Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2540b023
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
2540b023
编写于
6月 17, 2022
作者:
F
fuyou765
提交者:
GitHub
6月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MLU]add mlu kernel for where op (#43441)
上级
539a9e60
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
474 addition
and
12 deletion
+474
-12
paddle/fluid/operators/mlu/mlu_baseop.cc
paddle/fluid/operators/mlu/mlu_baseop.cc
+17
-7
paddle/fluid/operators/mlu/mlu_baseop.h
paddle/fluid/operators/mlu/mlu_baseop.h
+6
-5
paddle/fluid/operators/where_op_mlu.cc
paddle/fluid/operators/where_op_mlu.cc
+51
-0
python/paddle/fluid/tests/unittests/mlu/test_where_op_mlu.py
python/paddle/fluid/tests/unittests/mlu/test_where_op_mlu.py
+400
-0
未找到文件。
paddle/fluid/operators/mlu/mlu_baseop.cc
浏览文件 @
2540b023
...
...
@@ -1160,15 +1160,25 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
}
/* static */
void
MLUCnnl
::
Select
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
then_desc
,
const
void
*
p_then
,
const
cnnlTensorDescriptor_t
else_desc
,
const
void
*
p_else
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
,
const
bool
*
condition
,
const
int
condition_size
)
{
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
condition_desc
,
const
void
*
condition_ptr
,
const
cnnlTensorDescriptor_t
then_desc
,
const
void
*
then_ptr
,
const
cnnlTensorDescriptor_t
else_desc
,
const
void
*
else_ptr
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output_ptr
)
{
cnnlHandle_t
handle
=
GetHandleFromCTX
(
ctx
);
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSelect
(
handle
,
then_desc
,
p_then
,
else_desc
,
p_else
,
output_desc
,
output
,
condition
,
condition_size
));
size_t
workspace_size
=
0
;
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlGetSelectV2WorkspaceSize
(
handle
,
condition_desc
,
then_desc
,
else_desc
,
&
workspace_size
));
auto
&
dev_ctx
=
GetDevCtxFromCTX
(
ctx
);
Tensor
workspace
=
ctx
.
AllocateTmpTensor
<
int8_t
,
MLUDeviceContext
>
(
{
static_cast
<
int64_t
>
(
workspace_size
)},
dev_ctx
);
void
*
workspace_ptr
=
workspace
.
mutable_data
(
ctx
.
GetPlace
());
PADDLE_ENFORCE_MLU_SUCCESS
(
cnnlSelectV2
(
handle
,
condition_desc
,
condition_ptr
,
then_desc
,
then_ptr
,
else_desc
,
else_ptr
,
workspace_ptr
,
workspace_size
,
output_desc
,
output_ptr
));
}
/*static */
void
MLUCnnl
::
GatherNd
(
const
ExecutionContext
&
ctx
,
...
...
paddle/fluid/operators/mlu/mlu_baseop.h
浏览文件 @
2540b023
...
...
@@ -684,11 +684,12 @@ class MLUCnnl {
const
void
*
input2
,
const
cnnlTensorDescriptor_t
ouput_desc
,
void
*
output
);
static
void
Select
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
then_desc
,
const
void
*
p_then
,
const
cnnlTensorDescriptor_t
else_desc
,
const
void
*
p_else
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output
,
const
bool
*
condition
,
const
int
condition_size
);
static
void
Select
(
const
ExecutionContext
&
ctx
,
const
cnnlTensorDescriptor_t
condition_desc
,
const
void
*
condition_ptr
,
const
cnnlTensorDescriptor_t
then_desc
,
const
void
*
then_ptr
,
const
cnnlTensorDescriptor_t
else_desc
,
const
void
*
else_ptr
,
const
cnnlTensorDescriptor_t
output_desc
,
void
*
output_ptr
);
static
void
AssignAdd
(
const
ExecutionContext
&
ctx
,
const
void
*
alpha
,
const
void
*
beta
,
...
...
paddle/fluid/operators/where_op_mlu.cc
0 → 100644
浏览文件 @
2540b023
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
WhereMLUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
condition
=
context
.
Input
<
framework
::
Tensor
>
(
"Condition"
);
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
place
=
context
.
GetPlace
();
out
->
mutable_data
<
T
>
(
place
);
MLUCnnlTensorDesc
x_desc
(
*
X
);
MLUCnnlTensorDesc
y_desc
(
*
Y
);
MLUCnnlTensorDesc
condition_desc
(
*
condition
);
MLUCnnlTensorDesc
out_desc
(
*
out
);
MLUCnnl
::
Select
(
context
,
condition_desc
.
get
(),
GetBasePtr
(
condition
),
x_desc
.
get
(),
GetBasePtr
(
X
),
y_desc
.
get
(),
GetBasePtr
(
Y
),
out_desc
.
get
(),
GetBasePtr
(
out
));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_MLU_KERNEL
(
where
,
ops
::
WhereMLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
float
>
,
ops
::
WhereMLUKernel
<
paddle
::
platform
::
MLUDeviceContext
,
int
>
);
#endif
python/paddle/fluid/tests/unittests/mlu/test_where_op_mlu.py
0 → 100644
浏览文件 @
2540b023
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
sys
sys
.
path
.
append
(
".."
)
import
unittest
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.layers
as
layers
import
paddle.fluid.core
as
core
from
op_test
import
OpTest
from
paddle.fluid
import
compiler
,
Program
,
program_guard
from
paddle.fluid.op
import
Operator
from
paddle.fluid.backward
import
append_backward
from
paddle.fluid.framework
import
_test_eager_guard
class
TestWhereOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'where'
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
python_api
=
paddle
.
where
self
.
init_config
()
self
.
inputs
=
{
'Condition'
:
self
.
cond
,
'X'
:
self
.
x
,
'Y'
:
self
.
y
}
self
.
outputs
=
{
'Out'
:
np
.
where
(
self
.
cond
,
self
.
x
,
self
.
y
)}
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_eager
=
False
)
def
test_check_grad
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
check_eager
=
False
)
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
((
-
3
),
5
,
100
).
astype
(
'float32'
)
self
.
y
=
np
.
random
.
uniform
((
-
3
),
5
,
100
).
astype
(
'float32'
)
self
.
cond
=
np
.
zeros
(
100
).
astype
(
'bool'
)
class
TestWhereOp2
(
TestWhereOp
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
((
-
5
),
5
,
(
60
,
2
)).
astype
(
'float32'
)
self
.
y
=
np
.
random
.
uniform
((
-
5
),
5
,
(
60
,
2
)).
astype
(
'float32'
)
self
.
cond
=
np
.
ones
((
60
,
2
)).
astype
(
'bool'
)
class
TestWhereOp3
(
TestWhereOp
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
((
-
3
),
5
,
(
20
,
2
,
4
)).
astype
(
'float32'
)
self
.
y
=
np
.
random
.
uniform
((
-
3
),
5
,
(
20
,
2
,
4
)).
astype
(
'float32'
)
self
.
cond
=
np
.
array
(
np
.
random
.
randint
(
2
,
size
=
(
20
,
2
,
4
)),
dtype
=
bool
)
class
TestWhereAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
place
=
paddle
.
device
.
MLUPlace
(
0
)
self
.
__class__
.
use_mlu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
init_data
()
def
init_data
(
self
):
self
.
shape
=
[
10
,
15
]
self
.
cond
=
np
.
array
(
np
.
random
.
randint
(
2
,
size
=
self
.
shape
),
dtype
=
bool
)
self
.
x
=
np
.
random
.
uniform
((
-
2
),
3
,
self
.
shape
).
astype
(
np
.
float32
)
self
.
y
=
np
.
random
.
uniform
((
-
2
),
3
,
self
.
shape
).
astype
(
np
.
float32
)
self
.
out
=
np
.
where
(
self
.
cond
,
self
.
x
,
self
.
y
)
def
ref_x_backward
(
self
,
dout
):
return
np
.
where
((
self
.
cond
==
True
),
dout
,
0
)
def
ref_y_backward
(
self
,
dout
):
return
np
.
where
((
self
.
cond
==
False
),
dout
,
0
)
def
test_api
(
self
,
use_mlu
=
False
):
for
x_stop_gradient
in
[
False
,
True
]:
for
y_stop_gradient
in
[
False
,
True
]:
with
fluid
.
program_guard
(
Program
(),
Program
()):
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
self
.
shape
,
dtype
=
'bool'
)
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
self
.
shape
,
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
self
.
shape
,
dtype
=
'float32'
)
x
.
stop_gradient
=
x_stop_gradient
y
.
stop_gradient
=
y_stop_gradient
result
=
paddle
.
where
(
cond
,
x
,
y
)
append_backward
(
layers
.
mean
(
result
))
for
use_mlu
in
[
False
,
True
]:
place
=
(
paddle
.
device
.
MLUPlace
(
0
)
if
use_mlu
else
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
place
)
fetch_list
=
[
result
,
result
.
grad_name
]
if
(
x_stop_gradient
is
False
):
fetch_list
.
append
(
x
.
grad_name
)
if
(
y_stop_gradient
is
False
):
fetch_list
.
append
(
y
.
grad_name
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'cond'
:
self
.
cond
,
'x'
:
self
.
x
,
'y'
:
self
.
y
},
fetch_list
=
fetch_list
)
assert
np
.
array_equal
(
out
[
0
],
self
.
out
)
if
(
x_stop_gradient
is
False
):
assert
np
.
array_equal
(
out
[
2
],
self
.
ref_x_backward
(
out
[
1
]))
if
(
y
.
stop_gradient
is
False
):
assert
np
.
array_equal
(
out
[
3
],
self
.
ref_y_backward
(
out
[
1
]))
elif
(
y
.
stop_gradient
is
False
):
assert
np
.
array_equal
(
out
[
2
],
self
.
ref_y_backward
(
out
[
1
]))
def
test_api_broadcast
(
self
,
use_mlu
=
False
):
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
,
1
],
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
,
2
],
dtype
=
'float32'
)
x_i
=
np
.
array
([[
0.9383
,
0.1983
,
3.2
,
1.2
]]).
astype
(
'float32'
)
y_i
=
np
.
array
([[
1.0
,
1.0
,
1.0
,
1.0
],
[
1.0
,
1.0
,
1.0
,
1.0
]]).
astype
(
'float32'
)
result
=
paddle
.
where
((
x
>
1
),
x
=
x
,
y
=
y
)
for
use_mlu
in
[
False
,
True
]:
place
=
(
paddle
.
device
.
MLUPlace
(
0
)
if
use_mlu
else
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'x'
:
x_i
,
'y'
:
y_i
},
fetch_list
=
[
result
])
assert
np
.
array_equal
(
out
[
0
],
np
.
where
((
x_i
>
1
),
x_i
,
y_i
))
def
test_scalar
(
self
):
paddle
.
enable_static
()
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
cond_shape
=
[
2
,
4
]
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
cond_shape
,
dtype
=
'bool'
)
x_data
=
1.0
y_data
=
2.0
cond_data
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
'bool'
)
result
=
paddle
.
where
(
condition
=
cond
,
x
=
x_data
,
y
=
y_data
)
for
use_mlu
in
[
False
,
True
]:
place
=
(
paddle
.
device
.
MLUPlace
(
0
)
if
use_mlu
else
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'cond'
:
cond_data
},
fetch_list
=
[
result
])
expect
=
np
.
where
(
cond_data
,
x_data
,
y_data
)
assert
np
.
array_equal
(
out
[
0
],
expect
)
def
__test_where_with_broadcast_static
(
self
,
cond_shape
,
x_shape
,
y_shape
):
paddle
.
enable_static
()
main_program
=
Program
()
with
fluid
.
program_guard
(
main_program
):
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
cond_shape
,
dtype
=
'bool'
)
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
x_shape
,
dtype
=
'float32'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
y_shape
,
dtype
=
'float32'
)
cond_data_tmp
=
np
.
random
.
random
(
size
=
cond_shape
).
astype
(
'float32'
)
cond_data
=
(
cond_data_tmp
<
0.3
)
x_data
=
np
.
random
.
random
(
size
=
x_shape
).
astype
(
'float32'
)
y_data
=
np
.
random
.
random
(
size
=
y_shape
).
astype
(
'float32'
)
result
=
paddle
.
where
(
condition
=
cond
,
x
=
x
,
y
=
y
)
for
use_mlu
in
[
False
,
True
]:
place
=
(
paddle
.
device
.
MLUPlace
(
0
)
if
use_mlu
else
fluid
.
CPUPlace
())
exe
=
fluid
.
Executor
(
place
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
'cond'
:
cond_data
,
'x'
:
x_data
,
'y'
:
y_data
},
fetch_list
=
[
result
])
expect
=
np
.
where
(
cond_data
,
x_data
,
y_data
)
assert
np
.
array_equal
(
out
[
0
],
expect
)
def
test_static_api_broadcast_1
(
self
):
cond_shape
=
[
2
,
4
]
a_shape
=
[
2
,
2
,
4
]
b_shape
=
[
2
,
2
,
4
]
self
.
__test_where_with_broadcast_static
(
cond_shape
,
a_shape
,
b_shape
)
def
test_static_api_broadcast_2
(
self
):
cond_shape
=
[
2
,
1
]
a_shape
=
[
2
,
2
,
4
]
b_shape
=
[
2
,
2
,
4
]
self
.
__test_where_with_broadcast_static
(
cond_shape
,
a_shape
,
b_shape
)
def
test_static_api_broadcast_3
(
self
):
cond_shape
=
[
2
,
2
,
1
]
a_shape
=
[
2
,
2
,
4
]
b_shape
=
[
2
,
2
,
4
]
self
.
__test_where_with_broadcast_static
(
cond_shape
,
a_shape
,
b_shape
)
def
test_static_api_broadcast_4
(
self
):
cond_shape
=
[
2
,
1
,
4
]
a_shape
=
[
2
,
2
,
4
]
b_shape
=
[
2
,
2
,
4
]
self
.
__test_where_with_broadcast_static
(
cond_shape
,
a_shape
,
b_shape
)
def
test_static_api_broadcast_5
(
self
):
cond_shape
=
[
3
,
2
,
2
,
4
]
a_shape
=
[
2
,
2
,
4
]
b_shape
=
[
2
,
2
,
4
]
self
.
__test_where_with_broadcast_static
(
cond_shape
,
a_shape
,
b_shape
)
def
test_static_api_broadcast_6
(
self
):
cond_shape
=
[
2
,
2
,
4
]
a_shape
=
[
2
,
2
,
1
]
b_shape
=
[
2
,
2
,
1
]
self
.
__test_where_with_broadcast_static
(
cond_shape
,
a_shape
,
b_shape
)
def
test_static_api_broadcast_7
(
self
):
cond_shape
=
[
2
,
2
,
4
]
a_shape
=
[
2
,
1
,
4
]
b_shape
=
[
2
,
1
,
4
]
self
.
__test_where_with_broadcast_static
(
cond_shape
,
a_shape
,
b_shape
)
def
test_static_api_broadcast_8
(
self
):
cond_shape
=
[
3
,
2
,
2
,
4
]
a_shape
=
[
2
,
2
,
1
]
b_shape
=
[
2
,
2
,
1
]
self
.
__test_where_with_broadcast_static
(
cond_shape
,
a_shape
,
b_shape
)
class
TestWhereDygraphAPI
(
unittest
.
TestCase
):
def
test_api
(
self
):
with
fluid
.
dygraph
.
guard
():
x_i
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
'float32'
)
y_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
'float32'
)
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
'bool'
)
x
=
fluid
.
dygraph
.
to_variable
(
x_i
)
y
=
fluid
.
dygraph
.
to_variable
(
y_i
)
cond
=
fluid
.
dygraph
.
to_variable
(
cond_i
)
out
=
paddle
.
where
(
cond
,
x
,
y
)
assert
np
.
array_equal
(
out
.
numpy
(),
np
.
where
(
cond_i
,
x_i
,
y_i
))
def
test_scalar
(
self
):
with
fluid
.
dygraph
.
guard
():
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
'bool'
)
x
=
1.0
y
=
2.0
cond
=
fluid
.
dygraph
.
to_variable
(
cond_i
)
out
=
paddle
.
where
(
cond
,
x
,
y
)
assert
np
.
array_equal
(
out
.
numpy
(),
np
.
where
(
cond_i
,
x
,
y
))
def
__test_where_with_broadcast_dygraph
(
self
,
cond_shape
,
a_shape
,
b_shape
):
with
fluid
.
dygraph
.
guard
():
cond_tmp
=
paddle
.
rand
(
cond_shape
)
cond
=
(
cond_tmp
<
0.3
)
a
=
paddle
.
rand
(
a_shape
)
b
=
paddle
.
rand
(
b_shape
)
result
=
paddle
.
where
(
cond
,
a
,
b
)
result
=
result
.
numpy
()
expect
=
np
.
where
(
cond
,
a
,
b
)
self
.
assertTrue
(
np
.
array_equal
(
expect
,
result
))
def
test_dygraph_api_broadcast_1
(
self
):
cond_shape
=
[
2
,
4
]
a_shape
=
[
2
,
2
,
4
]
b_shape
=
[
2
,
2
,
4
]
self
.
__test_where_with_broadcast_dygraph
(
cond_shape
,
a_shape
,
b_shape
)
def
test_dygraph_api_broadcast_2
(
self
):
cond_shape
=
[
2
,
1
]
a_shape
=
[
2
,
2
,
4
]
b_shape
=
[
2
,
2
,
4
]
self
.
__test_where_with_broadcast_dygraph
(
cond_shape
,
a_shape
,
b_shape
)
def
test_dygraph_api_broadcast_3
(
self
):
cond_shape
=
[
2
,
2
,
1
]
a_shape
=
[
2
,
2
,
4
]
b_shape
=
[
2
,
2
,
4
]
self
.
__test_where_with_broadcast_dygraph
(
cond_shape
,
a_shape
,
b_shape
)
def
test_dygraph_api_broadcast_4
(
self
):
cond_shape
=
[
2
,
1
,
4
]
a_shape
=
[
2
,
2
,
4
]
b_shape
=
[
2
,
2
,
4
]
self
.
__test_where_with_broadcast_dygraph
(
cond_shape
,
a_shape
,
b_shape
)
def
test_dygraph_api_broadcast_5
(
self
):
cond_shape
=
[
3
,
2
,
2
,
4
]
a_shape
=
[
2
,
2
,
4
]
b_shape
=
[
2
,
2
,
4
]
self
.
__test_where_with_broadcast_dygraph
(
cond_shape
,
a_shape
,
b_shape
)
def
test_dygraph_api_broadcast_6
(
self
):
cond_shape
=
[
2
,
2
,
4
]
a_shape
=
[
2
,
2
,
1
]
b_shape
=
[
2
,
2
,
1
]
self
.
__test_where_with_broadcast_dygraph
(
cond_shape
,
a_shape
,
b_shape
)
def
test_dygraph_api_broadcast_7
(
self
):
cond_shape
=
[
2
,
2
,
4
]
a_shape
=
[
2
,
1
,
4
]
b_shape
=
[
2
,
1
,
4
]
self
.
__test_where_with_broadcast_dygraph
(
cond_shape
,
a_shape
,
b_shape
)
def
test_dygraph_api_broadcast_8
(
self
):
cond_shape
=
[
3
,
2
,
2
,
4
]
a_shape
=
[
2
,
2
,
1
]
b_shape
=
[
2
,
2
,
1
]
self
.
__test_where_with_broadcast_dygraph
(
cond_shape
,
a_shape
,
b_shape
)
def
test_where_condition
(
self
):
data
=
np
.
array
([[
True
,
False
],
[
False
,
True
]])
with
program_guard
(
Program
(),
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[(
-
1
),
2
])
y
=
paddle
.
where
(
x
)
self
.
assertEqual
(
type
(
y
),
tuple
)
self
.
assertEqual
(
len
(
y
),
2
)
z
=
fluid
.
layers
.
concat
(
list
(
y
),
axis
=
1
)
exe
=
fluid
.
Executor
(
paddle
.
device
.
MLUPlace
(
0
))
(
res
,
)
=
exe
.
run
(
feed
=
{
'x'
:
data
},
fetch_list
=
[
z
.
name
],
return_numpy
=
False
)
expect_out
=
np
.
array
([[
0
,
0
],
[
1
,
1
]])
self
.
assertTrue
(
np
.
allclose
(
expect_out
,
np
.
array
(
res
)))
data
=
np
.
array
([
True
,
True
,
False
])
with
program_guard
(
Program
(),
Program
()):
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[(
-
1
)])
y
=
paddle
.
where
(
x
)
self
.
assertEqual
(
type
(
y
),
tuple
)
self
.
assertEqual
(
len
(
y
),
1
)
z
=
fluid
.
layers
.
concat
(
list
(
y
),
axis
=
1
)
exe
=
fluid
.
Executor
(
paddle
.
device
.
MLUPlace
(
0
))
(
res
,
)
=
exe
.
run
(
feed
=
{
'x'
:
data
},
fetch_list
=
[
z
.
name
],
return_numpy
=
False
)
expect_out
=
np
.
array
([[
0
],
[
1
]])
self
.
assertTrue
(
np
.
allclose
(
expect_out
,
np
.
array
(
res
)))
class
TestWhereOpError
(
unittest
.
TestCase
):
def
test_errors
(
self
):
with
program_guard
(
Program
(),
Program
()):
x_i
=
np
.
array
([
0.9383
,
0.1983
,
3.2
,
1.2
]).
astype
(
'float32'
)
y_i
=
np
.
array
([
1.0
,
1.0
,
1.0
,
1.0
]).
astype
(
'float32'
)
cond_i
=
np
.
array
([
False
,
False
,
True
,
True
]).
astype
(
'bool'
)
def
test_Variable
():
paddle
.
where
(
cond_i
,
x_i
,
y_i
)
self
.
assertRaises
(
TypeError
,
test_Variable
)
def
test_type
():
x
=
fluid
.
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'bool'
)
y
=
fluid
.
layers
.
data
(
name
=
'y'
,
shape
=
[
4
],
dtype
=
'float16'
)
cond
=
fluid
.
layers
.
data
(
name
=
'cond'
,
shape
=
[
4
],
dtype
=
'int32'
)
paddle
.
where
(
cond
,
x
,
y
)
self
.
assertRaises
(
TypeError
,
test_type
)
def
test_value_error
(
self
):
with
fluid
.
dygraph
.
guard
():
cond_shape
=
[
2
,
2
,
4
]
cond_tmp
=
paddle
.
rand
(
cond_shape
)
cond
=
(
cond_tmp
<
0.3
)
a
=
paddle
.
rand
(
cond_shape
)
self
.
assertRaises
(
ValueError
,
paddle
.
where
,
cond
,
a
)
if
__name__
==
"__main__"
:
paddle
.
enable_static
()
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录