Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
25ee1a73
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
25ee1a73
编写于
2月 18, 2021
作者:
J
Jacek Czaja
提交者:
GitHub
2月 18, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[cherry-pick][oneDNN]Extended adaptive pooling support for oneDNN pool kernel (#30993)
上级
0175f566
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
318 addition
and
274 deletion
+318
-274
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
+269
-68
paddle/fluid/operators/pool_op.cc
paddle/fluid/operators/pool_op.cc
+31
-2
paddle/fluid/platform/mkldnn_reuse.h
paddle/fluid/platform/mkldnn_reuse.h
+9
-204
python/paddle/fluid/tests/unittests/mkldnn/test_pool2d_mkldnn_op.py
...dle/fluid/tests/unittests/mkldnn/test_pool2d_mkldnn_op.py
+9
-0
未找到文件。
paddle/fluid/operators/mkldnn/pool_mkldnn_op.cc
浏览文件 @
25ee1a73
...
...
@@ -28,6 +28,270 @@ using mkldnn::reorder;
using
mkldnn
::
stream
;
using
platform
::
to_void_cast
;
template
<
typename
T
>
class
PoolingMKLDNNHandler
:
public
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
pooling_forward
,
mkldnn
::
pooling_backward
>
{
public:
PoolingMKLDNNHandler
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
platform
::
Place
cpu_place
,
const
Tensor
*
input
,
Tensor
*
output
,
const
std
::
string
&
unique_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
pooling_forward
,
mkldnn
::
pooling_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
input
->
dims
()),
framework
::
ToMKLDNNDataType
(
input
->
type
()),
unique_name
))
{
if
(
!
this
->
isCached
())
{
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input tensor."
));
PADDLE_ENFORCE_NE
(
input
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input tensor."
));
const
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling_type"
);
std
::
vector
<
int
>
ksize_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int64_t
>
ksize
(
begin
(
ksize_temp
),
end
(
ksize_temp
));
std
::
vector
<
int
>
strides_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int64_t
>
strides
(
begin
(
strides_temp
),
end
(
strides_temp
));
std
::
vector
<
int
>
paddings_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int64_t
>
paddings
(
begin
(
paddings_temp
),
end
(
paddings_temp
));
const
bool
global_pooling
=
ctx
.
Attr
<
bool
>
(
"global_pooling"
);
const
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
// Only 2D pooling is supported now
PADDLE_ENFORCE_EQ
(
ksize
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The ksize must be 2D, i.e. 2D pooling, but received %dD."
,
ksize
.
size
()));
PADDLE_ENFORCE_EQ
(
pooling_type
==
"max"
||
pooling_type
==
"avg"
,
true
,
platform
::
errors
::
InvalidArgument
(
"The pooling_type must be 'max' or 'avg', but received %s."
,
pooling_type
));
PADDLE_ENFORCE_EQ
(
input
->
dims
().
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"Input dim must be with 4, i.e. NCHW, but received %d."
,
input
->
dims
().
size
()));
const
auto
input_dims
=
input
->
dims
();
framework
::
DDim
data_dims
=
framework
::
slice_ddim
(
input_dims
,
2
,
input_dims
.
size
());
if
(
global_pooling
)
{
operators
::
UpdateKsize
(
&
ksize
,
data_dims
);
}
operators
::
UpdatePadding
(
&
paddings
,
global_pooling
,
0
,
padding_algorithm
,
data_dims
,
strides
,
ksize
);
const
auto
src_tz
=
paddle
::
framework
::
vectorize
(
input
->
dims
());
const
auto
dst_tz
=
paddle
::
framework
::
vectorize
(
output
->
dims
());
const
auto
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
auto
dt
=
framework
::
ToMKLDNNDataType
(
input
->
type
());
const
auto
fmt
=
input
->
format
();
const
auto
exclude_padding
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
const
auto
src_md
=
mkldnn
::
memory
::
desc
(
src_tz
,
dt
,
fmt
);
/* create memory descriptor for pooling without specified format
* ('any') which lets a primitive (pooling in this case) choose
* the memory format preferred for best performance
*/
const
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
dt
,
MKLDNNMemoryFormat
::
any
);
auto
mkldnn_paddings
=
platform
::
ToMkldnnPadding
(
paddings
);
const
bool
ceil_mode
=
ctx
.
Attr
<
bool
>
(
"ceil_mode"
);
if
(
ceil_mode
)
{
CorrectOutputSize
(
src_tz
,
dst_tz
,
ksize
,
paddings
,
strides
,
mkldnn_paddings
[
1
]);
}
ComputeAdaptivePoolParameters
(
ctx
,
src_tz
,
&
ksize
,
&
strides
);
this
->
AcquireForwardPrimitiveDescriptor
(
is_test
?
mkldnn
::
prop_kind
::
forward_inference
:
mkldnn
::
prop_kind
::
forward_training
,
pooling_type
==
"max"
?
mkldnn
::
algorithm
::
pooling_max
:
(
exclude_padding
?
mkldnn
::
algorithm
::
pooling_avg_exclude_padding
:
mkldnn
::
algorithm
::
pooling_avg_include_padding
),
src_md
,
dst_md
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
}
}
PoolingMKLDNNHandler
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
platform
::
Place
cpu_place
,
const
Tensor
*
in_x
,
const
Tensor
*
out_grad
,
Tensor
*
in_x_grad
,
const
std
::
string
&
unique_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
pooling_forward
,
mkldnn
::
pooling_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
in_x
->
dims
()),
framework
::
ToMKLDNNDataType
(
in_x
->
type
()),
unique_name
))
{
if
(
!
this
->
isBwdCached
())
{
PADDLE_ENFORCE_EQ
(
in_x
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input tensor"
));
PADDLE_ENFORCE_NE
(
in_x
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input tensor"
));
PADDLE_ENFORCE_EQ
(
out_grad
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input output_grad tensor"
));
PADDLE_ENFORCE_NE
(
out_grad
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input output_grad tensor"
));
PADDLE_ENFORCE_EQ
(
ctx
.
Attr
<
bool
>
(
"is_test"
),
false
,
platform
::
errors
::
InvalidArgument
(
"is_test attribute should be set to False in training phase."
));
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling_type"
);
std
::
vector
<
int
>
ksize_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int64_t
>
ksize
(
begin
(
ksize_temp
),
end
(
ksize_temp
));
std
::
vector
<
int
>
strides_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int64_t
>
strides
(
begin
(
strides_temp
),
end
(
strides_temp
));
std
::
vector
<
int
>
paddings_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int64_t
>
paddings
(
begin
(
paddings_temp
),
end
(
paddings_temp
));
bool
global_pooling
=
ctx
.
Attr
<
bool
>
(
"global_pooling"
);
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
auto
in_x_dims
=
in_x
->
dims
();
framework
::
DDim
data_dims
=
framework
::
slice_ddim
(
in_x_dims
,
2
,
in_x_dims
.
size
());
if
(
global_pooling
)
{
operators
::
UpdateKsize
(
&
ksize
,
data_dims
);
}
operators
::
UpdatePadding
(
&
paddings
,
global_pooling
,
0
,
padding_algorithm
,
data_dims
,
strides
,
ksize
);
auto
src_tz
=
paddle
::
framework
::
vectorize
<
int64_t
>
(
in_x
->
dims
());
auto
diff_src_tz
=
paddle
::
framework
::
vectorize
<
int64_t
>
(
in_x_grad
->
dims
());
auto
diff_dst_tz
=
paddle
::
framework
::
vectorize
<
int64_t
>
(
out_grad
->
dims
());
auto
diff_dst_md
=
mkldnn
::
memory
::
desc
(
diff_dst_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
out_grad
->
format
());
auto
diff_src_md
=
mkldnn
::
memory
::
desc
(
diff_src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
any
);
auto
mkldnn_paddings
=
platform
::
ToMkldnnPadding
(
paddings
);
const
bool
ceil_mode
=
ctx
.
Attr
<
bool
>
(
"ceil_mode"
);
if
(
ceil_mode
)
{
CorrectOutputSize
(
src_tz
,
diff_dst_tz
,
ksize
,
paddings
,
strides
,
mkldnn_paddings
[
1
]);
}
ComputeAdaptivePoolParameters
(
ctx
,
diff_src_tz
,
&
ksize
,
&
strides
);
const
auto
exclude_padding
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
this
->
AcquireBackwardPrimitiveDescriptor
(
pooling_type
==
"max"
?
mkldnn
::
algorithm
::
pooling_max
:
(
exclude_padding
?
mkldnn
::
algorithm
::
pooling_avg_exclude_padding
:
mkldnn
::
algorithm
::
pooling_avg_include_padding
),
diff_src_md
,
diff_dst_md
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
}
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWorkspaceMemory
(
void
)
{
mkldnn
::
memory
::
desc
workspace_md
=
this
->
fwd_pd_
->
workspace_desc
();
// Pooling PD has to be passed to Grad op that
// may be executed by diffrent thread, hence
// for that one we use key that does not contain TID
auto
local_key
=
this
->
key_common_
+
"@workspace"
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
this
->
dev_ctx_
.
GetBlob
(
local_key
));
if
(
mem_p
==
nullptr
)
{
static
std
::
mutex
acquire_barrier
;
std
::
lock_guard
<
std
::
mutex
>
block_threads_until_finish_this_job
(
acquire_barrier
);
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
this
->
dev_ctx_
.
GetBlob
(
local_key
));
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
workspace_md
,
this
->
engine_
);
this
->
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
}
return
mem_p
;
}
static
void
ComputeAdaptivePoolParameters
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
std
::
vector
<
int64_t
>&
src_tz
,
std
::
vector
<
int64_t
>*
ksize
,
std
::
vector
<
int64_t
>*
strides
)
{
if
(
ctx
.
Attr
<
bool
>
(
"adaptive"
))
{
// https://github.com/oneapi-src/oneDNN/tree/bkocot/adaptive-pooling/rfcs/20200818-adaptive-pooling
auto
IH
=
static_cast
<
double
>
(
src_tz
[
src_tz
.
size
()
-
2
]);
auto
IW
=
static_cast
<
double
>
(
src_tz
[
src_tz
.
size
()
-
1
]);
auto
OH
=
static_cast
<
double
>
(
ksize
->
at
(
0
));
auto
OW
=
static_cast
<
double
>
(
ksize
->
at
(
1
));
strides
->
at
(
0
)
=
static_cast
<
int64_t
>
(
floor
((
IH
*
2.0
)
/
OH
)
-
floor
(
IH
/
OH
));
strides
->
at
(
1
)
=
static_cast
<
int64_t
>
(
floor
((
IW
*
2.0
)
/
OW
)
-
floor
(
IW
/
OW
));
ksize
->
at
(
0
)
=
static_cast
<
int64_t
>
(
ceil
((
IH
*
2.0
)
/
OH
)
-
floor
(
IH
/
OH
));
ksize
->
at
(
1
)
=
static_cast
<
int64_t
>
(
ceil
((
IW
*
2.0
)
/
OW
)
-
floor
(
IW
/
OW
));
}
}
private:
static
inline
int
ComputeCeiledOutput
(
int
input_size
,
int
kernel_size
,
int
padding
,
int
stride
)
{
return
(
input_size
-
kernel_size
+
2
*
padding
)
/
stride
+
1
;
}
static
inline
void
CorrectOutputSize
(
const
std
::
vector
<
int64_t
>&
src_tz
,
const
std
::
vector
<
int64_t
>&
dst_tz
,
const
std
::
vector
<
int64_t
>&
kernel_size
,
const
std
::
vector
<
int64_t
>&
paddings
,
const
std
::
vector
<
int64_t
>&
strides
,
std
::
vector
<
int64_t
>&
right_bot_padding
)
{
// NOLINT
for
(
size_t
i
=
0
;
i
<
right_bot_padding
.
size
();
i
++
)
{
int
desired_size
=
ComputeCeiledOutput
(
src_tz
[
i
+
2
],
kernel_size
[
i
],
paddings
[
i
],
strides
[
i
]);
if
(
desired_size
!=
dst_tz
[
i
+
2
])
{
right_bot_padding
[
i
]
+=
strides
[
i
]
-
1
;
}
}
}
};
template
<
typename
T
>
class
PoolMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -37,14 +301,12 @@ class PoolMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
"Operator DNNL Pool must use CPUPlace"
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
const
Tensor
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
Tensor
*
output
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
platform
::
PoolingMKLDNNHandler
<
T
>
handler
(
ctx
,
dev_ctx
,
mkldnn_engine
,
ctx
.
GetPlace
(),
input
,
output
,
ctx
.
OutputName
(
"Out"
));
PoolingMKLDNNHandler
<
T
>
handler
(
ctx
,
dev_ctx
,
ctx
.
GetPlace
(),
input
,
output
,
ctx
.
OutputName
(
"Out"
));
auto
src_memory
=
handler
.
AcquireSrcMemory
(
input
);
auto
dst_memory
=
handler
.
AcquireDstMemory
(
output
);
...
...
@@ -82,72 +344,11 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
const
Tensor
*
out_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
Tensor
*
in_x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
PADDLE_ENFORCE_EQ
(
in_x
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input tensor"
));
PADDLE_ENFORCE_NE
(
in_x
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input tensor"
));
PADDLE_ENFORCE_EQ
(
out_grad
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input output_grad tensor"
));
PADDLE_ENFORCE_NE
(
out_grad
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input output_grad tensor"
));
PADDLE_ENFORCE_EQ
(
ctx
.
Attr
<
bool
>
(
"is_test"
),
false
,
platform
::
errors
::
InvalidArgument
(
"is_test attribute should be set to False in training phase."
));
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling_type"
);
std
::
vector
<
int
>
ksize_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int64_t
>
ksize
(
begin
(
ksize_temp
),
end
(
ksize_temp
));
std
::
vector
<
int
>
strides_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int64_t
>
strides
(
begin
(
strides_temp
),
end
(
strides_temp
));
std
::
vector
<
int
>
paddings_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int64_t
>
paddings
(
begin
(
paddings_temp
),
end
(
paddings_temp
));
bool
global_pooling
=
ctx
.
Attr
<
bool
>
(
"global_pooling"
);
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
auto
in_x_dims
=
in_x
->
dims
();
framework
::
DDim
data_dims
=
framework
::
slice_ddim
(
in_x_dims
,
2
,
in_x_dims
.
size
());
if
(
global_pooling
)
{
UpdateKsize
(
&
ksize
,
data_dims
);
}
UpdatePadding
(
&
paddings
,
global_pooling
,
0
,
padding_algorithm
,
data_dims
,
strides
,
ksize
);
platform
::
PoolingMKLDNNHandler
<
T
>::
ComputeAdaptivePoolParameters
(
ctx
,
paddle
::
framework
::
vectorize
(
in_x
->
dims
()),
&
ksize
,
&
strides
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
MKLDNNDeviceContext
>();
std
::
vector
<
mkldnn
::
primitive
>
pipeline
;
auto
diff_src_tz
=
paddle
::
framework
::
vectorize
<
int64_t
>
(
in_x_grad
->
dims
());
auto
diff_dst_tz
=
paddle
::
framework
::
vectorize
<
int64_t
>
(
out_grad
->
dims
());
// Get an unique name from "argument" name of "Out" variable
// This name will be used as key when referring info from device context
const
std
::
string
key
=
platform
::
CreateKey
(
dev_ctx
,
diff_src_tz
,
pooling_type
,
ksize
,
strides
,
paddings
,
memory
::
data_type
::
f32
,
in_x
->
format
(),
ctx
.
InputName
(
"Out"
));
platform
::
PoolingMKLDNNHandler
<
T
>
handler
(
diff_dst_tz
,
diff_src_tz
,
ksize
,
strides
,
paddings
,
pooling_type
,
ctx
.
Attr
<
bool
>
(
"ceil_mode"
),
in_x
->
format
(),
out_grad
->
format
(),
paddle
::
framework
::
ToMKLDNNDataType
(
out_grad
->
type
()),
dev_ctx
,
ctx
.
GetPlace
(),
ctx
.
InputName
(
"Out"
),
ctx
.
Attr
<
bool
>
(
"exclusive"
));
PoolingMKLDNNHandler
<
T
>
handler
(
ctx
,
dev_ctx
,
ctx
.
GetPlace
(),
in_x
,
out_grad
,
in_x_grad
,
ctx
.
InputName
(
"Out"
));
auto
diff_dst_memory
=
handler
.
AcquireDiffDstMemory
(
out_grad
);
auto
diff_src_memory
=
handler
.
AcquireDiffSrcMemory
(
in_x_grad
);
...
...
@@ -155,7 +356,7 @@ class PoolMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto
pool_bwd_p
=
handler
.
AcquireBackwardPrimitive
();
mkldnn
::
stream
astream
(
dev_ctx
.
GetEngine
());
if
(
pooling_type
==
"max"
)
{
if
(
ctx
.
Attr
<
std
::
string
>
(
"pooling_type"
)
==
"max"
)
{
// Max - pooling needs Workspace
auto
workspace_memory
=
handler
.
AcquireWorkspaceMemory
();
pool_bwd_p
->
execute
(
astream
,
{{
MKLDNN_ARG_DIFF_SRC
,
*
diff_src_memory
},
...
...
paddle/fluid/operators/pool_op.cc
浏览文件 @
25ee1a73
...
...
@@ -144,6 +144,35 @@ void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
ctx
->
ShareLoD
(
"X"
,
"Out"
);
}
bool
CanMKLDNNSupportPool
(
const
framework
::
ExecutionContext
&
ctx
)
{
if
(
ctx
.
Attr
<
bool
>
(
"adaptive"
)
==
false
)
return
true
;
// (jczaja): oneDNN is supporting only unchangable in size pool window
auto
src_tz
=
paddle
::
framework
::
vectorize
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
());
std
::
vector
<
int
>
ksize
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
// Fast but not exhustive check
if
((
src_tz
[
src_tz
.
size
()
-
1
]
%
ksize
[
1
]
==
0
)
&&
(
src_tz
[
src_tz
.
size
()
-
2
]
%
ksize
[
0
]
==
0
))
return
true
;
// Exhustive check
auto
IH
=
static_cast
<
double
>
(
src_tz
[
src_tz
.
size
()
-
2
]);
auto
IW
=
static_cast
<
double
>
(
src_tz
[
src_tz
.
size
()
-
1
]);
auto
OH
=
static_cast
<
double
>
(
ksize
[
0
]);
auto
OW
=
static_cast
<
double
>
(
ksize
[
1
]);
auto
SH
=
static_cast
<
int
>
(
floor
((
IH
*
2.0
)
/
OH
)
-
floor
(
IH
/
OH
));
auto
SW
=
static_cast
<
int
>
(
floor
((
IW
*
2.0
)
/
OW
)
-
floor
(
IW
/
OW
));
auto
KH
=
static_cast
<
int
>
(
ceil
((
IH
*
2.0
)
/
OH
)
-
floor
(
IH
/
OH
));
auto
KW
=
static_cast
<
int
>
(
ceil
((
IW
*
2.0
)
/
OW
)
-
floor
(
IW
/
OW
));
auto
PH
=
(
SH
*
(
static_cast
<
int
>
(
OH
)
-
1
)
+
KH
-
static_cast
<
int
>
(
IH
));
auto
PW
=
(
SW
*
(
static_cast
<
int
>
(
OW
)
-
1
)
+
KW
-
static_cast
<
int
>
(
IW
));
// If there is additional padding needed then
// this is situation that oneDNN cannot comply with
// paddlepaddle reference implementation
return
(
PH
==
0
)
&&
(
PW
==
0
);
}
framework
::
OpKernelType
PoolOp
::
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
framework
::
LibraryType
library_
{
framework
::
LibraryType
::
kPlain
};
...
...
@@ -157,7 +186,7 @@ framework::OpKernelType PoolOp::GetExpectedKernelType(
#endif
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
this
->
CanMKLDNNBeUsed
(
ctx
))
{
this
->
CanMKLDNNBeUsed
(
ctx
)
&&
CanMKLDNNSupportPool
(
ctx
)
)
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
}
...
...
@@ -213,7 +242,7 @@ framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
#endif
#ifdef PADDLE_WITH_MKLDNN
if
(
library_
==
framework
::
LibraryType
::
kPlain
&&
this
->
CanMKLDNNBeUsed
(
ctx
))
{
this
->
CanMKLDNNBeUsed
(
ctx
)
&&
CanMKLDNNSupportPool
(
ctx
)
)
{
library_
=
framework
::
LibraryType
::
kMKLDNN
;
layout_
=
framework
::
DataLayout
::
kMKLDNN
;
}
...
...
paddle/fluid/platform/mkldnn_reuse.h
浏览文件 @
25ee1a73
...
...
@@ -120,6 +120,15 @@ class MKLDNNHandlerT {
return
(
dev_ctx_
.
GetBlob
(
key_p
)
!=
nullptr
);
}
bool
isBwdCached
()
{
const
std
::
string
key_pd
=
key_common_
+
"@bwd_pd"
;
bwd_pd_
=
std
::
static_pointer_cast
<
typename
TBackward
::
primitive_desc
>
(
dev_ctx_
.
GetBlob
(
key_pd
));
const
std
::
string
key_p
=
key_
+
"@bwd_p"
;
return
(
dev_ctx_
.
GetBlob
(
key_p
)
!=
nullptr
);
}
// If your primitive descriptor requires attributes, pass them as a
// first argument and paramters to descriptor constructor in the following
// arguments. Otherwise, all arguments will be forwarded to descriptor
...
...
@@ -722,210 +731,6 @@ class LRNMKLDNNHandler
}
};
template
<
typename
T
>
class
PoolingMKLDNNHandler
:
public
MKLDNNHandlerT
<
T
,
mkldnn
::
pooling_forward
,
mkldnn
::
pooling_backward
>
{
public:
PoolingMKLDNNHandler
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
MKLDNNDeviceContext
&
dev_ctx
,
const
mkldnn
::
engine
mkldnn_engine
,
platform
::
Place
cpu_place
,
const
Tensor
*
input
,
Tensor
*
output
,
const
std
::
string
&
unique_name
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
pooling_forward
,
mkldnn
::
pooling_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
framework
::
vectorize
(
input
->
dims
()),
framework
::
ToMKLDNNDataType
(
input
->
type
()),
unique_name
))
{
if
(
!
this
->
isCached
())
{
PADDLE_ENFORCE_EQ
(
input
->
layout
(),
DataLayout
::
kMKLDNN
,
platform
::
errors
::
InvalidArgument
(
"Wrong layout set for Input tensor."
));
PADDLE_ENFORCE_NE
(
input
->
format
(),
MKLDNNMemoryFormat
::
undef
,
platform
::
errors
::
InvalidArgument
(
"Wrong format set for Input tensor."
));
const
std
::
string
pooling_type
=
ctx
.
Attr
<
std
::
string
>
(
"pooling_type"
);
std
::
vector
<
int
>
ksize_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"ksize"
);
std
::
vector
<
int64_t
>
ksize
(
begin
(
ksize_temp
),
end
(
ksize_temp
));
std
::
vector
<
int
>
strides_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int64_t
>
strides
(
begin
(
strides_temp
),
end
(
strides_temp
));
std
::
vector
<
int
>
paddings_temp
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int64_t
>
paddings
(
begin
(
paddings_temp
),
end
(
paddings_temp
));
const
bool
global_pooling
=
ctx
.
Attr
<
bool
>
(
"global_pooling"
);
const
std
::
string
padding_algorithm
=
ctx
.
Attr
<
std
::
string
>
(
"padding_algorithm"
);
// Only 2D pooling is supported now
PADDLE_ENFORCE_EQ
(
ksize
.
size
(),
2
,
platform
::
errors
::
InvalidArgument
(
"The ksize must be 2D, i.e. 2D pooling, but received %dD."
,
ksize
.
size
()));
PADDLE_ENFORCE_EQ
(
pooling_type
==
"max"
||
pooling_type
==
"avg"
,
true
,
platform
::
errors
::
InvalidArgument
(
"The pooling_type must be 'max' or 'avg', but received %s."
,
pooling_type
));
PADDLE_ENFORCE_EQ
(
input
->
dims
().
size
(),
4
,
platform
::
errors
::
InvalidArgument
(
"Input dim must be with 4, i.e. NCHW, but received %d."
,
input
->
dims
().
size
()));
const
auto
input_dims
=
input
->
dims
();
framework
::
DDim
data_dims
=
framework
::
slice_ddim
(
input_dims
,
2
,
input_dims
.
size
());
if
(
global_pooling
)
{
operators
::
UpdateKsize
(
&
ksize
,
data_dims
);
}
operators
::
UpdatePadding
(
&
paddings
,
global_pooling
,
0
,
padding_algorithm
,
data_dims
,
strides
,
ksize
);
const
auto
src_tz
=
paddle
::
framework
::
vectorize
(
input
->
dims
());
const
auto
dst_tz
=
paddle
::
framework
::
vectorize
(
output
->
dims
());
const
auto
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
const
auto
dt
=
framework
::
ToMKLDNNDataType
(
input
->
type
());
const
auto
fmt
=
input
->
format
();
const
auto
exclude_padding
=
ctx
.
Attr
<
bool
>
(
"exclusive"
);
const
auto
src_md
=
mkldnn
::
memory
::
desc
(
src_tz
,
dt
,
fmt
);
/* create memory descriptor for pooling without specified format
* ('any') which lets a primitive (pooling in this case) choose
* the memory format preferred for best performance
*/
const
auto
dst_md
=
platform
::
MKLDNNMemDesc
(
dst_tz
,
dt
,
MKLDNNMemoryFormat
::
any
);
auto
mkldnn_paddings
=
ToMkldnnPadding
(
paddings
);
const
bool
ceil_mode
=
ctx
.
Attr
<
bool
>
(
"ceil_mode"
);
if
(
ceil_mode
)
{
CorrectOutputSize
(
src_tz
,
dst_tz
,
ksize
,
paddings
,
strides
,
mkldnn_paddings
[
1
]);
}
ComputeAdaptivePoolParameters
(
ctx
,
src_tz
,
&
ksize
,
&
strides
);
this
->
AcquireForwardPrimitiveDescriptor
(
is_test
?
mkldnn
::
prop_kind
::
forward_inference
:
mkldnn
::
prop_kind
::
forward_training
,
pooling_type
==
"max"
?
mkldnn
::
algorithm
::
pooling_max
:
(
exclude_padding
?
mkldnn
::
algorithm
::
pooling_avg_exclude_padding
:
mkldnn
::
algorithm
::
pooling_avg_include_padding
),
src_md
,
dst_md
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
}
}
PoolingMKLDNNHandler
(
const
std
::
vector
<
int64_t
>&
diff_dst_dims
,
const
std
::
vector
<
int64_t
>&
diff_src_dims
,
const
std
::
vector
<
int64_t
>&
ksize
,
const
std
::
vector
<
int64_t
>&
strides
,
const
std
::
vector
<
int64_t
>&
paddings
,
const
std
::
string
&
pooling_type
,
bool
ceil_mode
,
const
MKLDNNMemoryFormat
fmt
,
const
MKLDNNMemoryFormat
diff_dst_fmt
,
mkldnn
::
memory
::
data_type
dt
,
const
platform
::
MKLDNNDeviceContext
&
dev_ctx
,
platform
::
Place
cpu_place
,
const
std
::
string
&
unique_name
,
bool
exclude_padding
)
:
platform
::
MKLDNNHandlerT
<
T
,
mkldnn
::
pooling_forward
,
mkldnn
::
pooling_backward
>
(
dev_ctx
,
dev_ctx
.
GetEngine
(),
cpu_place
,
platform
::
CreateKey
(
dev_ctx
,
diff_src_dims
,
dt
,
unique_name
))
{
auto
diff_dst_md
=
mkldnn
::
memory
::
desc
(
diff_dst_dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
diff_dst_fmt
);
auto
diff_src_md
=
mkldnn
::
memory
::
desc
(
diff_src_dims
,
platform
::
MKLDNNGetDataType
<
T
>
(),
MKLDNNMemoryFormat
::
any
);
auto
mkldnn_paddings
=
ToMkldnnPadding
(
paddings
);
this
->
AcquireBackwardPrimitiveDescriptor
(
pooling_type
==
"max"
?
mkldnn
::
algorithm
::
pooling_max
:
(
exclude_padding
?
mkldnn
::
algorithm
::
pooling_avg_exclude_padding
:
mkldnn
::
algorithm
::
pooling_avg_include_padding
),
diff_src_md
,
diff_dst_md
,
strides
,
ksize
,
mkldnn_paddings
[
0
],
mkldnn_paddings
[
1
]);
}
std
::
shared_ptr
<
mkldnn
::
memory
>
AcquireWorkspaceMemory
(
void
)
{
mkldnn
::
memory
::
desc
workspace_md
=
this
->
fwd_pd_
->
workspace_desc
();
// Pooling PD has to be passed to Grad op that
// may be executed by diffrent thread, hence
// for that one we use key that does not contain TID
auto
local_key
=
this
->
key_common_
+
"@workspace"
;
auto
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
this
->
dev_ctx_
.
GetBlob
(
local_key
));
if
(
mem_p
==
nullptr
)
{
static
std
::
mutex
acquire_barrier
;
std
::
lock_guard
<
std
::
mutex
>
block_threads_until_finish_this_job
(
acquire_barrier
);
mem_p
=
std
::
static_pointer_cast
<
mkldnn
::
memory
>
(
this
->
dev_ctx_
.
GetBlob
(
local_key
));
if
(
mem_p
==
nullptr
)
{
mem_p
=
std
::
make_shared
<
mkldnn
::
memory
>
(
workspace_md
,
this
->
engine_
);
this
->
dev_ctx_
.
SetBlob
(
local_key
,
mem_p
);
}
}
return
mem_p
;
}
static
void
ComputeAdaptivePoolParameters
(
const
paddle
::
framework
::
ExecutionContext
&
ctx
,
const
std
::
vector
<
int64_t
>&
src_tz
,
std
::
vector
<
int64_t
>*
ksize
,
std
::
vector
<
int64_t
>*
strides
)
{
if
(
ctx
.
Attr
<
bool
>
(
"adaptive"
))
{
// (jczaja): oneDNN is supporting only unchangable in size pool window
PADDLE_ENFORCE_EQ
(
src_tz
[
src_tz
.
size
()
-
1
]
%
ksize
->
at
(
1
),
0
,
platform
::
errors
::
Unimplemented
(
"Input dim must be divisible by corressponding ksize dim."
));
PADDLE_ENFORCE_EQ
(
src_tz
[
src_tz
.
size
()
-
2
]
%
ksize
->
at
(
0
),
0
,
platform
::
errors
::
Unimplemented
(
"Input dim must be divisible by corressponding ksize dim."
));
ksize
->
at
(
0
)
=
src_tz
[
src_tz
.
size
()
-
2
]
/
ksize
->
at
(
0
);
ksize
->
at
(
1
)
=
src_tz
[
src_tz
.
size
()
-
1
]
/
ksize
->
at
(
1
);
strides
->
at
(
0
)
=
ksize
->
at
(
0
);
strides
->
at
(
1
)
=
ksize
->
at
(
1
);
}
}
private:
static
inline
int
ComputeCeiledOutput
(
int
input_size
,
int
kernel_size
,
int
padding
,
int
stride
)
{
return
(
input_size
-
kernel_size
+
2
*
padding
)
/
stride
+
1
;
}
static
inline
void
CorrectOutputSize
(
const
std
::
vector
<
int64_t
>&
src_tz
,
const
std
::
vector
<
int64_t
>&
dst_tz
,
const
std
::
vector
<
int64_t
>&
kernel_size
,
const
std
::
vector
<
int64_t
>&
paddings
,
const
std
::
vector
<
int64_t
>&
strides
,
std
::
vector
<
int64_t
>&
right_bot_padding
)
{
// NOLINT
for
(
size_t
i
=
0
;
i
<
right_bot_padding
.
size
();
i
++
)
{
int
desired_size
=
ComputeCeiledOutput
(
src_tz
[
i
+
2
],
kernel_size
[
i
],
paddings
[
i
],
strides
[
i
]);
if
(
desired_size
!=
dst_tz
[
i
+
2
])
{
right_bot_padding
[
i
]
+=
strides
[
i
]
-
1
;
}
}
}
};
template
<
typename
T
>
class
TransposeMKLDNNHandler
:
public
MKLDNNHandler
{
public:
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_pool2d_mkldnn_op.py
浏览文件 @
25ee1a73
...
...
@@ -92,6 +92,15 @@ class TestAvgPoolAdaptive2(TestAvgPoolAdaptive):
self
.
shape
=
[
2
,
3
,
6
,
6
]
class
TestAvgPoolAdaptive3
(
TestAvgPoolAdaptive
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
self
.
strides
=
[
1
,
1
]
def
init_shape
(
self
):
self
.
shape
=
[
1
,
3
,
16
,
16
]
class
TestAsymPad
(
TestPool2D_Op
):
def
init_test_case
(
self
):
self
.
ksize
=
[
3
,
3
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录