未验证 提交 25d61cd1 编写于 作者: S Sławomir Siwek 提交者: GitHub

[cherry-pick] [PHI] Migrate sgd and stack oneDNN kernels (#46374) (#46729)

* [PHI] Migrate sgd and stack oneDNN kernels (#46374)

* Convert slice+grad oneDNN fluid kernels to PHI

* Change mutable_data to Alloc

* Refactor licences

* update dependencies
Co-authored-by: NPiotr Paturej <48731682+piotrekobi@users.noreply.github.com>
上级 51a91fee
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cstring>
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#include "paddle/fluid/operators/optimizers/sgd_op.h"
namespace pplat = paddle::platform;
namespace paddle {
namespace operators {
template <typename T>
class SGDOneDNNKernel : public SGDOpKernel<phi::CPUContext, T> {
protected:
void dense_param_and_grad_kernel(
const framework::ExecutionContext &ctx) const override {
VLOG(4) << "[ONEDNN]: sgd_dense_param_kernel<T, LodTensor>";
const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
const auto *param = ctx.Input<framework::Tensor>("Param");
auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
const auto *grad = ctx.Input<framework::Tensor>("Grad");
auto *out_data = param_out->mutable_data<T>(ctx.GetPlace());
const T *param_data = param->data<T>();
const auto *grad_data = grad->data<T>();
const auto *lr = learning_rate->data<T>();
// Since denese SGD is not in place operation, first copy params to output
// tensor and then update it.
std::memcpy(out_data, param_data, param->memory_size());
OneDNNAXPYHandler<T>(param_out->numel(), -lr[0])(grad_data, out_data);
}
void dense_param_sparse_grad_kernel(
const framework::ExecutionContext &ctx) const override {
VLOG(4) << "[ONEDNN]: sgd_dense_param_kernel<T, SelectedRows>";
const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
const auto *grad = ctx.Input<phi::SelectedRows>("Grad");
const auto &grad_value = grad->value();
const auto &grad_rows = grad->rows();
const auto grad_height = grad->height();
const int64_t grad_val_height = static_cast<int64_t>(grad_rows.size());
const auto grad_width = grad_value.numel() / grad_val_height;
const auto *grad_data = grad_value.data<T>();
auto *out_data = param_out->data<T>();
const auto *lr = learning_rate->data<T>();
OneDNNAXPYHandler<T> axpy_handler(grad_width, -lr[0]);
for (size_t i = 0; i < grad_rows.size(); ++i) {
PADDLE_ENFORCE_LT(
grad_rows[i],
grad_height,
pplat::errors::OutOfRange(
"Grad rows index value should be less than grad height."
"Got [%s], but expected less than [%s]",
grad_rows[i],
grad_height));
const int64_t row = grad_rows[i];
const auto *src = grad_data + i * grad_width;
auto *dst = out_data + row * grad_width;
axpy_handler(src, dst);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(sgd,
MKLDNN,
pplat::CPUPlace,
ops::SGDOneDNNKernel<float>,
ops::SGDOneDNNKernel<pplat::bfloat16>);
...@@ -21,6 +21,7 @@ endif() ...@@ -21,6 +21,7 @@ endif()
if(WITH_MKLDNN) if(WITH_MKLDNN)
list(APPEND BACKENDS_SRCS onednn/onednn_context.cc) list(APPEND BACKENDS_SRCS onednn/onednn_context.cc)
list(APPEND BACKENDS_SRCS onednn/axpy_handler.cc)
list(APPEND BACKENDS_DEPS mkldnn) list(APPEND BACKENDS_DEPS mkldnn)
endif() endif()
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/backends/onednn/axpy_handler.h"
#include <cinttypes>
#include <memory>
#include <string>
#include <vector>
#include "paddle/phi/backends/onednn/onednn_helper.h"
namespace phi {
namespace funcs {
template <typename T>
class AXPYHandler {
public:
AXPYHandler(const dnnl::engine onednn_engine, int n, float alpha) {
OneDNNContext::tls().log_lib_version();
auto md = dnnl::memory::desc(
{n}, OneDNNGetDataType<T>(), dnnl::memory::format_tag::x);
src_mem_ = dnnl::memory(md, onednn_engine, DNNL_MEMORY_NONE);
dst_mem_ = dnnl::memory(md, onednn_engine, DNNL_MEMORY_NONE);
dnnl::primitive_attr reorder_attr;
dnnl::post_ops post_operations;
if (alpha != 1.f) {
std::vector<float> scales(1, alpha);
reorder_attr.set_output_scales(0, scales);
}
post_operations.append_sum(1.0f);
reorder_attr.set_post_ops(post_operations);
reorder_p_ = dnnl::reorder(src_mem_, dst_mem_, reorder_attr);
}
dnnl::memory &AcquireSrcMemory(const T *x) {
src_mem_.set_data_handle(to_void_cast<T>(x));
return src_mem_;
}
dnnl::memory &AcquireDstMemory(T *y) {
dst_mem_.set_data_handle(y);
return dst_mem_;
}
const dnnl::reorder &AcquireReorder() { return reorder_p_; }
private:
dnnl::memory src_mem_;
dnnl::memory dst_mem_;
dnnl::reorder reorder_p_;
};
template class AXPYHandler<float>;
template class AXPYHandler<phi::dtype::bfloat16>;
template <typename T>
static void naive_axpy(int n, T alpha, const T *x, T *y) {
while (n-- > 0) {
*y += alpha * *x;
++y;
++x;
}
}
template <typename T>
class OneDNNAXPYHandler<T>::Impl {
public:
Impl(int64_t n, T alpha, const dnnl::engine onednn_engine);
void operator()(const T *x, T *y);
private:
std::unique_ptr<AXPYHandler<T>> handler_;
int64_t n_;
T alpha_;
};
template <typename T>
OneDNNAXPYHandler<T>::Impl::Impl(int64_t n,
T alpha,
const dnnl::engine onednn_engine)
: n_{n}, alpha_{alpha} {
handler_ = std::make_unique<AXPYHandler<T>>(
onednn_engine, n, static_cast<float>(alpha));
}
template <typename T>
void OneDNNAXPYHandler<T>::Impl::operator()(const T *x, T *y) {
if (this->n_ < 100) {
naive_axpy(this->n_, this->alpha_, x, y);
return;
}
auto &reorder_src_mem_p = handler_->AcquireSrcMemory(x);
auto &reorder_dst_mem_p = handler_->AcquireDstMemory(y);
auto reorder_p = handler_->AcquireReorder();
auto &astream = OneDNNContext::tls().get_stream();
reorder_p.execute(astream, reorder_src_mem_p, reorder_dst_mem_p);
astream.wait();
}
template <typename T>
OneDNNAXPYHandler<T>::OneDNNAXPYHandler(int64_t n,
T alpha,
const dnnl::engine onednn_engine)
: pimpl_{new Impl{n, alpha, onednn_engine},
[](Impl *impl) { delete impl; }} {
VLOG(4) << "[OneDNN] OneDNNAXPYHandler<" << typeid(T).name() << ">, "
<< "n: " << n << ", alpha: " << alpha;
}
template <typename T>
void OneDNNAXPYHandler<T>::operator()(const T *x, T *y) {
pimpl_->operator()(x, y);
}
template class OneDNNAXPYHandler<float>;
template class OneDNNAXPYHandler<dtype::bfloat16>;
} // namespace funcs
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <memory>
#include "dnnl.hpp" // NOLINT
namespace phi {
namespace funcs {
///
/// @brief Helper class for AXPY execution using oneDNN library.
///
/// @tparam T Data type.
///
template <typename T>
class OneDNNAXPYHandler {
public:
OneDNNAXPYHandler(OneDNNAXPYHandler&) = delete;
OneDNNAXPYHandler(OneDNNAXPYHandler&&) = delete;
OneDNNAXPYHandler& operator=(OneDNNAXPYHandler&) = delete;
OneDNNAXPYHandler& operator=(OneDNNAXPYHandler&&) = delete;
///
/// @brief Constructor.
///
/// @param[in] n The number of elements in tensor (assumed 1D
/// tensor)
/// @param[in] alpha The alpha coefficient.
/// @param[in] onednn_engine The oneDNN engine.
///
OneDNNAXPYHandler(int64_t n, T alpha, dnnl::engine onednn_engine);
///
/// @brief Executes AXPY.
///
/// @param[in] x The pointer to input X tensor data.
/// @param[out] y The pointer to output Y tensor data.
///
void operator()(const T* x, T* y);
private:
OneDNNAXPYHandler() = delete;
// (arogowie-intel) Private implementation idiom to hide dependency
// on OneDNN headers.
class Impl;
// We need custom deleter, since the compiler is unable to parameterize
// an allocator's default deleter due to incomple type.
std::unique_ptr<Impl, void (*)(Impl*)> pimpl_;
};
} // namespace funcs
} // namespace phi
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/phi/kernels/sgd_kernel.h"
#include "paddle/phi/backends/onednn/axpy_handler.h"
#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"
namespace phi {
template <typename T, typename Context>
void SGDDenseKernel(const Context& dev_ctx,
const DenseTensor& param,
const DenseTensor& learning_rate,
const DenseTensor& grad,
const paddle::optional<DenseTensor>& master_param,
bool multi_precision,
DenseTensor* param_out,
DenseTensor* master_param_out) {
auto* out_data = dev_ctx.template Alloc<T>(param_out);
const T* param_data = param.data<T>();
const auto* grad_data = grad.data<T>();
const auto* lr = learning_rate.data<T>();
// Since denese SGD is not in place operation, first copy params to output
// tensor and then update it.
std::memcpy(out_data, param_data, param.memory_size());
funcs::OneDNNAXPYHandler<T>(param_out->numel(), -lr[0], dev_ctx.GetEngine())(
grad_data, out_data);
}
template <typename T, typename Context>
void SGDDenseParamSparseGradKernel(
const Context& dev_ctx,
const DenseTensor& param,
const DenseTensor& learning_rate,
const SelectedRows& grad,
const paddle::optional<DenseTensor>& master_param,
bool multi_precision,
DenseTensor* param_out,
DenseTensor* master_param_out) {
const auto& grad_value = grad.value();
const auto& grad_rows = grad.rows();
const auto grad_height = grad.height();
const int64_t grad_val_height = static_cast<int64_t>(grad_rows.size());
const auto grad_width = grad_value.numel() / grad_val_height;
const auto* grad_data = grad_value.data<T>();
auto* out_data = param_out->data<T>();
const auto* lr = learning_rate.data<T>();
funcs::OneDNNAXPYHandler<T> axpy_handler(
grad_width, -lr[0], dev_ctx.GetEngine());
for (size_t i = 0; i < grad_rows.size(); ++i) {
PADDLE_ENFORCE_LT(
grad_rows[i],
grad_height,
errors::OutOfRange(
"Grad rows index value should be less than grad height."
"Got [%s], but expected less than [%s]",
grad_rows[i],
grad_height));
const int64_t row = grad_rows[i];
const auto* src = grad_data + i * grad_width;
auto* dst = out_data + row * grad_width;
axpy_handler(src, dst);
}
}
} // namespace phi
PD_REGISTER_KERNEL(
sgd, OneDNN, ALL_LAYOUT, phi::SGDDenseKernel, float, phi::dtype::bfloat16) {
}
PD_REGISTER_KERNEL(sgd_dense_param_sparse_grad,
OneDNN,
ALL_LAYOUT,
phi::SGDDenseParamSparseGradKernel,
float,
phi::dtype::bfloat16) {}
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
Licensed under the Apache License, Version 2.0 (the "License"); // Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License. // you may not use this file except in compliance with the License.
You may obtain a copy of the License at // You may obtain a copy of the License at
//
http://www.apache.org/licenses/LICENSE-2.0 // http://www.apache.org/licenses/LICENSE-2.0
//
Unless required by applicable law or agreed to in writing, software // Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, // distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
limitations under the License. */ // limitations under the License.
#include "paddle/fluid/operators/utils.h" #include "paddle/phi/kernels/stack_kernel.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
namespace paddle { #include "paddle/phi/backends/onednn/onednn_reuse.h"
namespace operators { #include "paddle/phi/core/kernel_registry.h"
using dnnl::concat; namespace phi {
using dnnl::memory;
using dnnl::primitive; namespace funcs {
using dnnl::stream;
using framework::DataLayout;
using framework::LoDTensor;
using framework::Tensor;
using platform::to_void_cast;
template <typename T> template <typename T>
class StackMKLDNNHandler class StackOneDNNHandler : public OneDNNHandlerNoCachingT<T, dnnl::concat> {
: public platform::MKLDNNHandlerNoCachingT<T, dnnl::concat> {
public: public:
StackMKLDNNHandler(const framework::ExecutionContext& ctx, StackOneDNNHandler(const Place& cpu_place,
const dnnl::engine mkldnn_engine, int stack_axis,
const std::vector<const Tensor*>& inputs, const dnnl::engine onednn_engine,
Tensor* output) const std::vector<const DenseTensor*>& inputs,
: platform::MKLDNNHandlerNoCachingT<T, dnnl::concat>(mkldnn_engine, DenseTensor* output)
ctx.GetPlace()) { : OneDNNHandlerNoCachingT<T, dnnl::concat>(onednn_engine, cpu_place) {
int stack_axis = ctx.Attr<int>("axis");
int ndims = inputs[0]->dims().size(); int ndims = inputs[0]->dims().size();
if (stack_axis < 0) { if (stack_axis < 0) {
...@@ -45,13 +36,12 @@ class StackMKLDNNHandler ...@@ -45,13 +36,12 @@ class StackMKLDNNHandler
} }
// in stack op all inputs must have same dims // in stack op all inputs must have same dims
auto input_dims = phi::vectorize<int64_t>(inputs[0]->dims()); auto input_dims = vectorize<int64_t>(inputs[0]->dims());
memory::data_type dt = framework::ToMKLDNNDataType( dnnl::memory::data_type dt = ToOneDNNDataType(inputs[0]->dtype());
framework::TransToProtoVarType(inputs[0]->dtype()));
std::vector<memory::desc> srcs_md; std::vector<memory::desc> srcs_md;
memory::desc dst_md; dnnl::memory::desc dst_md;
MKLDNNMemoryFormat dst_fmt; OneDNNMemoryFormat dst_fmt;
srcs_md.reserve(inputs.size()); srcs_md.reserve(inputs.size());
...@@ -64,9 +54,9 @@ class StackMKLDNNHandler ...@@ -64,9 +54,9 @@ class StackMKLDNNHandler
} }
input_dims[stack_axis] *= inputs.size(); input_dims[stack_axis] *= inputs.size();
dst_md = memory::desc(input_dims, dt, MKLDNNMemoryFormat::any); dst_md = dnnl::memory::desc(input_dims, dt, OneDNNMemoryFormat::any);
} else { } else {
auto extended_input_dims = phi::vectorize<int64_t>(output->dims()); auto extended_input_dims = vectorize<int64_t>(output->dims());
extended_input_dims[stack_axis] = 1; extended_input_dims[stack_axis] = 1;
for (size_t i = 0; i < inputs.size(); ++i) { for (size_t i = 0; i < inputs.size(); ++i) {
...@@ -76,8 +66,8 @@ class StackMKLDNNHandler ...@@ -76,8 +66,8 @@ class StackMKLDNNHandler
// concat primitive choses suboptimal format tag because it cannot // concat primitive choses suboptimal format tag because it cannot
// distinguish between f.e. abcd and abdc if last dim is equal to 1 so // distinguish between f.e. abcd and abdc if last dim is equal to 1 so
// enforcing is needed for better performance // enforcing is needed for better performance
dst_fmt = platform::GetPlainMKLDNNFormat(extended_input_dims.size()); dst_fmt = GetPlainOneDNNFormat(extended_input_dims.size());
dst_md = memory::desc(phi::vectorize(output->dims()), dt, dst_fmt); dst_md = dnnl::memory::desc(vectorize(output->dims()), dt, dst_fmt);
} }
this->AcquireForwardPrimitiveDescriptor(dst_md, stack_axis, srcs_md); this->AcquireForwardPrimitiveDescriptor(dst_md, stack_axis, srcs_md);
...@@ -93,54 +83,45 @@ class StackMKLDNNHandler ...@@ -93,54 +83,45 @@ class StackMKLDNNHandler
dst_md, stack_axis, srcs_md, this->engine_)); dst_md, stack_axis, srcs_md, this->engine_));
} }
std::shared_ptr<dnnl::memory> AcquireSrcMemory(const Tensor& input, int i) { std::shared_ptr<dnnl::memory> AcquireSrcMemory(const DenseTensor& input,
int i) {
const T* input_data = input.data<T>(); const T* input_data = input.data<T>();
return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i), return this->AcquireMemoryFromPrimitive(this->fwd_pd_->src_desc(i),
to_void_cast<T>(input_data)); to_void_cast<T>(input_data));
} }
}; };
} // namespace funcs
template <typename T> template <typename T, typename Context>
class StackMKLDNNOpKernel : public paddle::framework::OpKernel<T> { void StackKernel(const Context& dev_ctx,
public: const std::vector<const DenseTensor*>& multi_input,
void Compute(const paddle::framework::ExecutionContext& ctx) const override { int axis,
auto& dev_ctx = DenseTensor* output) {
ctx.template device_context<platform::MKLDNNDeviceContext>(); const auto& onednn_engine = dev_ctx.GetEngine();
const auto& mkldnn_engine = dev_ctx.GetEngine();
auto multi_input = ctx.MultiInput<Tensor>("X");
Tensor* output = ctx.Output<Tensor>("Y"); funcs::StackOneDNNHandler<T> handler(
dev_ctx.GetPlace(), axis, onednn_engine, multi_input, output);
StackMKLDNNHandler<T> handler(ctx, mkldnn_engine, multi_input, output); std::vector<std::shared_ptr<dnnl::memory>> srcs;
srcs.reserve(multi_input.size());
std::vector<std::shared_ptr<memory>> srcs; auto dst_mem = handler.AcquireDstMemory(output);
srcs.reserve(multi_input.size()); auto concat_p = handler.AcquireForwardPrimitive();
auto dst_mem = handler.AcquireDstMemory(output); auto& astream = OneDNNContext::tls().get_stream();
auto concat_p = handler.AcquireForwardPrimitive(); std::unordered_map<int, dnnl::memory> args;
for (size_t i = 0; i < multi_input.size(); ++i) {
auto& astream = platform::MKLDNNDeviceContext::tls().get_stream(); srcs.push_back(handler.AcquireSrcMemory(*(multi_input[i]), i));
std::unordered_map<int, memory> args; args.insert({DNNL_ARG_MULTIPLE_SRC + i, *(srcs.at(i))});
for (size_t i = 0; i < multi_input.size(); ++i) { }
srcs.push_back(handler.AcquireSrcMemory(*(multi_input[i]), i)); args.insert({DNNL_ARG_DST, *dst_mem});
args.insert({DNNL_ARG_MULTIPLE_SRC + i, *(srcs.at(i))});
}
args.insert({DNNL_ARG_DST, *dst_mem});
concat_p->execute(astream, args); concat_p->execute(astream, args);
astream.wait(); astream.wait();
output->set_mem_desc( output->set_mem_desc(dst_mem->get_desc().reshape(vectorize(output->dims())));
dst_mem->get_desc().reshape(phi::vectorize(output->dims()))); }
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators; } // namespace phi
REGISTER_OP_KERNEL(stack, PD_REGISTER_KERNEL(stack, OneDNN, ALL_LAYOUT, phi::StackKernel, float) {}
MKLDNN,
::paddle::platform::CPUPlace,
ops::StackMKLDNNOpKernel<float>);
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册