Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2575b74f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2575b74f
编写于
11月 01, 2016
作者:
W
wangyang59
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refactored ExpandConvLayer and ExpandConvTransLayer with ConvBaseLayerCpu
上级
aa2cd2ce
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
355 addition
and
717 deletion
+355
-717
paddle/gserver/layers/ConvBaseLayer.h
paddle/gserver/layers/ConvBaseLayer.h
+1
-26
paddle/gserver/layers/ConvBaseLayerCpu.cpp
paddle/gserver/layers/ConvBaseLayerCpu.cpp
+241
-0
paddle/gserver/layers/ConvBaseLayerCpu.h
paddle/gserver/layers/ConvBaseLayerCpu.h
+91
-0
paddle/gserver/layers/ConvTransBaseLayer.cpp
paddle/gserver/layers/ConvTransBaseLayer.cpp
+0
-88
paddle/gserver/layers/ConvTransBaseLayer.h
paddle/gserver/layers/ConvTransBaseLayer.h
+0
-117
paddle/gserver/layers/ExpandConvLayer.cpp
paddle/gserver/layers/ExpandConvLayer.cpp
+6
-213
paddle/gserver/layers/ExpandConvLayer.h
paddle/gserver/layers/ExpandConvLayer.h
+4
-32
paddle/gserver/layers/ExpandConvTransLayer.cpp
paddle/gserver/layers/ExpandConvTransLayer.cpp
+6
-189
paddle/gserver/layers/ExpandConvTransLayer.h
paddle/gserver/layers/ExpandConvTransLayer.h
+4
-52
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+2
-0
未找到文件。
paddle/gserver/layers/ConvBaseLayer.h
浏览文件 @
2575b74f
...
@@ -78,12 +78,7 @@ protected:
...
@@ -78,12 +78,7 @@ protected:
/// of output size.
/// of output size.
bool
caffeMode_
;
bool
caffeMode_
;
/*The expandInput_ and transOutValue_ are used for CPU expand conv calc*/
/// Expand one sample at a time. shape:
/// (numChannels * filterPixels_, outputSizeH * outputSizeW)
MatrixPtr
expandInput_
;
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr
transOutValue_
;
public:
public:
explicit
ConvBaseLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
explicit
ConvBaseLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
...
@@ -135,26 +130,6 @@ public:
...
@@ -135,26 +130,6 @@ public:
CHECK_GE
(
imageSize
,
1
);
CHECK_GE
(
imageSize
,
1
);
return
imageSize
;
return
imageSize
;
}
}
/**
* Create or resize expandInput_.
*/
void
resetExpandInput
(
size_t
height
,
size_t
width
);
/**
* Create or resize transOutValue_.
*/
void
resetConvOutput
(
size_t
batchSize
,
int
inIdx
);
/**
* Add shared bias.
*/
void
addSharedBias
();
/**
* Add unshared bias.
*/
void
addUnsharedBias
();
};
};
}
// namespace paddle
}
// namespace paddle
paddle/gserver/layers/ConvBaseLayerCpu.cpp
0 → 100644
浏览文件 @
2575b74f
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "ConvBaseLayerCpu.h"
namespace
paddle
{
bool
ConvBaseLayerCpu
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
int
channel
;
/* Initialize the projection */
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
subM_
.
push_back
(
numFilters_
/
conf
.
groups
());
subN_
.
push_back
(
conf
.
output_x
()
*
conf
.
output_x
());
channel
=
isConv_
?
conf
.
channels
()
:
numFilters_
;
subK_
.
push_back
(
channel
*
conf
.
filter_size
()
*
conf
.
filter_size
()
/
conf
.
groups
());
/* Consistent caffe mode for multiple input */
caffeMode_
=
conf
.
caffe_mode
();
}
return
true
;
}
void
ConvBaseLayerCpu
::
resetExpandInput
(
size_t
height
,
size_t
width
)
{
Matrix
::
resizeOrCreate
(
expandInput_
,
height
,
width
,
false
,
useGpu_
);
}
void
ConvBaseLayerCpu
::
addSharedBias
()
{
size_t
mapW
=
getSize
()
/
numFilters_
;
size_t
mapH
=
getOutputValue
()
->
getElementCnt
()
/
mapW
;
MatrixPtr
out
=
Matrix
::
create
(
getOutputValue
()
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
out
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
transOutValue_
->
addBias
(
*
bias
,
1.0
f
);
transOutValue_
->
reshape
(
mapW
,
mapH
);
transOutValue_
->
transpose
(
out
,
false
);
// false means no memory allocation
out
->
clear
();
bias
->
clear
();
}
void
ConvBaseLayerCpu
::
addUnsharedBias
()
{
MatrixPtr
outValue
=
getOutputValue
();
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
outValue
->
addBias
(
*
bias
,
1.0
f
);
}
void
ConvBaseLayerCpu
::
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
)
{
int
channel
=
isConv_
?
channels_
[
inIdx
]
:
numFilters_
;
resetExpandInput
(
subK_
[
inIdx
]
*
groups_
[
inIdx
],
subN_
[
inIdx
]);
real
*
imgData
=
image
->
getData
()
+
startIdx
*
image
->
getWidth
();
MatrixPtr
imageTmp
=
Matrix
::
create
(
imgData
,
1
,
imgSizeH_
[
inIdx
]
*
imgSizeW_
[
inIdx
]
*
channel
,
false
,
useGpu_
);
expandInput_
->
convExpand
(
*
imageTmp
,
imgSizeH_
[
inIdx
],
imgSizeW_
[
inIdx
],
channel
,
filterSize_
[
inIdx
],
filterSize_
[
inIdx
],
stride_
[
inIdx
],
stride_
[
inIdx
],
padding_
[
inIdx
],
padding_
[
inIdx
],
outputH_
[
inIdx
],
outputW_
[
inIdx
]);
imageTmp
->
clear
();
}
void
ConvBaseLayerCpu
::
expandFwdOnce
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inIdx
,
int
startIdx
)
{
int
subM
=
subM_
[
inIdx
];
int
subN
=
subN_
[
inIdx
];
int
subK
=
subK_
[
inIdx
];
expandOneFrame
(
image
,
startIdx
,
inIdx
);
int
nf
=
isConv_
?
numFilters_
:
channels_
[
inIdx
];
real
*
outData
=
out
->
getData
()
+
startIdx
*
subN
*
nf
;
real
*
wgtData
=
weights_
[
inIdx
]
->
getW
()
->
getData
();
real
*
expInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inIdx
];
++
g
)
{
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
true
,
useGpu_
);
// mark transpose
MatrixPtr
B
=
Matrix
::
create
(
expInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
outData
,
subM
,
subN
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
wgtData
+=
subK
*
subM
;
expInData
+=
subK
*
subN
;
outData
+=
subM
*
subN
;
}
}
void
ConvBaseLayerCpu
::
bpropActs
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
)
{
int
channel
=
isConv_
?
channels_
[
inpIdx
]
:
numFilters_
;
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
image
->
getHeight
();
MatrixPtr
tgtGrad
=
out
;
/* reset the expand-grad memory */
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
real
*
localGradData
=
image
->
getData
();
real
*
tgtGradData
=
tgtGrad
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
real
*
wgtData
=
weights_
[
inpIdx
]
->
getW
()
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
// create temporary matrix
MatrixPtr
C
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
localGradData
,
subM
,
subN
,
false
,
useGpu_
);
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
);
// mul
// clear the temporary matrix
A
->
clear
();
B
->
clear
();
C
->
clear
();
expandInData
+=
subK
*
subN
;
localGradData
+=
subM
*
subN
;
wgtData
+=
subK
*
subM
;
}
// shrink one frame outGrad
MatrixPtr
oneGradTmp
=
Matrix
::
create
(
expandInput_
->
getData
(),
subK
*
groups_
[
inpIdx
],
subN
,
false
,
useGpu_
);
MatrixPtr
vTmp
=
Matrix
::
create
(
tgtGradData
,
1
,
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channel
,
false
,
useGpu_
);
vTmp
->
convShrink
(
*
oneGradTmp
,
imgSizeH_
[
inpIdx
],
imgSizeW_
[
inpIdx
],
channel
,
filterSize_
[
inpIdx
],
filterSize_
[
inpIdx
],
stride_
[
inpIdx
],
stride_
[
inpIdx
],
padding_
[
inpIdx
],
padding_
[
inpIdx
],
outputH_
[
inpIdx
],
outputW_
[
inpIdx
],
1.0
f
,
1.0
f
);
vTmp
->
clear
();
oneGradTmp
->
clear
();
// move the data-pointer
tgtGradData
+=
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channel
;
}
}
void
ConvBaseLayerCpu
::
bpropWeights
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
)
{
MatrixPtr
weightGrad
=
weights_
[
inpIdx
]
->
getWGrad
();
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
image
->
getHeight
();
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
real
*
gradData
=
out
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
// frame by frame
// expand
expandOneFrame
(
image
,
n
,
inpIdx
);
real
*
wGradData
=
weightGrad
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
// expand-mul one-group by one
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
MatrixPtr
A
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
gradData
,
subM
,
subN
,
true
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
wGradData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
gradData
+=
subM
*
subN
;
wGradData
+=
subK
*
subM
;
expandInData
+=
subK
*
subN
;
}
}
}
void
ConvBaseLayerCpu
::
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
)
{
size_t
mapW
=
getSize
()
/
numFilters_
;
size_t
mapH
=
v
->
getElementCnt
()
/
mapW
;
MatrixPtr
vTmp
=
Matrix
::
create
(
v
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
vTmp
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
biases
->
collectBias
(
*
transOutValue_
,
1.0
f
);
}
void
ConvBaseLayerCpu
::
bpropBiases
(
MatrixPtr
v
)
{
MatrixPtr
biases
=
Matrix
::
create
(
biases_
->
getWGrad
()
->
getData
(),
1
,
biases_
->
getWGrad
()
->
getElementCnt
(),
false
,
useGpu_
);
if
(
sharedBiases_
)
{
bpropSharedBias
(
biases
,
v
);
}
else
{
biases
->
collectBias
(
*
v
,
1.0
f
);
}
biases
->
clear
();
}
}
// namespace paddle
paddle/gserver/layers/ConvBaseLayerCpu.h
0 → 100644
浏览文件 @
2575b74f
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "ConvBaseLayer.h"
#include "paddle/math/Matrix.h"
#include <vector>
namespace
paddle
{
/**
* @brief A subclass of ConvBaseLayer that is a superclass of both
* ExpandConvLayer and ExpandConvTransLayer
*/
class
ConvBaseLayerCpu
:
public
ConvBaseLayer
{
protected:
/// For expand convolution.
/// subM_ = numFilters_ / groups_.
IntV
subM_
;
/// subN_ = outputH_ * outputW_.
IntV
subN_
;
/// subK_ = channels_ * filterPixels_ * groups_.
IntV
subK_
;
/// The spatial dimensions of height of input feature map.
IntV
imgSizeH_
;
/// The spatial dimensions of width of input feature map.
IntV
imgSizeW_
;
/// The spatial dimensions of height of output feature map.
IntV
outputH_
;
/// The spatial dimensions of width of output feature map.
IntV
outputW_
;
/*The expandInput_ and transOutValue_ are used for CPU expand conv calc*/
/// Expand one sample at a time. shape:
/// (numChannels * filterPixels_, outputSizeH * outputSizeW)
MatrixPtr
expandInput_
;
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr
transOutValue_
;
public:
explicit
ConvBaseLayerCpu
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
~
ConvBaseLayerCpu
()
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
/**
* Create or resize expandInput_.
*/
void
resetExpandInput
(
size_t
height
,
size_t
width
);
/**
* Add shared bias.
*/
void
addSharedBias
();
/**
* Add unshared bias.
*/
void
addUnsharedBias
();
/**
* Expand one input sample.
*/
void
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
);
/**
* Expand one input sample and perform matrix multiplication.
*/
void
expandFwdOnce
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inIdx
,
int
startIdx
);
void
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
);
void
bpropBiases
(
MatrixPtr
v
);
void
bpropWeights
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
);
void
bpropActs
(
MatrixPtr
image
,
MatrixPtr
out
,
int
inpIdx
);
};
}
// namespace paddle
paddle/gserver/layers/ConvTransBaseLayer.cpp
已删除
100644 → 0
浏览文件 @
aa2cd2ce
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/utils/Logging.h"
#include "ConvTransBaseLayer.h"
namespace
paddle
{
bool
ConvTransBaseLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic parent class */
Layer
::
init
(
layerMap
,
parameterMap
);
/* Initialize the convolutional layer parameter */
/* Everything is the same as ConvBaseLayer.cpp except that the meaning of
* num_filters and channel is switched.
*
* In the config, num_filters refer to the number of feature maps in the
* output of convTransLayer, and channel refer to the number of feature maps
* in the input of convTransLayer.
*
* However, within the convTrans class, the channel is related to the output
* and num_filters is related to the input, so that it is consistent with the
* settings in convLayer.
* */
channel_
=
config_
.
num_filters
();
sharedBiases_
=
config_
.
shared_biases
();
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
padding_
.
push_back
(
conf
.
padding
());
stride_
.
push_back
(
conf
.
stride
());
filterSize_
.
push_back
(
conf
.
filter_size
());
paddingY_
.
push_back
(
conf
.
padding_y
());
strideY_
.
push_back
(
conf
.
stride_y
());
filterSizeY_
.
push_back
(
conf
.
filter_size_y
());
filterPixels_
.
push_back
(
filterSize_
.
back
()
*
filterSizeY_
.
back
());
numFilters_
.
push_back
(
conf
.
channels
());
imgSize_
.
push_back
(
conf
.
img_size
());
imgPixels_
.
push_back
(
imgSize_
.
back
()
*
imgSize_
.
back
());
groups_
.
push_back
(
conf
.
groups
());
filterChannels_
.
push_back
(
conf
.
filter_channels
());
outputX_
.
push_back
(
conf
.
output_x
());
outputs_
.
push_back
(
outputX_
.
back
()
*
outputX_
.
back
());
}
/* initialize the weightList */
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
size_t
height
,
width
;
height
=
filterPixels_
[
i
]
*
filterChannels_
[
i
];
width
=
numFilters_
[
i
];
// create a new weight
CHECK_EQ
(
parameters_
[
i
]
->
getSize
(),
width
*
height
);
Weight
*
w
=
new
Weight
(
height
,
width
,
parameters_
[
i
]);
weights_
.
emplace_back
(
w
);
}
/* initialize the biases_ */
if
(
biasParameter_
.
get
()
!=
NULL
)
{
if
(
sharedBiases_
)
{
CHECK_EQ
((
size_t
)
channel_
,
biasParameter_
->
getSize
());
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
channel_
,
1
,
biasParameter_
));
}
else
{
biases_
=
std
::
unique_ptr
<
Weight
>
(
new
Weight
(
getSize
(),
1
,
biasParameter_
));
}
}
// default caffe model
caffeMode_
=
true
;
return
true
;
}
}
// namespace paddle
paddle/gserver/layers/ConvTransBaseLayer.h
已删除
100644 → 0
浏览文件 @
aa2cd2ce
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "Layer.h"
namespace
paddle
{
/**
* @brief A Base Convolution Layer, which convolves the input image
* with learned filters and (optionally) adds biases.
*/
class
ConvTransBaseLayer
:
public
Layer
{
protected:
typedef
std
::
vector
<
int
>
IntV
;
/// The number of channel in image (the output of the deconv layer).
int
channel_
;
/// The x dimension of the padding.
IntV
padding_
;
/// The y dimension of the padding.
IntV
paddingY_
;
/// The x dimension of the stride.
IntV
stride_
;
/// The y dimension of the stride.
IntV
strideY_
;
/// The x dimension of a filter kernel.
IntV
filterSize_
;
/// The y dimension of a filter kernel.
IntV
filterSizeY_
;
/// The number of filters(i.e. the number channels of the deconv layer input)
IntV
numFilters_
;
/// The spatial dimensions of input feature map.
IntV
imgSize_
;
/// The total pixel size of input feature map.
/// imgPixels_ = imgSizeX_ * imgSizeY_.
IntV
imgPixels_
;
/// filterPixels_ = filterSizeX_ * filterSizeY_.
IntV
filterPixels_
;
/// filterChannels_ = channels_/groups_.
IntV
filterChannels_
;
/// The spatial dimensions of output feature map.
IntV
outputX_
;
/// The spatial dimensions of output feature map.
IntV
outputs_
;
/// Group size, refer to grouped convolution in
/// Alex Krizhevsky's paper: when group=2, the first half of the
/// filters are only connected to the first half of the input channels,
/// and the second half only connected to the second half.
IntV
groups_
;
/// Whether the bias is shared for feature in each channel.
bool
sharedBiases_
;
/// shape of weight: (numChannels * filterPixels_, numFilters)
WeightList
weights_
;
/// If shared_biases is false shape of bias: (numFilters_, 1)
/// If shared_biases is ture shape of bias:
/// (numFilters_ * outputX * outputY, 1)
std
::
unique_ptr
<
Weight
>
biases_
;
/// True by default. The only difference is the calculation
/// of output size.
bool
caffeMode_
;
public:
explicit
ConvTransBaseLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
virtual
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
);
Weight
&
getWeight
(
int
idx
)
{
return
*
weights_
[
idx
];
}
/**
* Calculate image size based on caffeMode_ from outputSize.
* - input(+padding): 0123456789
* - imageSize(+padding) = 10;
* - filterSize = 3;
* - stride = 2;
* - caffeMode_ is true:
- output: (012), (234), (456), (678)
- outputSize = 4;
* - caffeMode_ is false:
* - output: (012), (234), (456), (678), (9)
* - outputSize = 5;
*/
/*
* In order to be consistent with the convLayer, here the outputSize is
* actually the size of the input image of convTransLayer, and the image size
* is actually the size of the output image of convTransLayer
*/
int
imageSize
(
int
outputSize
,
int
filterSize
,
int
padding
,
int
stride
)
{
int
imageSize
;
if
(
!
caffeMode_
)
{
imageSize
=
(
outputSize
-
1
)
*
stride
+
filterSize
-
2
*
padding
-
stride
+
1
;
}
else
{
imageSize
=
(
outputSize
-
1
)
*
stride
+
filterSize
-
2
*
padding
;
}
CHECK_GE
(
imageSize
,
1
);
return
imageSize
;
}
};
}
// namespace paddle
paddle/gserver/layers/ExpandConvLayer.cpp
浏览文件 @
2575b74f
...
@@ -24,32 +24,7 @@ REGISTER_LAYER(exconv, ExpandConvLayer);
...
@@ -24,32 +24,7 @@ REGISTER_LAYER(exconv, ExpandConvLayer);
bool
ExpandConvLayer
::
init
(
const
LayerMap
&
layerMap
,
bool
ExpandConvLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
/* Initialize the basic convolutional parent class */
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
ConvBaseLayerCpu
::
init
(
layerMap
,
parameterMap
);
/* Initialize the projection */
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
subM_
.
push_back
(
numFilters_
/
conf
.
groups
());
subN_
.
push_back
(
conf
.
output_x
()
*
conf
.
output_x
());
subK_
.
push_back
(
conf
.
channels
()
*
conf
.
filter_size
()
*
conf
.
filter_size
()
/
conf
.
groups
());
/* Consistent caffe mode for multiple input */
caffeMode_
=
conf
.
caffe_mode
();
}
/* initialize the weightList */
CHECK
(
inputLayers_
.
size
()
==
parameters_
.
size
());
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
size_t
height
,
width
;
height
=
filterPixels_
[
i
]
*
filterChannels_
[
i
];
width
=
numFilters_
;
// create a new weight
CHECK_EQ
(
parameters_
[
i
]
->
getSize
(),
width
*
height
);
Weight
*
w
=
new
Weight
(
height
,
width
,
parameters_
[
i
]);
weights_
.
emplace_back
(
w
);
}
return
true
;
return
true
;
}
}
...
@@ -63,72 +38,6 @@ size_t ExpandConvLayer::getOutputSize() {
...
@@ -63,72 +38,6 @@ size_t ExpandConvLayer::getOutputSize() {
return
layerSize
;
return
layerSize
;
}
}
void
ExpandConvLayer
::
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
)
{
resetExpandInput
(
subK_
[
inIdx
]
*
groups_
[
inIdx
],
subN_
[
inIdx
]);
real
*
imgData
=
image
->
getData
()
+
startIdx
*
image
->
getWidth
();
MatrixPtr
imageTmp
=
Matrix
::
create
(
imgData
,
1
,
imgSizeH_
[
inIdx
]
*
imgSizeW_
[
inIdx
]
*
channels_
[
inIdx
],
false
,
useGpu_
);
expandInput_
->
convExpand
(
*
imageTmp
,
imgSizeH_
[
inIdx
],
imgSizeW_
[
inIdx
],
channels_
[
inIdx
],
filterSize_
[
inIdx
],
filterSize_
[
inIdx
],
stride_
[
inIdx
],
stride_
[
inIdx
],
padding_
[
inIdx
],
padding_
[
inIdx
],
outputH_
[
inIdx
],
outputW_
[
inIdx
]);
imageTmp
->
clear
();
}
void
ExpandConvLayer
::
expandFwdOnce
(
MatrixPtr
image
,
int
inIdx
,
int
startIdx
)
{
int
subM
=
subM_
[
inIdx
];
int
subN
=
subN_
[
inIdx
];
int
subK
=
subK_
[
inIdx
];
expandOneFrame
(
image
,
startIdx
,
inIdx
);
real
*
outData
=
getOutputValue
()
->
getData
()
+
startIdx
*
subN
*
numFilters_
;
real
*
wgtData
=
weights_
[
inIdx
]
->
getW
()
->
getData
();
real
*
expInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inIdx
];
++
g
)
{
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
true
,
useGpu_
);
// mark transpose
MatrixPtr
B
=
Matrix
::
create
(
expInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
outData
,
subM
,
subN
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
wgtData
+=
subK
*
subM
;
expInData
+=
subK
*
subN
;
outData
+=
subM
*
subN
;
}
}
void
ExpandConvLayer
::
addSharedBias
()
{
size_t
mapW
=
getOutputValue
()
->
getWidth
()
/
numFilters_
;
size_t
mapH
=
getOutputValue
()
->
getElementCnt
()
/
mapW
;
MatrixPtr
out
=
Matrix
::
create
(
getOutputValue
()
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
out
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
transOutValue_
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
MatrixPtr
bias
=
Matrix
::
create
(
biases_
->
getW
()
->
getData
(),
1
,
biases_
->
getW
()
->
getElementCnt
(),
false
,
useGpu_
);
transOutValue_
->
addBias
(
*
bias
,
1.0
f
);
transOutValue_
->
reshape
(
mapW
,
mapH
);
transOutValue_
->
transpose
(
out
,
false
);
// false means no memory allocation
void
ExpandConvLayer
::
forward
(
PassType
passType
)
{
void
ExpandConvLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
Layer
::
forward
(
passType
);
...
@@ -145,7 +54,7 @@ void ExpandConvLayer::forward(PassType passType) {
...
@@ -145,7 +54,7 @@ void ExpandConvLayer::forward(PassType passType) {
image
=
prevLayer
->
getOutputValue
();
image
=
prevLayer
->
getOutputValue
();
for
(
size_t
off
=
0
;
off
<
image
->
getHeight
();
off
++
)
{
for
(
size_t
off
=
0
;
off
<
image
->
getHeight
();
off
++
)
{
REGISTER_TIMER_INFO
(
"expandFwdOnce"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"expandFwdOnce"
,
getName
().
c_str
());
expandFwdOnce
(
image
,
i
,
off
);
expandFwdOnce
(
image
,
getOutputValue
(),
i
,
off
);
}
}
}
}
/* add the bias-vector */
/* add the bias-vector */
...
@@ -161,29 +70,6 @@ void ExpandConvLayer::forward(PassType passType) {
...
@@ -161,29 +70,6 @@ void ExpandConvLayer::forward(PassType passType) {
forwardActivation
();
forwardActivation
();
}
}
void
ExpandConvLayer
::
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
)
{
size_t
mapW
=
v
->
getWidth
()
/
numFilters_
;
size_t
mapH
=
v
->
getElementCnt
()
/
mapW
;
MatrixPtr
vTmp
=
Matrix
::
create
(
v
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
vTmp
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
vTmp
->
reshape
(
transOutValue_
->
getElementCnt
()
/
numFilters_
,
numFilters_
);
biases
->
collectBias
(
*
vTmp
,
1.0
f
);
}
void
ExpandConvLayer
::
bpropBiases
(
MatrixPtr
v
)
{
MatrixPtr
biases
=
Matrix
::
create
(
biases_
->
getWGrad
()
->
getData
(),
1
,
biases_
->
getWGrad
()
->
getElementCnt
(),
false
,
useGpu_
);
if
(
sharedBiases_
)
{
bpropSharedBias
(
biases
,
v
);
}
else
{
biases
->
collectBias
(
*
v
,
1.0
f
);
}
biases
->
clear
();
}
void
ExpandConvLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
void
ExpandConvLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
backwardActivation
();
...
@@ -197,109 +83,16 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
...
@@ -197,109 +83,16 @@ void ExpandConvLayer::backward(const UpdateCallback &callback) {
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
/* First, calculate the input layers error */
/* First, calculate the input layers error */
bpropActs
(
outGrad
,
i
);
if
(
NULL
!=
getPrev
(
i
)
->
getOutputGrad
())
{
bpropActs
(
outGrad
,
getPrev
(
i
)
->
getOutputGrad
(),
i
);
}
if
(
weights_
[
i
]
->
getWGrad
())
{
if
(
weights_
[
i
]
->
getWGrad
())
{
/* Then, calculate the W-gradient for the current layer */
/* Then, calculate the W-gradient for the current layer */
bpropWeights
(
outGrad
,
i
);
bpropWeights
(
getPrev
(
i
)
->
getOutputValue
(),
outGrad
,
i
);
/* Increasing the number of gradient */
/* Increasing the number of gradient */
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
}
}
}
void
ExpandConvLayer
::
bpropWeights
(
MatrixPtr
v
,
int
inpIdx
)
{
MatrixPtr
weightGrad
=
weights_
[
inpIdx
]
->
getWGrad
();
MatrixPtr
inputV
=
getPrev
(
inpIdx
)
->
getOutputValue
();
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
inputV
->
getHeight
();
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
resetConvOutput
(
batchSize
,
inpIdx
);
real
*
gradData
=
v
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
// frame by frame
// expand
expandOneFrame
(
inputV
,
n
,
inpIdx
);
real
*
wGradData
=
weightGrad
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
// expand-mul one-group by one
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
MatrixPtr
A
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
gradData
,
subM
,
subN
,
true
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
wGradData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
gradData
+=
subM
*
subN
;
wGradData
+=
subK
*
subM
;
expandInData
+=
subK
*
subN
;
}
}
}
void
ExpandConvLayer
::
bpropActs
(
MatrixPtr
v
,
int
inpIdx
)
{
LayerPtr
prevLayer
=
getPrev
(
inpIdx
);
if
(
NULL
==
prevLayer
->
getOutputGrad
())
{
return
;
}
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
v
->
getHeight
();
MatrixPtr
tgtGrad
=
prevLayer
->
getOutputGrad
();
/* reset the expand-grad memory */
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
resetConvOutput
(
batchSize
,
inpIdx
);
real
*
localGradData
=
v
->
getData
();
real
*
tgtGradData
=
tgtGrad
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
real
*
wgtData
=
weights_
[
inpIdx
]
->
getW
()
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
// create temporary matrix
MatrixPtr
C
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
localGradData
,
subM
,
subN
,
false
,
useGpu_
);
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
);
// mul
// clear the temporary matrix
A
->
clear
();
B
->
clear
();
C
->
clear
();
expandInData
+=
subK
*
subN
;
localGradData
+=
subM
*
subN
;
wgtData
+=
subK
*
subM
;
}
// shrink one frame outGrad
MatrixPtr
oneGradTmp
=
Matrix
::
create
(
expandInput_
->
getData
(),
subK
*
groups_
[
inpIdx
],
subN
,
false
,
useGpu_
);
MatrixPtr
vTmp
=
Matrix
::
create
(
tgtGradData
,
1
,
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channels_
[
inpIdx
],
false
,
useGpu_
);
vTmp
->
convShrink
(
*
oneGradTmp
,
imgSizeH_
[
inpIdx
],
imgSizeW_
[
inpIdx
],
channels_
[
inpIdx
],
filterSize_
[
inpIdx
],
filterSize_
[
inpIdx
],
stride_
[
inpIdx
],
stride_
[
inpIdx
],
padding_
[
inpIdx
],
padding_
[
inpIdx
],
outputH_
[
inpIdx
],
outputW_
[
inpIdx
],
1.0
f
,
1.0
f
);
vTmp
->
clear
();
oneGradTmp
->
clear
();
// move the data-pointer
tgtGradData
+=
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channels_
[
inpIdx
];
}
}
}
// namespace paddle
}
// namespace paddle
paddle/gserver/layers/ExpandConvLayer.h
浏览文件 @
2575b74f
...
@@ -15,7 +15,7 @@ limitations under the License. */
...
@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once
#pragma once
#include "ConvBaseLayer.h"
#include "ConvBaseLayer
Cpu
.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Matrix.h"
#include <vector>
#include <vector>
...
@@ -28,24 +28,11 @@ namespace paddle {
...
@@ -28,24 +28,11 @@ namespace paddle {
*
*
* The config file api is img_conv_layer.
* The config file api is img_conv_layer.
*/
*/
class
ExpandConvLayer
:
public
ConvBaseLayer
{
protected:
/// For expand convolution.
/// subM_ = numFilters_ / groups_.
IntV
subM_
;
/// subN_ = outputH_ * outputW_.
IntV
subN_
;
/// subK_ = channels_ * filterPixels_ * groups_.
IntV
subK_
;
/// Expand one sample at a time. shape:
/// (numChannels * filterPixels_, outputSizeH * outputSizeW)
MatrixPtr
expandInput_
;
/// The transpose of output, which is an auxiliary matrix.
MatrixPtr
transOutValue_
;
class
ExpandConvLayer
:
public
ConvBaseLayerCpu
{
public:
public:
explicit
ExpandConvLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
explicit
ExpandConvLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayerCpu
(
config
)
{}
~
ExpandConvLayer
()
{}
~
ExpandConvLayer
()
{}
...
@@ -53,23 +40,8 @@ public:
...
@@ -53,23 +40,8 @@ public:
size_t
getOutputSize
();
size_t
getOutputSize
();
/**
* Expand one input sample.
*/
void
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
);
/**
* Expand one input sample and perform matrix multiplication.
*/
void
expandFwdOnce
(
MatrixPtr
image
,
int
inIdx
,
int
startIdx
);
void
forward
(
PassType
passType
);
void
forward
(
PassType
passType
);
void
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
);
void
bpropBiases
(
MatrixPtr
v
);
void
backward
(
const
UpdateCallback
&
callback
);
void
backward
(
const
UpdateCallback
&
callback
);
void
bpropWeights
(
MatrixPtr
v
,
int
inpIdx
);
void
bpropActs
(
MatrixPtr
v
,
int
inpIdx
);
};
};
}
// namespace paddle
}
// namespace paddle
paddle/gserver/layers/ExpandConvTransLayer.cpp
浏览文件 @
2575b74f
...
@@ -29,18 +29,7 @@ REGISTER_LAYER(exconvt, ExpandConvTransLayer);
...
@@ -29,18 +29,7 @@ REGISTER_LAYER(exconvt, ExpandConvTransLayer);
bool
ExpandConvTransLayer
::
init
(
const
LayerMap
&
layerMap
,
bool
ExpandConvTransLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
const
ParameterMap
&
parameterMap
)
{
/* Initialize the basic convolutional parent class */
/* Initialize the basic convolutional parent class */
ConvBaseLayer
::
init
(
layerMap
,
parameterMap
);
ConvBaseLayerCpu
::
init
(
layerMap
,
parameterMap
);
/* Initialize the projection */
for
(
auto
&
inputConfig
:
config_
.
inputs
())
{
const
ConvConfig
&
conf
=
inputConfig
.
conv_conf
();
subM_
.
push_back
(
conf
.
channels
()
/
conf
.
groups
());
subN_
.
push_back
(
conf
.
output_x
()
*
conf
.
output_x
());
subK_
.
push_back
(
numFilters_
*
conf
.
filter_size
()
*
conf
.
filter_size
()
/
conf
.
groups
());
/* Consistent caffe mode for multiple input */
caffeMode_
=
conf
.
caffe_mode
();
}
return
true
;
return
true
;
}
}
...
@@ -73,67 +62,6 @@ size_t ExpandConvTransLayer::getSize() {
...
@@ -73,67 +62,6 @@ size_t ExpandConvTransLayer::getSize() {
return
layerSize
;
return
layerSize
;
}
}
void
ExpandConvTransLayer
::
resetExpandInput
(
size_t
height
,
size_t
width
)
{
Matrix
::
resizeOrCreate
(
expandInput_
,
height
,
width
,
false
,
useGpu_
);
}
/*void ExpandConvTransLayer::resetConvOutput(size_t batchSize, int inIdx) {
Matrix::resizeOrCreate(transOutValue_, batchSize * numFilters_, subN_[inIdx],
false, useGpu_);
}*/
void
ExpandConvTransLayer
::
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
)
{
resetExpandInput
(
subK_
[
inIdx
]
*
groups_
[
inIdx
],
subN_
[
inIdx
]);
real
*
imgData
=
image
->
getData
()
+
startIdx
*
image
->
getWidth
();
MatrixPtr
imageTmp
=
Matrix
::
create
(
imgData
,
1
,
imgSizeH_
[
inIdx
]
*
imgSizeW_
[
inIdx
]
*
channel_
,
false
,
useGpu_
);
expandInput_
->
convExpand
(
*
imageTmp
,
imgSizeH_
[
inIdx
],
imgSizeW_
[
inIdx
],
channel_
,
filterSize_
[
inIdx
],
filterSize_
[
inIdx
],
stride_
[
inIdx
],
stride_
[
inIdx
],
padding_
[
inIdx
],
padding_
[
inIdx
],
outputH_
[
inIdx
],
outputW_
[
inIdx
]);
imageTmp
->
clear
();
}
void
ExpandConvTransLayer
::
expandBackOnce
(
MatrixPtr
imageGrad
,
int
inIdx
,
int
startIdx
)
{
int
subM
=
subM_
[
inIdx
];
int
subN
=
subN_
[
inIdx
];
int
subK
=
subK_
[
inIdx
];
LayerPtr
prevLayer
=
getPrev
(
inIdx
);
if
(
NULL
==
prevLayer
->
getOutputGrad
())
{
return
;
}
expandOneFrame
(
imageGrad
,
startIdx
,
inIdx
);
real
*
outGradData
=
prevLayer
->
getOutputGrad
()
->
getData
()
+
startIdx
*
subN
*
numFilters_
[
inIdx
];
real
*
wgtData
=
weights_
[
inIdx
]
->
getW
()
->
getData
();
real
*
expInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inIdx
];
++
g
)
{
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
true
,
useGpu_
);
// mark transpose
MatrixPtr
B
=
Matrix
::
create
(
expInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
outGradData
,
subM
,
subN
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
wgtData
+=
subK
*
subM
;
expInData
+=
subK
*
subN
;
outGradData
+=
subM
*
subN
;
}
}
void
ExpandConvTransLayer
::
forward
(
PassType
passType
)
{
void
ExpandConvTransLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
Layer
::
forward
(
passType
);
...
@@ -148,7 +76,7 @@ void ExpandConvTransLayer::forward(PassType passType) {
...
@@ -148,7 +76,7 @@ void ExpandConvTransLayer::forward(PassType passType) {
LayerPtr
prevLayer
=
getPrev
(
i
);
LayerPtr
prevLayer
=
getPrev
(
i
);
output
=
prevLayer
->
getOutputValue
();
output
=
prevLayer
->
getOutputValue
();
REGISTER_TIMER_INFO
(
"shrinkFwd"
,
getName
().
c_str
());
REGISTER_TIMER_INFO
(
"shrinkFwd"
,
getName
().
c_str
());
shrinkFwd
(
output
,
i
);
bpropActs
(
output
,
getOutputValue
()
,
i
);
}
}
/* add the bias-vector */
/* add the bias-vector */
...
@@ -164,84 +92,6 @@ void ExpandConvTransLayer::forward(PassType passType) {
...
@@ -164,84 +92,6 @@ void ExpandConvTransLayer::forward(PassType passType) {
forwardActivation
();
forwardActivation
();
}
}
void
ExpandConvTransLayer
::
shrinkFwd
(
MatrixPtr
output
,
int
inpIdx
)
{
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
output
->
getHeight
();
MatrixPtr
image
=
getOutputValue
();
/* reset the expand-grad memory */
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
real
*
localData
=
output
->
getData
();
real
*
imageData
=
image
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
real
*
wgtData
=
weights_
[
inpIdx
]
->
getW
()
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
// create temporary matrix
MatrixPtr
C
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
localData
,
subM
,
subN
,
false
,
useGpu_
);
MatrixPtr
A
=
Matrix
::
create
(
wgtData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
);
// mul
// clear the temporary matrix
A
->
clear
();
B
->
clear
();
C
->
clear
();
expandInData
+=
subK
*
subN
;
localData
+=
subM
*
subN
;
wgtData
+=
subK
*
subM
;
}
// shrink one frame outGrad
MatrixPtr
oneTmp
=
Matrix
::
create
(
expandInput_
->
getData
(),
subK
*
groups_
[
inpIdx
],
subN
,
false
,
useGpu_
);
MatrixPtr
vTmp
=
Matrix
::
create
(
imageData
,
1
,
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channel_
,
false
,
useGpu_
);
vTmp
->
convShrink
(
*
oneTmp
,
imgSizeH_
[
inpIdx
],
imgSizeW_
[
inpIdx
],
channel_
,
filterSize_
[
inpIdx
],
filterSize_
[
inpIdx
],
stride_
[
inpIdx
],
stride_
[
inpIdx
],
padding_
[
inpIdx
],
padding_
[
inpIdx
],
outputH_
[
inpIdx
],
outputW_
[
inpIdx
],
1.0
f
,
1.0
f
);
vTmp
->
clear
();
oneTmp
->
clear
();
// move the data-pointer
imageData
+=
imgSizeH_
[
inpIdx
]
*
imgSizeW_
[
inpIdx
]
*
channel_
;
}
}
void
ExpandConvTransLayer
::
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
)
{
size_t
mapW
=
getSize
()
/
channel_
;
size_t
mapH
=
v
->
getElementCnt
()
/
mapW
;
MatrixPtr
vTmp
=
Matrix
::
create
(
v
->
getData
(),
mapH
,
mapW
,
false
,
useGpu_
);
Matrix
::
resizeOrCreate
(
transOutValue_
,
mapW
,
mapH
,
false
,
useGpu_
);
vTmp
->
transpose
(
transOutValue_
,
false
);
// false means no memory allocation
vTmp
->
reshape
(
transOutValue_
->
getElementCnt
()
/
channel_
,
channel_
);
biases
->
collectBias
(
*
vTmp
,
1.0
f
);
}
void
ExpandConvTransLayer
::
bpropBiases
(
MatrixPtr
v
)
{
MatrixPtr
biases
=
Matrix
::
create
(
biases_
->
getWGrad
()
->
getData
(),
1
,
biases_
->
getWGrad
()
->
getElementCnt
(),
false
,
useGpu_
);
if
(
sharedBiases_
)
{
bpropSharedBias
(
biases
,
v
);
}
else
{
biases
->
collectBias
(
*
v
,
1.0
f
);
}
biases
->
clear
();
}
void
ExpandConvTransLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
void
ExpandConvTransLayer
::
backward
(
const
UpdateCallback
&
callback
)
{
backwardActivation
();
backwardActivation
();
...
@@ -255,51 +105,18 @@ void ExpandConvTransLayer::backward(const UpdateCallback &callback) {
...
@@ -255,51 +105,18 @@ void ExpandConvTransLayer::backward(const UpdateCallback &callback) {
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
!=
inputLayers_
.
size
();
++
i
)
{
/* First, calculate the input layers error */
/* First, calculate the input layers error */
for
(
size_t
off
=
0
;
off
<
imageGrad
->
getHeight
();
off
++
)
{
for
(
size_t
off
=
0
;
off
<
imageGrad
->
getHeight
();
off
++
)
{
expandBackOnce
(
imageGrad
,
i
,
off
);
if
(
NULL
!=
getPrev
(
i
)
->
getOutputGrad
())
{
expandFwdOnce
(
imageGrad
,
getPrev
(
i
)
->
getOutputGrad
(),
i
,
off
);
}
}
}
if
(
weights_
[
i
]
->
getWGrad
())
{
if
(
weights_
[
i
]
->
getWGrad
())
{
/* Then, calculate the W-gradient for the current layer */
/* Then, calculate the W-gradient for the current layer */
bpropWeights
(
imageGrad
,
i
);
bpropWeights
(
imageGrad
,
getPrev
(
i
)
->
getOutputValue
(),
i
);
/* Increasing the number of gradient */
/* Increasing the number of gradient */
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
weights_
[
i
]
->
getParameterPtr
()
->
incUpdate
(
callback
);
}
}
}
}
}
}
void
ExpandConvTransLayer
::
bpropWeights
(
MatrixPtr
v
,
int
inpIdx
)
{
MatrixPtr
weightGrad
=
weights_
[
inpIdx
]
->
getWGrad
();
MatrixPtr
outputV
=
getPrev
(
inpIdx
)
->
getOutputValue
();
int
subM
=
subM_
[
inpIdx
];
int
subN
=
subN_
[
inpIdx
];
int
subK
=
subK_
[
inpIdx
];
size_t
batchSize
=
outputV
->
getHeight
();
resetExpandInput
(
subK
*
groups_
[
inpIdx
],
subN
);
real
*
outputData
=
outputV
->
getData
();
for
(
size_t
n
=
0
;
n
<
batchSize
;
n
++
)
{
// frame by frame
// expand
expandOneFrame
(
v
,
n
,
inpIdx
);
real
*
wGradData
=
weightGrad
->
getData
();
real
*
expandInData
=
expandInput_
->
getData
();
// expand-mul one-group by one
for
(
int
g
=
0
;
g
<
groups_
[
inpIdx
];
g
++
)
{
MatrixPtr
A
=
Matrix
::
create
(
expandInData
,
subK
,
subN
,
false
,
useGpu_
);
MatrixPtr
B
=
Matrix
::
create
(
outputData
,
subM
,
subN
,
true
,
useGpu_
);
MatrixPtr
C
=
Matrix
::
create
(
wGradData
,
subK
,
subM
,
false
,
useGpu_
);
C
->
mul
(
A
,
B
,
1
,
1
);
A
->
clear
();
B
->
clear
();
C
->
clear
();
outputData
+=
subM
*
subN
;
wGradData
+=
subK
*
subM
;
expandInData
+=
subK
*
subN
;
}
}
}
}
// namespace paddle
}
// namespace paddle
paddle/gserver/layers/ExpandConvTransLayer.h
浏览文件 @
2575b74f
...
@@ -15,7 +15,7 @@ limitations under the License. */
...
@@ -15,7 +15,7 @@ limitations under the License. */
#pragma once
#pragma once
#include "ConvBaseLayer.h"
#include "ConvBaseLayer
Cpu
.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Matrix.h"
#include <vector>
#include <vector>
...
@@ -24,32 +24,14 @@ namespace paddle {
...
@@ -24,32 +24,14 @@ namespace paddle {
/**
/**
* @brief A subclass of convolution layer.
* @brief A subclass of convolution layer.
* This layer expands input and use matrix multiplication to
* This layer expands input and use matrix multiplication to
* calculate convolution operation.
* calculate convolution
transpose (deconv)
operation.
*
*
* The config file api is img_convTrans_layer.
* The config file api is img_convTrans_layer.
*/
*/
class
ExpandConvTransLayer
:
public
ConvBaseLayer
{
class
ExpandConvTransLayer
:
public
ConvBaseLayerCpu
{
protected:
/// For expand convolution.
/// subM_ = numFilters_ / groups_.
IntV
subM_
;
/// subN_ = outputH_ * outputW_.
IntV
subN_
;
/// subK_ = channels_ * filterPixels_ * groups_.
IntV
subK_
;
/// The spatial dimensions of height of input feature map.
IntV
imgSizeH_
;
/// The spatial dimensions of width of input feature map.
IntV
imgSizeW_
;
/// The spatial dimensions of height of output feature map.
IntV
outputH_
;
/// The spatial dimensions of width of output feature map.
IntV
outputW_
;
public:
public:
explicit
ExpandConvTransLayer
(
const
LayerConfig
&
config
)
:
explicit
ExpandConvTransLayer
(
const
LayerConfig
&
config
)
:
ConvBaseLayer
(
config
)
{}
ConvBaseLayerCpu
(
config
)
{}
~
ExpandConvTransLayer
()
{}
~
ExpandConvTransLayer
()
{}
...
@@ -57,38 +39,8 @@ public:
...
@@ -57,38 +39,8 @@ public:
size_t
getSize
();
size_t
getSize
();
/**
* Create or resize expandInput_.
*/
void
resetExpandInput
(
size_t
height
,
size_t
width
);
/**
* Create or resize transOutValue_.
*/
void
resetConvOutput
(
size_t
batchSize
,
int
inIdx
);
/**
* Expand one input sample.
*/
void
expandOneFrame
(
MatrixPtr
image
,
size_t
startIdx
,
int
inIdx
);
/**
* Expand one output image and perform matrix multiplication.
*/
void
expandBackOnce
(
MatrixPtr
image
,
int
inIdx
,
int
startIdx
);
/**
* Perform matrix multiplication on one output and then shrink.
*/
void
shrinkFwd
(
MatrixPtr
output
,
int
inpIdx
);
void
forward
(
PassType
passType
);
void
forward
(
PassType
passType
);
void
bpropSharedBias
(
MatrixPtr
biases
,
MatrixPtr
v
);
void
bpropBiases
(
MatrixPtr
v
);
void
backward
(
const
UpdateCallback
&
callback
);
void
backward
(
const
UpdateCallback
&
callback
);
void
bpropWeights
(
MatrixPtr
v
,
int
inpIdx
);
void
bpropActs
(
MatrixPtr
v
,
int
inpIdx
);
};
};
}
// namespace paddle
}
// namespace paddle
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
2575b74f
...
@@ -302,6 +302,8 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
...
@@ -302,6 +302,8 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
config
.
layerConfig
.
num_filters
());
config
.
layerConfig
.
num_filters
());
testLayerGrad
(
config
,
"conv"
,
100
,
trans
,
useGpu
);
testLayerGrad
(
config
,
"conv"
,
100
,
trans
,
useGpu
);
// Use small batch_size and useWeight=true to test biasGrad
testLayerGrad
(
config
,
"conv"
,
2
,
trans
,
useGpu
,
true
,
0.02
);
}
}
TEST
(
Layer
,
convLayer
)
{
TEST
(
Layer
,
convLayer
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录