
(
num_bindings
,
nullptr
);
int
runtime_batch
=
-
1
;
auto
input_binds
=
bindings_
.
front
()
->
GetInputBindings
();
for
(
auto
bind
:
input_binds
)
{
const
int
bind_index
=
engine_
->
getBindingIndex
(
bind
.
name
.
c_str
());
buffers
[
bind_index
]
=
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
bind
.
buffer
->
data
<
float
>
()));
if
(
runtime_batch
!=
-
1
)
{
CHECK_EQ
(
runtime_batch
,
phi
::
vectorize
<
int64_t
>
(
bind
.
buffer
->
dims
())[
0
]);
}
runtime_batch
=
bind
.
buffer
->
dims
()[
0
];
}
auto
output_binds
=
bindings_
.
front
()
->
GetOutputBindings
();
for
(
auto
bind
:
output_binds
)
{
const
int
bind_index
=
engine_
->
getBindingIndex
(
bind
.
name
.
c_str
());
std
::
vector
<
int32_t
>
ddim
;
auto
dims
=
engine_
->
getBindingDimensions
(
bind_index
);
ddim
.
push_back
(
runtime_batch
);
for
(
int
i
=
0
;
i
<
dims
.
nbDims
;
++
i
)
{
ddim
.
push_back
(
dims
.
d
[
i
]);
}
bind
.
buffer
->
Resize
(
phi
::
make_ddim
(
ddim
));
ctx
.
Alloc
<
float
>
(
bind
.
buffer
,
sizeof
(
float
)
*
bind
.
buffer
->
numel
());
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
bind
.
buffer
->
data
<
float
>
());
}
contexts_
.
front
()
->
enqueue
(
runtime_batch
,
buffers
.
data
(),
ctx
.
stream
(),
nullptr
);
}
void
TRTEngine
::
DynamicRun
(
const
phi
::
GPUContext
&
ctx
)
{
const
int
num_bindings
=
engine_
->
getNbBindings
();
std
::
vector
<
void
*>
buffers
(
num_bindings
,
nullptr
);
auto
input_binds
=
bindings_
.
front
()
->
GetInputBindings
();
for
(
auto
bind
:
input_binds
)
{
const
int
bind_index
=
engine_
->
getBindingIndex
(
bind
.
name
.
c_str
());
buffers
[
bind_index
]
=
const_cast
<
void
*>
(
static_cast
<
const
void
*>
(
bind
.
buffer
->
data
<
float
>
()));
nvinfer1
::
Dims
trt_dims
;
trt_dims
.
nbDims
=
bind
.
buffer
->
dims
().
size
();
for
(
int
i
=
0
;
i
<
trt_dims
.
nbDims
;
++
i
)
{
trt_dims
.
d
[
i
]
=
bind
.
buffer
->
dims
()[
i
];
}
contexts_
.
front
()
->
setBindingDimensions
(
bind_index
,
trt_dims
);
}
CHECK
(
contexts_
.
front
()
->
allInputDimensionsSpecified
());
auto
output_binds
=
bindings_
.
front
()
->
GetOutputBindings
();
for
(
auto
bind
:
output_binds
)
{
const
int
bind_index
=
engine_
->
getBindingIndex
(
bind
.
name
.
c_str
());
auto
dims
=
contexts_
.
front
()
->
getBindingDimensions
(
bind_index
);
std
::
vector
<
int32_t
>
ddim
(
dims
.
nbDims
);
for
(
int
i
=
0
;
i
<
dims
.
nbDims
;
++
i
)
{
ddim
[
i
]
=
dims
.
d
[
i
];
}
bind
.
buffer
->
Resize
(
phi
::
make_ddim
(
ddim
));
ctx
.
Alloc
<
float
>
(
bind
.
buffer
,
sizeof
(
float
)
*
bind
.
buffer
->
numel
());
buffers
[
bind_index
]
=
static_cast
<
void
*>
(
bind
.
buffer
->
data
<
float
>
());
}
contexts_
.
front
()
->
enqueueV2
(
buffers
.
data
(),
ctx
.
stream
(),
nullptr
);
}
void
TRTEngine
::
FreshDeviceId
()
{
int
count
;
cudaGetDeviceCount
(
&
count
);
CHECK_LT
(
device_id_
,
count
);
phi
::
backends
::
gpu
::
SetDeviceId
(
device_id_
);
}
void
TRTEngine
::
GetEngineInfo
()
{
#if IS_TRT_VERSION_GE(8200)
LOG
(
INFO
)
<<
"====== engine info ======"
;
std
::
unique_ptr
<
nvinfer1
::
IEngineInspector
>
infer_inspector
(
engine_
->
createEngineInspector
());
infer_inspector
->
setExecutionContext
(
contexts_
.
front
().
get
());
LOG
(
INFO
)
<<
infer_inspector
->
getEngineInformation
(
nvinfer1
::
LayerInformationFormat
::
kONELINE
);
LOG
(
INFO
)
<<
"====== engine info end ======"
;
#else
LOG
(
INFO
)
<<
"Inspector needs TensorRT version 8.2 and after."
;
#endif
}
}
// namespace tensorrt
}
// namespace backends
}
// namespace infrt
paddle/infrt/backends/tensorrt/trt_engine.h
0 → 100644
浏览文件 @
27536a32
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include "paddle/infrt/backends/tensorrt/trt_options.h"
#include "paddle/infrt/backends/tensorrt/trt_utils.h"
#include "paddle/phi/backends/dynload/tensorrt.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
infrt
{
namespace
backends
{
namespace
tensorrt
{
using
namespace
nvinfer1
;
// NOLINT
// The trt programing model as follows:
// 1. The build phase:
// IBuilder* builder = createInferBuilder(&logger_);
// 2. Create a network definition:
// INetworkDefinition* network = builder->createNetworkV2(...);
// 3. Build network:
// network->AddLayer(...)
// 4. Configure network:
// IBuilderConfig* config = builder->createBuilderConfig();
// config->setMaxWorkspaceSize(...)
// 5. Get cuda engine and deserializing a plan:
// IHostMemory* serialized_model = builder->buildSerializedNetwork(...);
// IRuntime* runtime = createInferRuntime(&logger_);
// ICudaEngine* engine = runtime->deserializeCudaEngine(...);
// 6. Get execution context:
// IExecutionContext* exec_context = engine->createExecutionContext();
// 7. Set input data:
// int32_t input_index = engine->getBindingIndex("input");
// int32_t output_index = engine->getBindingIndex("output");
// void* buffers[2];
// buffers[input_index] = input_buffer;
// buffers[output_index] = output_buffer;
// 8. Performance inference:
// exec_context->enqueueV2(buffers, stream, nullptr);
//
// We have encapsulated this logic, please use the following programming model.
//
// TRTEngine trt_engine;
// trt_engine.Build(...);
// trt_engine.SetUpInference(...);
// trt_engine.Run(...);
class
TRTEngine
{
public:
explicit
TRTEngine
(
int
device_id
);
nvinfer1
::
IBuilder
*
GetTrtBuilder
();
// TODO(wilber): Modify signature after infrt-trt ready.
void
Build
(
TrtUniquePtr
<
nvinfer1
::
INetworkDefinition
>
network
,
const
BuildOptions
&
build_options
);
// TODO(wilber): Modify signature after infrt-trt ready.
void
Run
(
const
phi
::
GPUContext
&
ctx
);
// TODO(wilber): How to support multiple execution contexts?
bool
SetUpInference
(
const
InferenceOptions
&
inference
,
const
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>&
inputs
,
std
::
unordered_map
<
std
::
string
,
phi
::
DenseTensor
*>*
outputs
);
void
GetEngineInfo
();
private:
void
FreshDeviceId
();
bool
SetupNetworkAndConfig
(
const
BuildOptions
&
build
,
INetworkDefinition
&
network
,
// NOLINT
IBuilderConfig
&
config
);
// NOLINT
bool
NetworkToEngine
(
const
BuildOptions
&
build
);
bool
ModelToBuildEnv
(
TrtUniquePtr
<
nvinfer1
::
INetworkDefinition
>
network
,
const
BuildOptions
&
build
);
void
StaticRun
(
const
phi
::
GPUContext
&
ctx
);
void
DynamicRun
(
const
phi
::
GPUContext
&
ctx
);
private:
std
::
unique_ptr
<
TrtLogger
>
logger_
{
nullptr
};
TrtUniquePtr
<
nvinfer1
::
IBuilder
>
builder_
{
nullptr
};
TrtUniquePtr
<
INetworkDefinition
>
network_
{
nullptr
};
std
::
unique_ptr
<
IHostMemory
>
serialized_engine_
{
nullptr
};
TrtUniquePtr
<
nvinfer1
::
ICudaEngine
>
engine_
{
nullptr
};
std
::
vector
<
TrtUniquePtr
<
nvinfer1
::
IExecutionContext
>>
contexts_
;
std
::
vector
<
std
::
unique_ptr
<
Bindings
>>
bindings_
;
int
device_id_
{
0
};
bool
is_dynamic_shape_
{
false
};
};
}
// namespace tensorrt
}
// namespace backends
}
// namespace infrt
paddle/infrt/backends/tensorrt/trt_options.h
0 → 100644
浏览文件 @
27536a32
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <unordered_map>
#include <vector>
#include <NvInfer.h>
namespace
infrt
{
namespace
backends
{
namespace
tensorrt
{
// Build default params
constexpr
int32_t
max_batch_not_provided
{
0
};
constexpr
int32_t
default_workspace
{
16
};
// Inference default params
constexpr
int32_t
default_batch
{
1
};
constexpr
int32_t
batch_not_provided
{
0
};
enum
class
PrecisionConstraints
{
kNONE
,
kOBEY
,
kPREFER
};
enum
class
SparsityFlag
{
kDISABLE
,
kENABLE
,
kFORCE
};
using
ShapeRange
=
std
::
array
<
std
::
vector
<
int32_t
>
,
nvinfer1
::
EnumMax
<
nvinfer1
::
OptProfileSelector
>
()
>
;
using
IOFormat
=
std
::
pair
<
nvinfer1
::
DataType
,
nvinfer1
::
TensorFormats
>
;
struct
BuildOptions
{
// Set max batch size.
int32_t
max_batch
{
max_batch_not_provided
};
// Set workspace size in megabytes (default = 16)
int32_t
workspace
{
default_workspace
};
// Enable tf32 precision, in addition to fp32 (default = disabled)
bool
tf32
{
false
};
// Enable fp16 precision, in addition to fp32 (default = disabled)
bool
fp16
{
false
};
// Enable int8 precision, in addition to fp32 (default = disabled)
bool
int8
{
false
};
// Control precision constraints. (default = none)
// Precision Constaints: = none, obey, prefer
// none = no constraints
// prefer = meet precision constraints if possible
// obey = meet precision constraints or fail otherwise
PrecisionConstraints
precision_constraints
{
PrecisionConstraints
::
kNONE
};
// Save the serialized engine.
bool
save
{
false
};
// Load a serialized engine.
bool
load
{
false
};
// Build with dynamic shapes using a profile with the min, max and opt shapes
// provided
std
::
unordered_map
<
std
::
string
,
ShapeRange
>
shapes
;
// Type and format of each of the input tensors (default = all inputs in
// fp32:chw)
std
::
vector
<
IOFormat
>
input_formats
;
// Type and format of each of the output tensors (default = all outputs in
// fp32:chw)
std
::
vector
<
IOFormat
>
output_formats
;
};
struct
InferenceOptions
{
int32_t
batch
{
batch_not_provided
};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
int32_t
>>
shapes
;
};
}
// namespace tensorrt
}
// namespace backends
}
// namespace infrt
paddle/infrt/backends/tensorrt/trt_utils.h
0 → 100644
浏览文件 @
27536a32
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
// Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <cassert>
#include <functional>
#include <memory>
#include <unordered_map>
#include <NvInfer.h>
#include <NvInferRuntime.h>
#include <NvInferRuntimeCommon.h>
#include "glog/logging.h"
#include "paddle/phi/core/dense_tensor.h"
namespace
infrt
{
namespace
backends
{
namespace
tensorrt
{
#define IS_TRT_VERSION_GE(version) \
((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)
#define IS_TRT_VERSION_LT(version) \
((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) < version)
#define TRT_VERSION \
NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD
inline
nvinfer1
::
Dims
VecToDims
(
const
std
::
vector
<
int
>&
vec
)
{
int
limit
=
static_cast
<
int
>
(
nvinfer1
::
Dims
::
MAX_DIMS
);
if
(
static_cast
<
int
>
(
vec
.
size
())
>
limit
)
{
assert
(
false
);
}
// Pick first nvinfer1::Dims::MAX_DIMS elements
nvinfer1
::
Dims
dims
{
std
::
min
(
static_cast
<
int
>
(
vec
.
size
()),
limit
),
{}};
std
::
copy_n
(
vec
.
begin
(),
dims
.
nbDims
,
std
::
begin
(
dims
.
d
));
return
dims
;
}
template
<
typename
T
>
struct
TrtDestroyer
{
void
operator
()(
T
*
t
)
{
t
->
destroy
();
}
};
template
<
typename
T
>
using
TrtUniquePtr
=
std
::
unique_ptr
<
T
,
TrtDestroyer
<
T
>>
;
class
TrtLogger
:
public
nvinfer1
::
ILogger
{
public:
void
log
(
nvinfer1
::
ILogger
::
Severity
severity
,
const
char
*
msg
)
noexcept
override
{
switch
(
severity
)
{
case
Severity
::
kVERBOSE
:
VLOG
(
3
)
<<
msg
;
break
;
case
Severity
::
kINFO
:
VLOG
(
2
)
<<
msg
;
break
;
case
Severity
::
kWARNING
:
LOG
(
WARNING
)
<<
msg
;
break
;
case
Severity
::
kINTERNAL_ERROR
:
case
Severity
::
kERROR
:
LOG
(
ERROR
)
<<
msg
;
break
;
default:
break
;
}
}
nvinfer1
::
ILogger
&
GetTrtLogger
()
noexcept
{
return
*
this
;
}
~
TrtLogger
()
override
=
default
;
};
struct
Binding
{
bool
is_input
{
false
};
nvinfer1
::
DataType
data_type
{
nvinfer1
::
DataType
::
kFLOAT
};
phi
::
DenseTensor
*
buffer
{
nullptr
};
std
::
string
name
;
};
class
Bindings
{
public:
Bindings
()
=
default
;
void
AddBinding
(
int32_t
b
,
const
std
::
string
&
name
,
bool
is_input
,
phi
::
DenseTensor
*
buffer
,
nvinfer1
::
DataType
data_type
)
{
while
(
bindings_
.
size
()
<=
static_cast
<
size_t
>
(
b
))
{
bindings_
.
emplace_back
();
}
names_
[
name
]
=
b
;
bindings_
[
b
].
buffer
=
buffer
;
bindings_
[
b
].
is_input
=
is_input
;
bindings_
[
b
].
data_type
=
data_type
;
bindings_
[
b
].
name
=
name
;
}
std
::
vector
<
Binding
>
GetInputBindings
()
{
return
GetBindings
([](
const
Binding
&
b
)
->
bool
{
return
b
.
is_input
;
});
}
std
::
vector
<
Binding
>
GetOutputBindings
()
{
return
GetBindings
([](
const
Binding
&
b
)
->
bool
{
return
!
b
.
is_input
;
});
}
std
::
vector
<
Binding
>
GetBindings
()
{
return
GetBindings
([](
const
Binding
&
b
)
->
bool
{
return
true
;
});
}
std
::
vector
<
Binding
>
GetBindings
(
std
::
function
<
bool
(
const
Binding
&
b
)
>
predicate
)
{
std
::
vector
<
Binding
>
bindings
;
for
(
const
auto
&
b
:
bindings_
)
{
if
(
predicate
(
b
))
{
bindings
.
push_back
(
b
);
}
}
return
bindings
;
}
private:
std
::
unordered_map
<
std
::
string
,
int32_t
>
names_
;
std
::
vector
<
Binding
>
bindings_
;
};
}
// namespace tensorrt
}
// namespace backends
}
// namespace infrt
paddle/infrt/kernel/phi/CMakeLists.txt
浏览文件 @
27536a32
...
...
@@ -18,6 +18,10 @@ set(wrapped_infermeta_source_file ${CMAKE_SOURCE_DIR}/paddle/phi/infermeta/gener
add_custom_command
(
OUTPUT
${
infrt_register_phi_kernels_gen_source_file
}
COMMAND sh
${
infrt_register_phi_kernels_gen_file
}
DEPENDS
${
wrapped_infermeta_header_file
}
${
wrapped_infermeta_source_file
}
VERBATIM
)
add_custom_target
(
infrt_register_phi_kernel
COMMAND sh
${
infrt_register_phi_kernels_gen_file
}
DEPENDS
${
wrapped_infermeta_header_file
}
${
wrapped_infermeta_source_file
}
COMMENT
"infrt generate
${
infrt_register_phi_kernels_gen_source_file
}
"
...
...
paddle/infrt/kernel/phi/infershaped/infershape_launchers_test.cc
浏览文件 @
27536a32
...
...
@@ -54,7 +54,7 @@ TEST(ElementwiseAdd, launcher_registry) {
host_context
::
KernelRegistry
registry
;
RegisterInferShapeLaunchers
(
&
registry
);
ASSERT_GE
(
registry
.
size
(),
1UL
);
auto
creator
=
registry
.
GetKernel
(
"add.cpu.any.fp32"
);
auto
creator
=
registry
.
GetKernel
(
"
pten.
add.cpu.any.fp32"
);
const
phi
::
DDim
dims
({
1
,
2
});
const
phi
::
DataType
dtype
{
phi
::
DataType
::
FLOAT32
};
...
...
tools/infrt/get_phi_kernel_info.py
浏览文件 @
27536a32
...
...
@@ -219,7 +219,7 @@ def gen_register_info(resources: List[List[str]]):
for
ir_dtype
,
origin_dtype
in
zip
(
ir_dtypes
,
origin_dtypes
):
kernel_func
=
gen_kernel_func
(
update_item
[
3
],
ctx_name
,
origin_dtype
)
ir_name
=
'.'
.
join
(
ir_name
=
'
pten.'
+
'
.'
.
join
(
[
it
.
lower
()
for
it
in
update_item
[:
3
]])
+
"."
+
ir_dtype
res
+=
f
"""
registry->AddKernel("
{
ir_name
}
","""
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录