Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2710584f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2710584f
编写于
8月 23, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix above comments
上级
f715c740
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
130 addition
and
255 deletion
+130
-255
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+65
-147
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+20
-56
python/paddle/trainer_config_helpers/tests/configs/conv3d_deconv3d_test_config.py
...nfig_helpers/tests/configs/conv3d_deconv3d_test_config.py
+45
-52
未找到文件。
python/paddle/trainer/config_parser.py
浏览文件 @
2710584f
...
@@ -901,20 +901,14 @@ class Conv3D(Cfg):
...
@@ -901,20 +901,14 @@ class Conv3D(Cfg):
padding_z
=
None
,
padding_z
=
None
,
stride_z
=
None
):
stride_z
=
None
):
self
.
add_keys
(
locals
())
self
.
add_keys
(
locals
())
if
filter_size_y
is
None
:
self
.
filter_size_y
=
filter_size_y
if
filter_size_y
else
filter_size
self
.
filter_size_y
=
filter_size
self
.
filter_size_z
=
filter_size_z
if
filter_size_z
else
filter_size
if
padding_y
is
None
:
self
.
padding_y
=
padding_y
if
padding_y
else
padding
self
.
padding_y
=
padding
self
.
padding_z
=
padding_z
if
padding_z
else
padding
if
stride_y
is
None
:
self
.
stride_y
=
stride_y
if
stride_y
else
stride
self
.
stride_y
=
stride
self
.
stride_z
=
stride_z
if
stride_z
else
stride
if
output_x
is
not
None
:
if
output_x
is
not
None
:
config_assert
(
output_x
<=
0
)
config_assert
(
output_x
<=
0
)
if
filter_size_z
is
None
:
self
.
filter_size_z
=
filter_size
if
padding_z
is
None
:
self
.
padding_z
=
padding
if
stride_z
is
None
:
self
.
stride_z
=
stride
@
config_class
@
config_class
...
@@ -1206,10 +1200,10 @@ def get_img_size(input_layer_name, channels):
...
@@ -1206,10 +1200,10 @@ def get_img_size(input_layer_name, channels):
def
get_img3d_size
(
input_layer_name
,
channels
):
def
get_img3d_size
(
input_layer_name
,
channels
):
input
=
g_layer_map
[
input_layer_name
]
input
=
g_layer_map
[
input_layer_name
]
img_pixels
=
input
.
size
/
channels
img_pixels
=
input
.
size
/
channels
img_size
=
input
.
width
if
input
.
width
>
0
else
int
(
img_pixels
**
0.5
)
img_size
=
input
.
width
img_size_y
=
input
.
height
if
input
.
height
>
0
else
int
(
img_pixels
/
img_size_y
=
input
.
height
img_size
)
img_size_z
=
input
.
depth
img_size_z
=
input
.
depth
if
input
.
depth
>
1
else
1
config_assert
(
config_assert
(
img_size
*
img_size_y
*
img_size_z
==
img_pixels
,
img_size
*
img_size_y
*
img_size_z
==
img_pixels
,
"Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
"Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
...
@@ -2000,8 +1994,10 @@ class ConvLayer(ConvLayerBase):
...
@@ -2000,8 +1994,10 @@ class ConvLayer(ConvLayerBase):
layer_type
=
'cudnn_conv'
layer_type
=
'cudnn_conv'
@
config_layer
(
'conv_3d'
)
@
config_layer
(
'convt'
)
class
Conv3DLayerBase
(
LayerBase
):
class
ConvTransLayerBase
(
LayerBase
):
layer_type
=
'convt'
def
__init__
(
self
,
def
__init__
(
self
,
name
,
name
,
inputs
=
[],
inputs
=
[],
...
@@ -2009,7 +2005,7 @@ class Conv3DLayerBase(LayerBase):
...
@@ -2009,7 +2005,7 @@ class Conv3DLayerBase(LayerBase):
num_filters
=
None
,
num_filters
=
None
,
shared_biases
=
False
,
shared_biases
=
False
,
**
xargs
):
**
xargs
):
super
(
Conv
3D
LayerBase
,
self
).
__init__
(
super
(
Conv
Trans
LayerBase
,
self
).
__init__
(
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
if
num_filters
is
not
None
:
if
num_filters
is
not
None
:
...
@@ -2018,12 +2014,17 @@ class Conv3DLayerBase(LayerBase):
...
@@ -2018,12 +2014,17 @@ class Conv3DLayerBase(LayerBase):
use_gpu
=
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
))
use_gpu
=
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
))
parallel_nn
=
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
))
parallel_nn
=
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
))
# Automatically select cudnn_type for GPU and exconv for CPU
# Automatically select cudnn_type for GPU and exconv
t
for CPU
# if set type=
conv
, but still reserve the way user specify
# if set type=
exconvt
, but still reserve the way user specify
# exconv
or cudnn_conv
manually.
# exconv
t or cudnn_convt
manually.
if
self
.
layer_type
==
"cudnn_conv
3d
"
:
if
self
.
layer_type
==
"cudnn_conv
t
"
:
config_assert
(
use_gpu
,
"cudnn_conv
3d
only support GPU"
)
config_assert
(
use_gpu
,
"cudnn_conv
t
only support GPU"
)
if
(
use_gpu
==
1
and
self
.
layer_type
!=
"exconvt"
and
(
parallel_nn
==
0
or
self
.
config
.
device
>
-
1
)):
self
.
layer_type
=
"cudnn_convt"
else
:
self
.
layer_type
=
"exconvt"
# need to specify layer in config
# need to specify layer in config
self
.
config
.
type
=
self
.
layer_type
self
.
config
.
type
=
self
.
layer_type
...
@@ -2032,15 +2033,17 @@ class Conv3DLayerBase(LayerBase):
...
@@ -2032,15 +2033,17 @@ class Conv3DLayerBase(LayerBase):
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
input_layer
=
self
.
get_input_layer
(
input_index
)
parse_conv
(
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
conv_conf
,
num_filters
,
trans
=
True
)
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
parse_conv3d
(
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
conv_conf
,
num_filters
)
# for z-axis pad:0, strid:1, filter_size:1, img_size:1
psize
=
self
.
calc_parameter_size
(
conv_conf
)
psize
=
self
.
calc_parameter_size
(
conv_conf
)
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
set_cnn_layer
(
name
,
conv_conf
.
output_z
,
conv_conf
.
output_y
,
self
.
set_cnn_layer
(
name
,
conv_conf
.
img_size_y
,
conv_conf
.
img_size
,
conv_conf
.
output_x
,
self
.
config
.
num_filters
)
self
.
config
.
num_filters
)
psize
=
self
.
config
.
size
psize
=
self
.
config
.
size
if
shared_biases
:
if
shared_biases
:
...
@@ -2048,62 +2051,42 @@ class Conv3DLayerBase(LayerBase):
...
@@ -2048,62 +2051,42 @@ class Conv3DLayerBase(LayerBase):
self
.
create_bias_parameter
(
bias
,
psize
,
[
psize
,
1
])
self
.
create_bias_parameter
(
bias
,
psize
,
[
psize
,
1
])
def
calc_parameter_size
(
self
,
conv_conf
):
def
calc_parameter_size
(
self
,
conv_conf
):
return
self
.
config
.
num_filters
*
conv_conf
.
filter_channels
\
return
conv_conf
.
channels
*
conv_conf
.
filter_channels
\
*
(
conv_conf
.
filter_size
*
conv_conf
.
filter_size_y
\
*
(
conv_conf
.
filter_size
*
conv_conf
.
filter_size_y
)
*
conv_conf
.
filter_size_z
)
def
set_layer_height_width
(
self
,
depth
,
height
,
width
):
self
.
config
.
depth
=
depth
self
.
config
.
height
=
height
self
.
config
.
width
=
width
def
set_cnn_layer
(
self
,
@
config_layer
(
'exconvt'
)
input_layer_name
,
class
ConvTransLayer
(
ConvTransLayerBase
):
depth
,
layer_type
=
'exconvt'
height
,
width
,
channels
,
is_print
=
True
):
size
=
depth
*
height
*
width
*
channels
self
.
set_layer_size
(
size
)
self
.
set_layer_height_width
(
depth
,
height
,
width
)
if
is_print
:
print
(
"output for %s: c = %d, d = %d, h = %d, w = %d, size = %d"
%
(
input_layer_name
,
channels
,
depth
,
height
,
width
,
size
))
@
config_layer
(
'c
onv3d
'
)
@
config_layer
(
'c
udnn_convt
'
)
class
Conv
3DLayer
(
Conv3D
LayerBase
):
class
Conv
TransLayer
(
ConvTrans
LayerBase
):
layer_type
=
'c
onv3d
'
layer_type
=
'c
udnn_convt
'
@
config_layer
(
'conv
t
_3d'
)
@
config_layer
(
'conv_3d'
)
class
Conv3D
Trans
LayerBase
(
LayerBase
):
class
Conv3DLayerBase
(
LayerBase
):
def
__init__
(
self
,
def
__init__
(
self
,
name
,
name
,
inputs
=
[],
inputs
=
[],
bias
=
True
,
bias
=
True
,
num_filters
=
None
,
num_filters
=
None
,
shared_biases
=
Fals
e
,
shared_biases
=
Tru
e
,
**
xargs
):
**
xargs
):
super
(
Conv3D
Trans
LayerBase
,
self
).
__init__
(
super
(
Conv3DLayerBase
,
self
).
__init__
(
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
if
num_filters
is
not
None
:
if
num_filters
is
not
None
:
self
.
config
.
num_filters
=
num_filters
self
.
config
.
num_filters
=
num_filters
use_gpu
=
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
))
parallel_nn
=
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
))
# Automatically select cudnn_type for GPU and exconv for CPU
# if set type=conv, but still reserve the way user specify
# exconv or cudnn_conv manually.
if
self
.
layer_type
==
"cudnn_deconv3d"
:
config_assert
(
use_gpu
,
"cudnn_conv3d only support GPU"
)
# need to specify layer in config
# need to specify layer in config
self
.
config
.
type
=
self
.
layer_type
self
.
config
.
type
=
self
.
layer_type
trans
=
False
if
self
.
config
.
type
==
"deconv3d"
:
trans
=
True
if
shared_biases
is
not
None
:
if
shared_biases
is
not
None
:
self
.
config
.
shared_biases
=
shared_biases
self
.
config
.
shared_biases
=
shared_biases
...
@@ -2115,12 +2098,17 @@ class Conv3DTransLayerBase(LayerBase):
...
@@ -2115,12 +2098,17 @@ class Conv3DTransLayerBase(LayerBase):
input_layer
.
name
,
input_layer
.
name
,
conv_conf
,
conv_conf
,
num_filters
,
num_filters
,
trans
=
True
trans
=
trans
)
# for z-axis pad:0, strid:1, filter_size:1, img_size:1
)
# for z-axis pad:0, strid:1, filter_size:1, img_size:1
psize
=
self
.
calc_parameter_size
(
conv_conf
)
psize
=
self
.
calc_parameter_size
(
conv_conf
)
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
set_cnn_layer
(
name
,
conv_conf
.
img_size_z
,
conv_conf
.
img_size_y
,
if
trans
:
conv_conf
.
img_size
,
self
.
config
.
num_filters
)
self
.
set_cnn_layer
(
name
,
conv_conf
.
img_size_z
,
conv_conf
.
img_size_y
,
conv_conf
.
img_size
,
self
.
config
.
num_filters
)
else
:
self
.
set_cnn_layer
(
name
,
conv_conf
.
output_z
,
conv_conf
.
output_y
,
conv_conf
.
output_x
,
self
.
config
.
num_filters
)
psize
=
self
.
config
.
size
psize
=
self
.
config
.
size
if
shared_biases
:
if
shared_biases
:
...
@@ -2132,11 +2120,6 @@ class Conv3DTransLayerBase(LayerBase):
...
@@ -2132,11 +2120,6 @@ class Conv3DTransLayerBase(LayerBase):
*
(
conv_conf
.
filter_size
*
conv_conf
.
filter_size_y
\
*
(
conv_conf
.
filter_size
*
conv_conf
.
filter_size_y
\
*
conv_conf
.
filter_size_z
)
*
conv_conf
.
filter_size_z
)
def
set_layer_height_width
(
self
,
depth
,
height
,
width
):
self
.
config
.
depth
=
depth
self
.
config
.
height
=
height
self
.
config
.
width
=
width
def
set_cnn_layer
(
self
,
def
set_cnn_layer
(
self
,
input_layer_name
,
input_layer_name
,
depth
,
depth
,
...
@@ -2146,86 +2129,21 @@ class Conv3DTransLayerBase(LayerBase):
...
@@ -2146,86 +2129,21 @@ class Conv3DTransLayerBase(LayerBase):
is_print
=
True
):
is_print
=
True
):
size
=
depth
*
height
*
width
*
channels
size
=
depth
*
height
*
width
*
channels
self
.
set_layer_size
(
size
)
self
.
set_layer_size
(
size
)
self
.
set_layer_height_width
(
depth
,
height
,
width
)
self
.
set_layer_height_width
(
height
,
width
)
self
.
set_layer_depth
(
depth
)
if
is_print
:
if
is_print
:
print
(
"output for %s: c = %d, d = %d, h = %d, w = %d, size = %d"
%
print
(
"output for %s: c = %d, d = %d, h = %d, w = %d, size = %d"
%
(
input_layer_name
,
channels
,
depth
,
height
,
width
,
size
))
(
input_layer_name
,
channels
,
depth
,
height
,
width
,
size
))
@
config_layer
(
'deconv3d'
)
@
config_layer
(
'conv3d'
)
class
DeConv3DLayer
(
Conv3DTransLayerBase
):
class
Conv3DLayer
(
Conv3DLayerBase
):
layer_type
=
'deconv3d'
layer_type
=
'conv3d'
@
config_layer
(
'convt'
)
class
ConvTransLayerBase
(
LayerBase
):
layer_type
=
'convt'
def
__init__
(
self
,
name
,
inputs
=
[],
bias
=
True
,
num_filters
=
None
,
shared_biases
=
False
,
**
xargs
):
super
(
ConvTransLayerBase
,
self
).
__init__
(
name
,
self
.
layer_type
,
0
,
inputs
=
inputs
,
**
xargs
)
if
num_filters
is
not
None
:
self
.
config
.
num_filters
=
num_filters
use_gpu
=
int
(
g_command_config_args
.
get
(
"use_gpu"
,
0
))
parallel_nn
=
int
(
g_command_config_args
.
get
(
"parallel_nn"
,
0
))
# Automatically select cudnn_type for GPU and exconvt for CPU
# if set type=exconvt, but still reserve the way user specify
# exconvt or cudnn_convt manually.
if
self
.
layer_type
==
"cudnn_convt"
:
config_assert
(
use_gpu
,
"cudnn_convt only support GPU"
)
if
(
use_gpu
==
1
and
self
.
layer_type
!=
"exconvt"
and
(
parallel_nn
==
0
or
self
.
config
.
device
>
-
1
)):
self
.
layer_type
=
"cudnn_convt"
else
:
self
.
layer_type
=
"exconvt"
# need to specify layer in config
self
.
config
.
type
=
self
.
layer_type
if
shared_biases
is
not
None
:
self
.
config
.
shared_biases
=
shared_biases
for
input_index
in
xrange
(
len
(
self
.
inputs
)):
input_layer
=
self
.
get_input_layer
(
input_index
)
parse_conv
(
self
.
inputs
[
input_index
].
conv
,
input_layer
.
name
,
self
.
config
.
inputs
[
input_index
].
conv_conf
,
num_filters
,
trans
=
True
)
conv_conf
=
self
.
config
.
inputs
[
input_index
].
conv_conf
psize
=
self
.
calc_parameter_size
(
conv_conf
)
self
.
create_input_parameter
(
input_index
,
psize
)
self
.
set_cnn_layer
(
name
,
conv_conf
.
img_size_y
,
conv_conf
.
img_size
,
self
.
config
.
num_filters
)
psize
=
self
.
config
.
size
if
shared_biases
:
psize
=
self
.
config
.
num_filters
self
.
create_bias_parameter
(
bias
,
psize
,
[
psize
,
1
])
def
calc_parameter_size
(
self
,
conv_conf
):
return
conv_conf
.
channels
*
conv_conf
.
filter_channels
\
*
(
conv_conf
.
filter_size
*
conv_conf
.
filter_size_y
)
@
config_layer
(
'exconvt'
)
class
ConvTransLayer
(
ConvTransLayerBase
):
layer_type
=
'exconvt'
@
config_layer
(
'
cudnn_convt
'
)
@
config_layer
(
'
deconv3d
'
)
class
Conv
TransLayer
(
ConvTrans
LayerBase
):
class
Conv
3DLayer
(
Conv3D
LayerBase
):
layer_type
=
'
cudnn_convt
'
layer_type
=
'
deconv3d
'
@
config_layer
(
'norm'
)
@
config_layer
(
'norm'
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
2710584f
...
@@ -6161,12 +6161,6 @@ def img_conv3d_layer(input,
...
@@ -6161,12 +6161,6 @@ def img_conv3d_layer(input,
param_attr
=
None
,
param_attr
=
None
,
shared_biases
=
True
,
shared_biases
=
True
,
layer_attr
=
None
,
layer_attr
=
None
,
filter_size_y
=
None
,
stride_y
=
None
,
padding_y
=
None
,
filter_size_z
=
None
,
stride_z
=
None
,
padding_z
=
None
,
trans
=
False
,
trans
=
False
,
layer_type
=
None
):
layer_type
=
None
):
"""
"""
...
@@ -6175,7 +6169,7 @@ def img_conv3d_layer(input,
...
@@ -6175,7 +6169,7 @@ def img_conv3d_layer(input,
.. code-block:: python
.. code-block:: python
conv = img_conv3d_layer(input=data, filter_size=1,
filter_size_y=1,
conv = img_conv3d_layer(input=data, filter_size=1,
num_channels=8,
num_channels=8,
num_filters=16, stride=1,
num_filters=16, stride=1,
bias_attr=False,
bias_attr=False,
...
@@ -6185,13 +6179,8 @@ def img_conv3d_layer(input,
...
@@ -6185,13 +6179,8 @@ def img_conv3d_layer(input,
:type name: basestring
:type name: basestring
:param input: Layer Input.
:param input: Layer Input.
:type input: LayerOutput
:type input: LayerOutput
:param filter_size: The x dimension of a filter kernel. Or input a tuple for
:param filter_size: The x dimension of a filter kernel. Or input a list.
two image dimension.
:type filter_size: int|tuple|list
:type filter_size: int|tuple|list
:param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
currently supports rectangular filters, the filter's
shape will be (filter_size, filter_size_y).
:type filter_size_y: int|None
:param num_filters: Each filter group's number of filter
:param num_filters: Each filter group's number of filter
:param act: Activation type. Default is tanh
:param act: Activation type. Default is tanh
:type act: BaseActivation
:type act: BaseActivation
...
@@ -6200,13 +6189,9 @@ def img_conv3d_layer(input,
...
@@ -6200,13 +6189,9 @@ def img_conv3d_layer(input,
:param stride: The x dimension of the stride. Or input a tuple for two image
:param stride: The x dimension of the stride. Or input a tuple for two image
dimension.
dimension.
:type stride: int|tuple|list
:type stride: int|tuple|list
:param stride_y: The y dimension of the stride.
:type stride_y: int
:param padding: The x dimension of the padding. Or input a tuple for two
:param padding: The x dimension of the padding. Or input a tuple for two
image dimension
image dimension
:type padding: int|tuple|list
:type padding: int|tuple|list
:param padding_y: The y dimension of the padding.
:type padding_y: int
:param bias_attr: Convolution bias attribute. None means default bias.
:param bias_attr: Convolution bias attribute. None means default bias.
False means no bias.
False means no bias.
:type bias_attr: ParameterAttribute|False
:type bias_attr: ParameterAttribute|False
...
@@ -6233,47 +6218,26 @@ def img_conv3d_layer(input,
...
@@ -6233,47 +6218,26 @@ def img_conv3d_layer(input,
assert
input
.
num_filters
is
not
None
assert
input
.
num_filters
is
not
None
num_channels
=
input
.
num_filters
num_channels
=
input
.
num_filters
if
filter_size_y
is
None
:
if
isinstance
(
filter_size
,
collections
.
Sequence
):
if
isinstance
(
filter_size
,
collections
.
Sequence
):
assert
len
(
filter_size
)
==
3
assert
len
(
filter_size
)
==
2
filter_size
,
filter_size_y
,
filter_size_z
=
filter_size
filter_size
,
filter_size_y
=
filter_size
else
:
else
:
filter_size_y
=
filter_size
filter_size_y
=
filter_size
filter_size_z
=
filter_size
if
filter_size_z
is
None
:
if
isinstance
(
filter_size
,
collections
.
Sequence
):
assert
len
(
filter_size
)
==
2
filter_size
,
filter_size_z
=
filter_size
else
:
filter_size_z
=
filter_size
if
stride_y
is
None
:
if
isinstance
(
stride
,
collections
.
Sequence
):
assert
len
(
stride
)
==
2
stride
,
stride_y
=
stride
else
:
stride_y
=
stride
if
stride_z
is
None
:
if
isinstance
(
stride
,
collections
.
Sequence
):
assert
len
(
stride
)
==
2
stride
,
stride_z
=
stride
else
:
stride_z
=
stride
if
padding_y
is
None
:
if
isinstance
(
stride
,
collections
.
Sequence
)
:
if
isinstance
(
padding
,
collections
.
Sequence
):
assert
len
(
stride
)
==
3
assert
len
(
padding
)
==
2
stride
,
stride_y
,
stride_z
=
stride
padding
,
padding_y
=
padding
else
:
else
:
stride_y
=
stride
padding_y
=
padding
stride_z
=
stride
if
padding_z
is
None
:
if
isinstance
(
padding
,
collections
.
Sequence
)
:
if
isinstance
(
padding
,
collections
.
Sequence
):
assert
len
(
padding
)
==
3
assert
len
(
padding
)
==
2
padding
,
padding_y
,
padding_z
=
padding
padding
,
padding_z
=
padding
else
:
else
:
padding_y
=
padding
padding_z
=
padding
padding_z
=
padding
if
param_attr
.
attr
.
get
(
'initial_smart'
):
if
param_attr
.
attr
.
get
(
'initial_smart'
):
# special initial for conv layers.
# special initial for conv layers.
...
...
python/paddle/trainer_config_helpers/tests/configs/conv3d_deconv3d_test_config.py
浏览文件 @
2710584f
...
@@ -14,23 +14,44 @@ padding_y = 1
...
@@ -14,23 +14,44 @@ padding_y = 1
padding_z
=
1
padding_z
=
1
groups
=
1
groups
=
1
data
=
data_layer
(
data1
=
data_layer
(
name
=
'data1'
,
size
=
2016
*
num_channels
,
height
=
48
,
width
=
42
)
name
=
'data1'
,
size
=
12096
*
num_channels
,
height
=
48
,
width
=
42
,
depth
=
6
)
conv3d
=
img_conv3d_layer
(
img_conv_layer
(
input
=
data1
,
filter_size
=
filter_size
,
num_channels
=
num_channels
,
num_filters
=
16
,
stride
=
stride
,
padding
=
padding
,
act
=
LinearActivation
(),
bias_attr
=
False
)
data
=
data_layer
(
name
=
'data'
,
size
=
12096
*
num_channels
,
height
=
48
,
width
=
42
,
depth
=
6
)
# first
conv3d_1
=
img_conv3d_layer
(
input
=
data
,
input
=
data
,
name
=
'conv3d_1'
,
name
=
'conv3d_1'
,
num_filters
=
16
,
num_filters
=
16
,
num_channels
=
num_channels
,
num_channels
=
num_channels
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
filter_size_y
=
filter_size
,
filter_size_z
=
filter_size
,
stride
=
stride
,
stride
=
stride
,
stride_y
=
stride_y
,
stride_z
=
stride_z
,
padding
=
padding
,
padding
=
padding
,
padding_y
=
padding_y
,
groups
=
groups
,
padding_z
=
padding_z
,
bias_attr
=
True
,
shared_biases
=
True
,
trans
=
False
,
layer_type
=
"conv3d"
,
act
=
LinearActivation
())
# second
conv3d_2
=
img_conv3d_layer
(
input
=
data
,
name
=
'conv3d_2'
,
num_filters
=
16
,
num_channels
=
num_channels
,
filter_size
=
[
filter_size
,
filter_size_y
,
filter_size_z
],
stride
=
[
stride
,
stride_y
,
stride_z
],
padding
=
[
padding
,
padding_y
,
padding_z
],
groups
=
groups
,
groups
=
groups
,
bias_attr
=
True
,
bias_attr
=
True
,
shared_biases
=
True
,
shared_biases
=
True
,
...
@@ -38,61 +59,33 @@ conv3d = img_conv3d_layer(
...
@@ -38,61 +59,33 @@ conv3d = img_conv3d_layer(
layer_type
=
"conv3d"
,
layer_type
=
"conv3d"
,
act
=
LinearActivation
())
act
=
LinearActivation
())
deconv3d
=
img_conv3d_layer
(
# first
deconv3d_1
=
img_conv3d_layer
(
input
=
data
,
input
=
data
,
name
=
'deconv3d_1'
,
name
=
'deconv3d_1'
,
num_filters
=
16
,
num_filters
=
16
,
num_channels
=
num_channels
,
num_channels
=
num_channels
,
filter_size
=
filter_size
,
filter_size
=
filter_size
,
filter_size_y
=
filter_size
,
filter_size_z
=
filter_size
,
stride
=
stride
,
stride
=
stride
,
stride_y
=
stride_y
,
stride_z
=
stride_z
,
padding
=
padding
,
padding
=
padding
,
padding_y
=
padding_y
,
padding_z
=
padding_z
,
groups
=
groups
,
groups
=
groups
,
bias_attr
=
True
,
bias_attr
=
True
,
shared_biases
=
True
,
shared_biases
=
True
,
trans
=
Tru
e
,
trans
=
Fals
e
,
layer_type
=
"deconv3d"
,
layer_type
=
"deconv3d"
,
act
=
LinearActivation
())
act
=
LinearActivation
())
# second
data
=
data_layer
(
name
=
"input"
,
size
=
8
*
16
*
16
)
deconv3d_2
=
img_conv3d_layer
(
conv1
=
img_conv_layer
(
input
=
data
,
filter_size
=
1
,
filter_size_y
=
1
,
num_channels
=
8
,
num_filters
=
16
,
stride
=
1
,
bias_attr
=
False
,
act
=
ReluActivation
(),
layer_type
=
"exconv"
)
conv2
=
img_conv_layer
(
input
=
data
,
filter_size
=
1
,
filter_size_y
=
1
,
num_channels
=
8
,
num_filters
=
16
,
stride
=
1
,
bias_attr
=
False
,
act
=
ReluActivation
(),
layer_type
=
"exconv"
)
concat
=
concat_layer
(
input
=
[
conv1
,
conv2
])
conv
=
img_conv_layer
(
input
=
data
,
input
=
data
,
filter_size
=
1
,
name
=
'deconv3d_2'
,
filter_size_y
=
1
,
num_channels
=
8
,
num_filters
=
16
,
num_filters
=
16
,
stride
=
1
,
num_channels
=
num_channels
,
filter_size
=
[
filter_size
,
filter_size_y
,
filter_size_z
],
stride
=
[
stride
,
stride_y
,
stride_z
],
padding
=
[
padding
,
padding_y
,
padding_z
],
groups
=
groups
,
bias_attr
=
True
,
bias_attr
=
True
,
act
=
LinearActivation
(),
shared_biases
=
True
,
groups
=
2
,
trans
=
False
,
layer_type
=
"exconv"
)
layer_type
=
"deconv3d"
,
act
=
LinearActivation
())
outputs
(
concat
,
conv
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录