Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2739096e
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2739096e
编写于
1月 27, 2019
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
compatibable with python side mem_opt
上级
8f3b2523
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
633 addition
and
158 deletion
+633
-158
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+4
-2
paddle/fluid/framework/details/build_strategy.cc
paddle/fluid/framework/details/build_strategy.cc
+29
-0
paddle/fluid/framework/details/graph_print_pass.cc
paddle/fluid/framework/details/graph_print_pass.cc
+125
-0
paddle/fluid/framework/details/graph_print_pass.h
paddle/fluid/framework/details/graph_print_pass.h
+66
-0
paddle/fluid/framework/details/graph_print_pass_test.cc
paddle/fluid/framework/details/graph_print_pass_test.cc
+79
-0
paddle/fluid/framework/details/graph_test_base.h
paddle/fluid/framework/details/graph_test_base.h
+80
-0
paddle/fluid/framework/details/inplace_op_pass.cc
paddle/fluid/framework/details/inplace_op_pass.cc
+121
-37
paddle/fluid/framework/details/memory_optimize_pass_test.cc
paddle/fluid/framework/details/memory_optimize_pass_test.cc
+1
-54
paddle/fluid/framework/details/multi_devices_graph_print_pass.h
.../fluid/framework/details/multi_devices_graph_print_pass.h
+1
-9
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+58
-56
python/paddle/fluid/tests/unittests/test_ir_inplace_pass.py
python/paddle/fluid/tests/unittests/test_ir_inplace_pass.py
+69
-0
未找到文件。
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
2739096e
...
...
@@ -51,7 +51,8 @@ cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope d
cc_library
(
fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope
)
cc_library
(
memory_optimize_pass SRCS memory_optimize_pass.cc memory_optimize_helper.cc DEPS graph graph_helper pass
)
cc_library
(
inplace_op_pass SRCS inplace_op_pass DEPS memory_optimize_pass op_info
)
cc_library
(
graph_print_pass SRCS graph_print_pass.cc DEPS graph_helper pass
)
cc_library
(
inplace_op_pass SRCS inplace_op_pass.cc DEPS memory_optimize_pass op_info graph_print_pass
)
cc_library
(
modify_op_lock_and_record_event_pass SRCS modify_op_lock_and_record_event_pass.cc DEPS computation_op_handle op_graph_view multi_devices_helper
)
cc_library
(
memory_early_delete_pass SRCS memory_early_delete_pass.cc DEPS memory_optimize_pass computation_op_handle scale_loss_grad_op_handle rpc_op_handle
all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass
)
...
...
@@ -72,6 +73,7 @@ if (WITH_GPU)
endif
()
cc_test
(
memory_optimize_helper_test SRCS memory_optimize_helper_test.cc memory_optimize_helper.cc DEPS framework_proto graph
)
cc_test
(
memory_optimize_pass_test SRCS memory_optimize_pass_test.cc memory_optimize_pass.cc memory_optimize_helper.cc DEPS framework_proto graph graph_helper op_registry pass
)
cc_test
(
graph_print_pass_test SRCS graph_print_pass_test.cc DEPS graph_print_pass framework_proto graph graph_helper op_registry pass
)
cc_library
(
ssa_graph_executor SRCS ssa_graph_executor.cc DEPS
${
SSA_GRAPH_EXECUTOR_DEPS
}
)
...
...
@@ -96,4 +98,4 @@ cc_library(build_strategy SRCS build_strategy.cc DEPS
multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass multi_batch_merge_pass
fuse_relu_depthwise_conv_pass
memory_optimize_pass lock_free_optimize_pass
)
memory_optimize_pass lock_free_optimize_pass
graph_print_pass
)
paddle/fluid/framework/details/build_strategy.cc
浏览文件 @
2739096e
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#include <glog/logging.h>
#include <memory>
#include "paddle/fluid/framework/details/graph_print_pass.h"
#include "paddle/fluid/framework/details/memory_optimize_helper.h"
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
...
...
@@ -43,8 +44,25 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
explicit
ParallelExecutorPassBuilder
(
const
BuildStrategy
&
strategy
)
:
ir
::
PassBuilder
(),
strategy_
(
strategy
)
{
if
(
strategy_
.
enable_inplace_
)
{
// before inplaced
// if (!strategy_.debug_graphviz_path_.empty()) {
// const std::string path = strategy_.debug_graphviz_path_ +
// "before_inplaced";
// auto pass = AppendPass("graph_print_pass");
// pass->Set<std::string>(kGraphvizPath, new std::string(path));
// }
AppendPass
(
"inplace_pass"
);
// after inplaced
// if (!strategy_.debug_graphviz_path_.empty()) {
// const std::string path = strategy_.debug_graphviz_path_ +
// "after_inplaced";
// auto pass = AppendPass("graph_print_pass");
// pass->Set<std::string>(details::kGraphvizPath, new
// std::string(path));
// }
}
if
(
strategy_
.
enable_sequential_execution_
)
{
AppendPass
(
"sequential_execution_pass"
);
}
...
...
@@ -189,6 +207,9 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass
->
SetNotOwned
<
platform
::
NCCLContextMap
>
(
"nccl_ctxs"
,
nctx
);
#endif
}
else
if
(
pass
->
Type
()
==
"memory_optimize_pass"
)
{
if
(
graph
->
Has
(
kAllOpDescs
))
{
graph
->
Erase
(
kAllOpDescs
);
}
const
std
::
vector
<
OpDesc
*>
*
all_op_descs
=
new
std
::
vector
<
OpDesc
*>
(
main_program
.
Block
(
0
).
AllOps
());
graph
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
...
...
@@ -219,6 +240,9 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
if
(
graph
->
Has
(
kAllOpDescs
))
{
graph
->
Erase
(
kAllOpDescs
);
}
if
(
!
graph
->
Has
(
kGraphviz
))
{
graph
->
Set
<
GraphvizNodes
>
(
kGraphviz
,
new
GraphvizNodes
);
}
graph
->
Set
<
const
std
::
vector
<
OpDesc
*>>
(
kAllOpDescs
,
new
std
::
vector
<
OpDesc
*>
(
main_program
.
Block
(
0
).
AllOps
()));
...
...
@@ -228,6 +252,10 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
"GPU, skipped."
;
continue
;
}
}
else
if
(
pass
->
Type
()
==
"graph_print_path"
)
{
if
(
!
graph
->
Has
(
kGraphviz
))
{
graph
->
Set
<
GraphvizNodes
>
(
kGraphviz
,
new
GraphvizNodes
);
}
}
graph
=
pass
->
Apply
(
std
::
move
(
graph
));
}
...
...
@@ -253,3 +281,4 @@ USE_PASS(all_reduce_deps_pass);
USE_PASS
(
modify_op_lock_and_record_event_pass
);
USE_PASS
(
inplace_pass
);
USE_PASS
(
lock_free_optimize_pass
);
USE_PASS
(
graph_print_pass
);
paddle/fluid/framework/details/graph_print_pass.cc
0 → 100644
浏览文件 @
2739096e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/graph_print_pass.h"
#include <string>
#include <vector>
namespace
paddle
{
namespace
framework
{
namespace
details
{
class
GraphvizVar
:
public
GraphvizNode
{
public:
GraphvizVar
(
ir
::
Node
*
n
,
const
int
&
i
)
:
GraphvizNode
(
n
,
i
)
{}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
sout
,
const
GraphvizVar
&
var
)
{
sout
<<
"var_"
<<
var
.
id_
<<
" [label=
\"
"
<<
var
.
node_
->
Name
()
<<
"
\"
]"
<<
std
::
endl
;
return
sout
;
}
};
class
GraphvizOp
:
public
GraphvizNode
{
public:
GraphvizOp
(
ir
::
Node
*
n
,
const
int
&
i
)
:
GraphvizNode
(
n
,
i
)
{}
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
sout
,
const
GraphvizOp
&
op
)
{
sout
<<
"op_"
+
std
::
to_string
(
op
.
id_
)
<<
" [label=
\"
"
<<
op
.
node_
->
Name
()
<<
"
\"
, shape=rect]"
<<
std
::
endl
;
PADDLE_ENFORCE
(
op
.
stream_
.
rdbuf
()
->
in_avail
()
!=
0
,
"No inputs outputs. Please call AddEdge first!"
);
sout
<<
op
.
stream_
.
str
();
return
sout
;
}
template
<
typename
Callback
>
void
AddEdge
(
const
Callback
&
cb
)
{
std
::
string
op_name
=
"op_"
+
std
::
to_string
(
id_
);
for
(
auto
var
:
node_
->
inputs
)
{
std
::
string
var_name
=
"var_"
+
std
::
to_string
(
cb
(
var
));
stream_
<<
var_name
<<
"->"
<<
op_name
<<
std
::
endl
;
}
for
(
auto
var
:
node_
->
outputs
)
{
std
::
string
var_name
=
"var_"
+
std
::
to_string
(
cb
(
var
));
stream_
<<
op_name
<<
"->"
<<
var_name
<<
std
::
endl
;
}
}
private:
std
::
ostringstream
stream_
;
};
template
<
typename
T
,
typename
Container
>
std
::
vector
<
T
*>
FilterByNodeWrapper
(
const
Container
&
con
)
{
std
::
vector
<
T
*>
ret
;
for
(
auto
&
node
:
con
)
{
auto
i
=
dynamic_cast
<
T
*>
(
node
.
get
());
if
(
i
!=
nullptr
)
ret
.
emplace_back
(
i
);
}
return
ret
;
}
std
::
unordered_map
<
ir
::
Node
*
,
int
>
SSAGraphPrinterImpl
::
ToGraphvizNode
(
const
ir
::
Graph
&
graph
)
const
{
// Convert to GraphvizNode format
auto
&
graphviz_nodes
=
graph
.
Get
<
GraphvizNodes
>
(
kGraphviz
);
graphviz_nodes
.
clear
();
std
::
unordered_map
<
ir
::
Node
*
,
int
>
vars
;
int
var_id
=
0
;
int
op_id
=
0
;
for
(
auto
&
node
:
graph
.
Nodes
())
{
if
(
node
->
IsVar
())
{
graphviz_nodes
.
emplace
(
new
GraphvizVar
(
node
,
var_id
));
vars
.
emplace
(
std
::
make_pair
(
node
,
var_id
++
));
}
else
if
(
node
->
IsOp
())
{
graphviz_nodes
.
emplace
(
new
GraphvizOp
(
node
,
op_id
++
));
}
else
{
PADDLE_THROW
(
"Unknown op type"
);
}
}
return
vars
;
}
void
SSAGraphPrinterImpl
::
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
{
auto
vars
=
ToGraphvizNode
(
graph
);
auto
&
nodes
=
graph
.
Get
<
GraphvizNodes
>
(
kGraphviz
);
sout
<<
"digraph G {
\n
"
;
for
(
auto
&
var
:
FilterByNodeWrapper
<
GraphvizVar
>
(
nodes
))
{
sout
<<
*
var
;
}
for
(
auto
&
op
:
FilterByNodeWrapper
<
GraphvizOp
>
(
nodes
))
{
op
->
AddEdge
([
&
vars
](
ir
::
Node
*
var
)
{
return
vars
.
at
(
var
);
});
sout
<<
*
op
;
}
sout
<<
"}
\n
"
;
}
std
::
unique_ptr
<
ir
::
Graph
>
SSAGraphPrintPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
printer_
.
reset
(
new
SSAGraphPrinterImpl
());
std
::
unique_ptr
<
std
::
ostream
>
fout
(
new
std
::
ofstream
(
Get
<
std
::
string
>
(
kGraphvizPath
)));
PADDLE_ENFORCE
(
fout
->
good
()
==
true
,
"Failed to open file."
);
printer_
->
Print
(
*
graph
,
*
fout
);
return
graph
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
graph_print_pass
,
paddle
::
framework
::
details
::
SSAGraphPrintPass
)
.
RequirePassAttr
(
paddle
::
framework
::
details
::
kGraphvizPath
);
paddle/fluid/framework/details/graph_print_pass.h
0 → 100644
浏览文件 @
2739096e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <fstream>
#include <memory>
#include <unordered_map>
#include "paddle/fluid/framework/details/multi_devices_helper.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
constexpr
char
kGraphvizPath
[]
=
"debug_graphviz_path"
;
constexpr
char
kGraphviz
[]
=
"graphviz"
;
class
GraphvizNode
{
public:
GraphvizNode
(
ir
::
Node
*
n
,
const
int
&
i
)
:
node_
(
n
),
id_
(
i
)
{}
virtual
~
GraphvizNode
()
=
default
;
protected:
ir
::
Node
*
node_
;
int
id_
;
};
class
GraphvizNode
;
typedef
std
::
unordered_set
<
std
::
unique_ptr
<
GraphvizNode
>>
GraphvizNodes
;
class
SSAGraphPrinter
{
public:
virtual
~
SSAGraphPrinter
()
{}
virtual
void
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
=
0
;
};
class
SSAGraphPrinterImpl
:
public
SSAGraphPrinter
{
public:
void
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
override
;
private:
std
::
unordered_map
<
ir
::
Node
*
,
int
>
ToGraphvizNode
(
const
ir
::
Graph
&
graph
)
const
;
};
class
SSAGraphPrintPass
:
public
ir
::
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
private:
mutable
std
::
unique_ptr
<
SSAGraphPrinter
>
printer_
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/graph_print_pass_test.cc
0 → 100644
浏览文件 @
2739096e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/graph_print_pass.h"
#include "paddle/fluid/framework/details/graph_test_base.h"
REGISTER_OPERATOR
(
sum
,
paddle
::
framework
::
DummyOp
,
paddle
::
framework
::
SumOpMaker
);
REGISTER_OPERATOR
(
split
,
paddle
::
framework
::
DummyOp
,
paddle
::
framework
::
SplitOpMaker
);
/*
a @ b
c
d @ e
*/
using
paddle
::
framework
::
ProgramDesc
;
using
paddle
::
framework
::
proto
::
VarType
;
inline
static
ProgramDesc
FillProgramDesc
()
{
ProgramDesc
prog
;
prog
.
MutableBlock
(
0
)
->
Var
(
"a"
)
->
SetType
(
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"b"
)
->
SetType
(
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"c"
)
->
SetType
(
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"d"
)
->
SetType
(
VarType
::
LOD_TENSOR
);
prog
.
MutableBlock
(
0
)
->
Var
(
"e"
)
->
SetType
(
VarType
::
LOD_TENSOR
);
{
auto
*
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"sum"
);
op
->
SetInput
(
"X"
,
{
"a"
,
"b"
});
op
->
SetOutput
(
"Out"
,
{
"c"
});
}
{
auto
*
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"split"
);
op
->
SetInput
(
"X"
,
{
"c"
});
op
->
SetOutput
(
"Out"
,
{
"d"
,
"e"
});
}
{
auto
*
op
=
prog
.
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
"sum"
);
op
->
SetInput
(
"X"
,
{
"d"
,
"e"
});
op
->
SetOutput
(
"Out"
,
{
"d"
});
}
return
prog
;
}
namespace
paddle
{
namespace
framework
{
namespace
details
{
TEST
(
SSAGraphPrinter
,
Normal
)
{
auto
program
=
FillProgramDesc
();
std
::
unique_ptr
<
ir
::
Graph
>
graph
(
new
ir
::
Graph
(
program
));
graph
->
Set
<
GraphvizNodes
>
(
kGraphviz
,
new
GraphvizNodes
);
std
::
unique_ptr
<
SSAGraphPrinter
>
printer
(
new
SSAGraphPrinterImpl
);
// redirect debug graph to a file.
constexpr
char
graph_path
[]
=
"graph_print_pass.txt"
;
std
::
unique_ptr
<
std
::
ostream
>
fout
(
new
std
::
ofstream
(
graph_path
));
PADDLE_ENFORCE
(
fout
->
good
());
printer
->
Print
(
*
graph
,
*
fout
);
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/graph_test_base.h
0 → 100644
浏览文件 @
2739096e
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <iostream>
#include <iterator>
#include <string>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
namespace
paddle
{
namespace
framework
{
class
DummyOp
:
public
OperatorBase
{
public:
DummyOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
private:
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{}
};
class
SumOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
""
).
AsDuplicable
();
AddOutput
(
"Out"
,
""
);
AddComment
(
""
);
}
};
class
AssignOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
""
).
AsDuplicable
();
AddOutput
(
"Out"
,
""
);
AddComment
(
""
);
}
};
class
SplitOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
""
);
AddOutput
(
"Out"
,
""
).
AsDuplicable
();
AddComment
(
""
);
}
};
class
DummyVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
auto
type
=
block
->
Var
(
inputs
.
front
())
->
GetType
();
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetType
(
type
);
}
};
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/inplace_op_pass.cc
浏览文件 @
2739096e
...
...
@@ -21,6 +21,7 @@
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/details/graph_print_pass.h"
#include "paddle/fluid/framework/details/memory_optimize_pass.h"
#include "paddle/fluid/framework/op_info.h"
...
...
@@ -76,42 +77,92 @@ namespace paddle {
namespace
framework
{
namespace
details
{
static
inline
ir
::
Node
*
GetNextInplacedOpOutput
(
ir
::
Node
*
var
)
{
static
inline
std
::
string
NodeDebugString
(
ir
::
Node
*
var
)
{
std
::
ostringstream
os
;
if
(
var
->
IsCtrlVar
())
{
os
<<
"kControlDepVarName"
<<
" "
;
}
else
if
(
var
->
IsOp
())
{
os
<<
"kOperation"
<<
" "
<<
var
->
Name
();
PADDLE_ENFORCE
(
var
->
Op
()
!=
nullptr
&&
var
->
Op
()
->
Type
()
==
var
->
Name
());
}
else
if
(
var
->
IsVar
())
{
os
<<
"kVariable"
<<
" "
<<
var
->
Name
();
PADDLE_ENFORCE
(
var
->
Var
()
!=
nullptr
&&
var
->
Var
()
->
Name
()
==
var
->
Name
());
}
else
{
PADDLE_THROW
(
"Unknown node type."
);
}
return
os
.
str
();
}
static
inline
std
::
string
OpDebugString
(
ir
::
Node
*
var
)
{
ir
::
Node
*
op
=
var
;
if
(
var
->
IsVar
())
op
=
var
->
inputs
.
at
(
0
);
std
::
stringstream
os
;
os
<<
op
->
Name
()
<<
" : "
;
os
<<
"Input "
;
VLOG
(
3
)
<<
op
->
Name
();
for
(
auto
*
var
:
op
->
inputs
)
{
if
(
var
->
IsVar
()
&&
!
var
->
IsCtrlVar
())
{
PADDLE_ENFORCE
(
var
->
Var
()
!=
nullptr
&&
var
->
Var
()
->
Name
()
==
var
->
Name
(),
"unmatched desc and var"
);
// os << var << ":" << var->Name() << " ";
os
<<
var
->
Name
()
<<
" "
;
}
}
os
<<
"Output "
;
VLOG
(
3
)
<<
op
->
Name
();
for
(
auto
*
var
:
op
->
outputs
)
{
VLOG
(
3
)
<<
var
;
VLOG
(
3
)
<<
var
->
Name
();
if
(
!
var
->
IsVar
())
{
VLOG
(
3
)
<<
"error"
;
}
// VLOG(3) << var->Var()->Name();
if
(
var
->
IsVar
()
&&
!
var
->
IsCtrlVar
())
{
PADDLE_ENFORCE
(
var
->
Var
()
!=
nullptr
&&
var
->
Var
()
->
Name
()
==
var
->
Name
(),
"unmatched desc and var"
);
// os << var << ":" << var->Name() << " ";
os
<<
var
->
Name
()
<<
" "
;
}
if
(
var
->
Name
()
==
"fc_10.tmp_0"
)
{
VLOG
(
3
)
<<
NodeDebugString
(
var
);
}
}
return
os
.
str
();
}
static
inline
ir
::
Node
*
GetNextCascadeInplacedVar
(
ir
::
Node
*
var
)
{
// if next op is inplaced, then return the output var
// otherwise return nullptr
PADDLE_ENFORCE
(
var
&&
var
->
IsVar
()
&&
!
var
->
IsCtrlVar
());
ir
::
Node
*
inplaced_var
=
nullptr
;
// only has one output op can be inplaced
if
(
var
->
outputs
.
size
()
==
1
&&
var
->
outputs
[
0
]
->
IsOp
())
{
auto
*
op
=
var
->
outputs
[
0
];
for
(
auto
*
out_var
:
op
->
outputs
)
{
if
(
!
out_var
->
IsVar
()
||
out_var
->
IsCtrlVar
()
||
out_var
->
Var
()
==
nullptr
)
continue
;
if
(
out_var
->
Name
()
==
var
->
Name
())
{
inplaced_var
=
out_var
;
break
;
for
(
auto
*
next_op
:
var
->
outputs
)
{
for
(
auto
*
output
:
next_op
->
outputs
)
{
if
(
output
->
IsVar
()
&&
!
output
->
IsCtrlVar
()
&&
output
->
Name
()
==
var
->
Name
())
{
inplaced_var
=
output
;
}
}
}
return
inplaced_var
;
}
static
inline
ir
::
Node
*
GetPrev
InplacedOpInput
(
ir
::
Node
*
var
)
{
static
inline
ir
::
Node
*
GetPrev
CascadeInplacedVar
(
ir
::
Node
*
var
)
{
PADDLE_ENFORCE
(
var
&&
var
->
IsVar
()
&&
!
var
->
IsCtrlVar
());
ir
::
Node
*
inplaced_var
=
nullptr
;
if
(
var
->
inputs
.
size
()
==
1
&&
var
->
inputs
[
0
]
->
IsOp
())
{
auto
*
op
=
var
->
inputs
[
0
];
for
(
auto
*
in_var
:
op
->
inputs
)
{
if
(
!
in_var
->
IsVar
()
||
in_var
->
IsCtrlVar
()
||
in_var
->
Var
()
==
nullptr
)
continue
;
if
(
in_var
->
Name
()
==
var
->
Name
())
{
inplaced_var
=
in_var
;
break
;
}
}
}
return
inplaced_var
;
auto
*
prev_op
=
var
->
inputs
.
at
(
0
);
auto
input_it
=
std
::
find_if
(
prev_op
->
inputs
.
begin
(),
prev_op
->
inputs
.
end
(),
[
&
](
ir
::
Node
*
node
)
{
if
(
node
->
IsVar
()
&&
!
node
->
IsCtrlVar
()
&&
node
->
Name
()
==
var
->
Name
())
{
return
true
;
}
else
{
return
false
;
}
});
return
input_it
==
prev_op
->
inputs
.
end
()
?
nullptr
:
*
input_it
;
}
template
<
typename
Container
>
...
...
@@ -166,12 +217,22 @@ std::unique_ptr<ir::Graph> InplacePass::ApplyImpl(
view_
.
Build
(
graph
.
get
());
InitSSAGraphNodes
();
std
::
unique_ptr
<
SSAGraphPrinter
>
printer
(
new
SSAGraphPrinterImpl
);
for
(
auto
*
op
:
view_
.
AllOps
())
{
if
(
FLAGS_enable_inplace_whitelist
&&
!
whitelist_
.
count
(
op
->
Name
()))
continue
;
TryInplaceOpInputOutput
(
op
,
graph
.
get
());
}
graph
->
ResolveHazard
(
var_nodes_
);
constexpr
char
graph_path
[]
=
"ir_graph_inplaced.txt"
;
std
::
unique_ptr
<
std
::
ostream
>
fout
(
new
std
::
ofstream
(
graph_path
));
PADDLE_ENFORCE
(
fout
->
good
());
printer
->
Print
(
*
graph
,
*
fout
);
// for(auto* op : view_.AllOps()) {
// VLOG(3) << OpDebugString(op);
// }
return
graph
;
}
...
...
@@ -179,7 +240,7 @@ void InplacePass::InplaceModifyDesc(const std::string& var,
const
std
::
string
&
cache_var
,
const
size_t
&
idx
)
const
{
for
(
size_t
i
=
idx
;
i
<
view_
.
AllOps
().
size
();
++
i
)
{
auto
*
op
=
view_
.
AllOps
()[
i
];
ir
::
Node
*
op
=
view_
.
AllOps
()[
i
];
PADDLE_ENFORCE
(
op
->
IsOp
()
&&
op
->
Op
());
auto
*
op_desc
=
op
->
Op
();
op_desc
->
RenameInput
(
var
,
cache_var
);
...
...
@@ -203,14 +264,28 @@ void InplacePass::InplaceModifyVar(const std::string& var,
// redirect the input to the latest version of cache_var
for
(
auto
*
node
:
op
->
inputs
)
{
if
(
node
->
Name
()
==
var
)
{
ir
::
Node
*
cache_node
=
var_nodes_
[
cache_var
].
back
();
ir
::
Node
*
cache_node
=
graph
->
CreateVarNode
(
var_desc
.
get
());
var_nodes_
[
cache_var
].
emplace_back
(
cache_node
);
// swap node to cache_node
cache_node
->
outputs
.
insert
(
cache_node
->
outputs
.
end
(),
node
->
outputs
.
begin
(),
node
->
outputs
.
end
());
PADDLE_ENFORCE
(
node
->
inputs
.
size
()
==
1
&&
node
->
inputs
[
0
]
->
IsOp
());
auto
*
prev_op
=
node
->
inputs
[
0
];
std
::
replace
(
prev_op
->
outputs
.
begin
(),
prev_op
->
outputs
.
end
(),
node
,
cache_node
);
cache_node
->
inputs
.
emplace_back
(
prev_op
);
for
(
auto
*
next_op
:
node
->
outputs
)
{
std
::
replace
(
next_op
->
inputs
.
begin
(),
next_op
->
inputs
.
end
(),
node
,
cache_node
);
}
// release unused var in graph. Because python side memory optimize
// may reused the var in same name, so we only clear the var node
// after current inplaced index.
graph
->
RemoveNode
(
node
);
auto
&
nodes
=
var_nodes_
.
at
(
var
);
nodes
.
erase
(
std
::
remove
(
nodes
.
begin
(),
nodes
.
end
(),
node
),
nodes
.
end
());
}
}
...
...
@@ -220,7 +295,6 @@ void InplacePass::InplaceModifyVar(const std::string& var,
if
(
node
->
Name
()
==
var
)
{
ir
::
Node
*
cache_node
=
graph
->
CreateVarNode
(
var_desc
.
get
());
var_nodes_
[
cache_var
].
emplace_back
(
cache_node
);
// swap node to cache node
cache_node
->
outputs
.
insert
(
cache_node
->
outputs
.
end
(),
node
->
outputs
.
begin
(),
node
->
outputs
.
end
());
...
...
@@ -230,15 +304,14 @@ void InplacePass::InplaceModifyVar(const std::string& var,
std
::
replace
(
next_op
->
inputs
.
begin
(),
next_op
->
inputs
.
end
(),
node
,
cache_node
);
}
// release unsed var in graph
graph
->
RemoveNode
(
node
);
auto
&
nodes
=
var_nodes_
.
at
(
var
);
nodes
.
erase
(
std
::
remove
(
nodes
.
begin
(),
nodes
.
end
(),
node
),
nodes
.
end
());
}
}
}
// release node of unused var in graph
for
(
auto
*
node
:
var_nodes_
[
var
])
{
graph
->
RemoveNode
(
node
);
}
var_nodes_
.
at
(
var
).
clear
();
}
void
InplacePass
::
TryInplaceOpInputOutput
(
ir
::
Node
*
op
,
...
...
@@ -260,6 +333,7 @@ void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
auto
&
all_ops
=
view_
.
AllOps
();
auto
cursor
=
std
::
find
(
all_ops
.
begin
(),
all_ops
.
end
(),
op
);
size_t
idx
=
std
::
distance
(
all_ops
.
begin
(),
cursor
);
VLOG
(
3
)
<<
op
->
Name
()
<<
idx
;
for
(
auto
&
pair
:
in_to_outs
)
{
auto
&
in_var_name
=
pair
.
first
;
...
...
@@ -286,6 +360,7 @@ void InplacePass::TryInplaceOpInputOutput(ir::Node* op,
}
VLOG
(
3
)
<<
string
::
Sprintf
(
"!!! %s, %s => %s inplaced"
,
op
->
Name
(),
out_var_name
,
in_var_name
);
// VLOG(3) << "Out " << OpDebugString(op);
InplaceModifyDesc
(
out_var_name
,
in_var_name
,
idx
);
InplaceModifyVar
(
out_var_name
,
in_var_name
,
idx
,
graph
);
}
...
...
@@ -319,7 +394,16 @@ ir::Node* GraphView::GetNodeByName(const std::string& name,
}
std
::
vector
<
ir
::
Node
*>
GraphView
::
PendingOpsOnVar
(
ir
::
Node
*
node
)
{
return
node
->
outputs
;
// get the pending ops depends on same var node.
// because node also maybe a inplaced variable, so need to backtrack all the
// previous inplaced vars.
std
::
vector
<
ir
::
Node
*>
pending_ops
;
ir
::
Node
*
p
=
node
;
while
(
p
!=
nullptr
)
{
pending_ops
.
insert
(
pending_ops
.
end
(),
p
->
outputs
.
begin
(),
p
->
outputs
.
end
());
p
=
GetPrevCascadeInplacedVar
(
p
);
}
return
pending_ops
;
}
void
GraphView
::
Build
(
ir
::
Graph
*
g
)
{
ops_
=
SortOpLikeDescOrder
(
*
g
);
}
...
...
@@ -354,14 +438,14 @@ bool GraphView::OutConnectInputByCtrlVar(ir::Node* in_var, ir::Node* out_var) {
// get the ops with same output name
while
(
out
!=
nullptr
)
{
out_var_set
.
emplace
(
out
);
out
=
GetNext
InplacedOpOutput
(
out
);
out
=
GetNext
CascadeInplacedVar
(
out
);
}
// get ops with same input name
ir
::
Node
*
in
=
in_var
;
while
(
in
!=
nullptr
)
{
in_var_set
.
emplace
(
in
);
in
=
GetPrev
InplacedOpInput
(
in
);
in
=
GetPrev
CascadeInplacedVar
(
in
);
}
// find if there is path with control dep var connect the in_var_set and
// out_var_set
...
...
paddle/fluid/framework/details/memory_optimize_pass_test.cc
浏览文件 @
2739096e
...
...
@@ -18,57 +18,13 @@
#include <iterator>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/details/graph_test_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
namespace
paddle
{
namespace
framework
{
class
DummyOp
:
public
OperatorBase
{
public:
DummyOp
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
private:
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{}
};
class
SumOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
""
).
AsDuplicable
();
AddOutput
(
"Out"
,
""
);
AddComment
(
""
);
}
};
class
AssignOpMaker
:
public
OpProtoAndCheckerMaker
{
public:
void
Make
()
{
AddInput
(
"X"
,
""
).
AsDuplicable
();
AddOutput
(
"Out"
,
""
);
AddComment
(
""
);
}
};
class
DummyVarTypeInference
:
public
VarTypeInference
{
public:
void
operator
()(
const
OpDesc
&
op_desc
,
BlockDesc
*
block
)
const
override
{
auto
&
inputs
=
op_desc
.
Input
(
"X"
);
auto
type
=
block
->
Var
(
inputs
.
front
())
->
GetType
();
auto
out_var_name
=
op_desc
.
Output
(
"Out"
).
front
();
block
->
Var
(
out_var_name
)
->
SetType
(
type
);
}
};
}
// namespace framework
}
// namespace paddle
REGISTER_OPERATOR
(
sum
,
paddle
::
framework
::
DummyOp
,
paddle
::
framework
::
SumOpMaker
,
paddle
::
framework
::
DummyVarTypeInference
);
...
...
@@ -141,15 +97,6 @@ inline static ProgramDesc FillProgramDesc() {
return
prog
;
}
template
<
typename
Container
>
inline
static
std
::
string
DebugString
(
const
Container
&
c
)
{
std
::
stringstream
ss
;
for
(
auto
&
item
:
c
)
{
ss
<<
item
<<
" "
;
}
return
ss
.
str
();
}
TEST
(
CFGGraph
,
IRGraph
)
{
// prepare ir graph
auto
prog
=
FillProgramDesc
();
...
...
paddle/fluid/framework/details/multi_devices_graph_print_pass.h
浏览文件 @
2739096e
...
...
@@ -19,20 +19,12 @@
#include <iosfwd>
#include <ostream>
#include <string>
#include "paddle/fluid/framework/details/
multi_devices_helper
.h"
#include "paddle/fluid/framework/details/
graph_print_pass
.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
constexpr
char
kGraphvizPath
[]
=
"debug_graphviz_path"
;
class
SSAGraphPrinter
{
public:
virtual
~
SSAGraphPrinter
()
{}
virtual
void
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
=
0
;
};
class
GraphvizSSAGraphPrinter
:
public
SSAGraphPrinter
{
public:
void
Print
(
const
ir
::
Graph
&
graph
,
std
::
ostream
&
sout
)
const
override
;
...
...
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
2739096e
...
...
@@ -40,7 +40,7 @@ class TestParallelExecutorBase(unittest.TestCase):
seed
=
None
,
use_parallel_executor
=
True
,
use_reduce
=
False
,
use_ir_memory_optimize
=
Fals
e
,
use_ir_memory_optimize
=
Tru
e
,
enable_inplace
=
True
,
fuse_elewise_add_act_ops
=
False
,
fuse_relu_depthwise_conv
=
False
,
...
...
@@ -61,64 +61,66 @@ class TestParallelExecutorBase(unittest.TestCase):
main
.
random_seed
=
seed
loss
=
method
(
use_feed
=
feed_dict
is
not
None
)
if
optimizer
:
optimizer
().
minimize
(
loss
)
if
memory_opt
:
fluid
.
memory_optimize
(
main
)
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
allow_op_delay
=
allow_op_delay
if
use_fast_executor
:
exec_strategy
.
use_experimental_executor
=
True
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
\
if
use_reduce
else
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
build_strategy
.
fuse_elewise_add_act_ops
=
fuse_elewise_add_act_ops
build_strategy
.
fuse_relu_depthwise_conv
=
fuse_relu_depthwise_conv
build_strategy
.
memory_optimize
=
use_ir_memory_optimize
build_strategy
.
enable_inplace
=
enable_inplace
build_strategy
.
enable_sequential_execution
=
enable_sequential_execution
if
use_cuda
and
core
.
is_compiled_with_cuda
():
build_strategy
.
remove_unnecessary_lock
=
True
if
use_parallel_executor
:
binary
=
compiler
.
CompiledProgram
(
main
).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
else
:
binary
=
compiler
.
CompiledProgram
(
main
)
if
batch_size
is
not
None
:
batch_size
*=
fluid
.
core
.
get_cuda_device_count
(
)
if
use_cuda
else
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
begin
=
time
.
time
()
first_loss
,
=
run_executor
(
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
for
i
in
range
(
iter
):
run_executor
(
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[])
last_loss
,
=
run_executor
(
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
end
=
time
.
time
()
if
batch_size
is
not
None
:
print
(
"%.4f Instance per second"
%
(
(
batch_size
*
iter
+
2
)
/
(
end
-
begin
)))
avg_last_loss_val
=
np
.
array
(
last_loss
).
mean
()
avg_first_loss_val
=
np
.
array
(
first_loss
).
mean
()
if
math
.
isnan
(
float
(
avg_last_loss_val
))
or
math
.
isnan
(
float
(
avg_first_loss_val
)):
sys
.
exit
(
"got NaN loss, training failed."
)
print
(
first_loss
,
last_loss
)
# self.assertGreater(first_loss[0], last_loss[0])
return
first_loss
,
last_loss
with
open
(
"program_model.txt"
,
"w"
)
as
f
:
f
.
write
(
str
(
main
))
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
exec_strategy
=
fluid
.
ExecutionStrategy
()
exec_strategy
.
allow_op_delay
=
allow_op_delay
if
use_fast_executor
:
exec_strategy
.
use_experimental_executor
=
True
build_strategy
=
fluid
.
BuildStrategy
()
build_strategy
.
reduce_strategy
=
fluid
.
BuildStrategy
.
ReduceStrategy
.
Reduce
\
if
use_reduce
else
fluid
.
BuildStrategy
.
ReduceStrategy
.
AllReduce
build_strategy
.
fuse_elewise_add_act_ops
=
fuse_elewise_add_act_ops
build_strategy
.
fuse_relu_depthwise_conv
=
fuse_relu_depthwise_conv
build_strategy
.
memory_optimize
=
use_ir_memory_optimize
build_strategy
.
enable_inplace
=
enable_inplace
build_strategy
.
enable_sequential_execution
=
enable_sequential_execution
build_strategy
.
debug_graphviz_path
=
"debug_ir_graph_"
if
use_cuda
and
core
.
is_compiled_with_cuda
():
build_strategy
.
remove_unnecessary_lock
=
True
if
use_parallel_executor
:
binary
=
compiler
.
CompiledProgram
(
main
).
with_data_parallel
(
loss_name
=
loss
.
name
,
build_strategy
=
build_strategy
,
exec_strategy
=
exec_strategy
)
else
:
binary
=
compiler
.
CompiledProgram
(
main
)
if
batch_size
is
not
None
:
batch_size
*=
fluid
.
core
.
get_cuda_device_count
(
)
if
use_cuda
else
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
begin
=
time
.
time
()
first_loss
,
=
run_executor
(
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
for
i
in
range
(
iter
):
run_executor
(
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[])
last_loss
,
=
run_executor
(
exe
=
exe
,
binary
=
binary
,
feed
=
feed_dict
,
fetch_list
=
[
loss
.
name
])
end
=
time
.
time
()
if
batch_size
is
not
None
:
print
(
"%.4f Instance per second"
%
(
(
batch_size
*
iter
+
2
)
/
(
end
-
begin
)))
avg_last_loss_val
=
np
.
array
(
last_loss
).
mean
()
avg_first_loss_val
=
np
.
array
(
first_loss
).
mean
()
if
math
.
isnan
(
float
(
avg_last_loss_val
))
or
math
.
isnan
(
float
(
avg_first_loss_val
)):
sys
.
exit
(
"got NaN loss, training failed."
)
print
(
first_loss
,
last_loss
)
# self.assertGreater(first_loss[0], last_loss[0])
return
first_loss
,
last_loss
python/paddle/fluid/tests/unittests/test_ir_inplace_pass.py
0 → 100644
浏览文件 @
2739096e
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
os
import
unittest
import
numpy
as
np
import
paddle.fluid
as
fluid
from
parallel_executor_test_base
import
TestParallelExecutorBase
def
fc_with_batchnorm
(
use_feed
):
img
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
784
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
hidden
=
img
for
_
in
range
(
3
):
hidden
=
fluid
.
layers
.
fc
(
hidden
,
size
=
200
,
act
=
'tanh'
,
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
value
=
1.0
)))
hidden
=
fluid
.
layers
.
batch_norm
(
input
=
hidden
)
prediction
=
fluid
.
layers
.
fc
(
hidden
,
size
=
10
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
return
loss
class
TestIrInplace
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
def
_fc_with_batchnorm
(
self
,
ir_memory_optimize
,
enable_inplace
):
np
.
random
.
seed
(
5
)
img
=
np
.
random
.
random
(
size
=
[
32
,
784
]).
astype
(
np
.
float32
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
self
.
check_network_convergence
(
fc_with_batchnorm
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_cuda
=
True
,
memory_opt
=
False
,
# inplace is conflict with memory opt
use_ir_memory_optimize
=
ir_memory_optimize
,
enable_inplace
=
enable_inplace
)
def
test_fc_with_batchnorm
(
self
,
delta
=
1e-3
):
loss00
=
self
.
_fc_with_batchnorm
(
False
,
False
)
loss10
=
self
.
_fc_with_batchnorm
(
True
,
False
)
loss01
=
self
.
_fc_with_batchnorm
(
False
,
True
)
loss11
=
self
.
_fc_with_batchnorm
(
True
,
True
)
self
.
assertAlmostEqual
(
loss00
,
loss10
,
delta
=
delta
)
self
.
assertAlmostEqual
(
loss00
,
loss01
,
delta
=
delta
)
self
.
assertAlmostEqual
(
loss00
,
loss11
,
delta
=
delta
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录