未验证 提交 2540b023 编写于 作者: F fuyou765 提交者: GitHub

[MLU]add mlu kernel for where op (#43441)

上级 539a9e60
......@@ -1160,15 +1160,25 @@ MLUCnnlTrigonDesc::~MLUCnnlTrigonDesc() {
}
/* static */ void MLUCnnl::Select(
const ExecutionContext& ctx, const cnnlTensorDescriptor_t then_desc,
const void* p_then, const cnnlTensorDescriptor_t else_desc,
const void* p_else, const cnnlTensorDescriptor_t output_desc, void* output,
const bool* condition, const int condition_size) {
const ExecutionContext& ctx, const cnnlTensorDescriptor_t condition_desc,
const void* condition_ptr, const cnnlTensorDescriptor_t then_desc,
const void* then_ptr, const cnnlTensorDescriptor_t else_desc,
const void* else_ptr, const cnnlTensorDescriptor_t output_desc,
void* output_ptr) {
cnnlHandle_t handle = GetHandleFromCTX(ctx);
PADDLE_ENFORCE_MLU_SUCCESS(cnnlSelect(handle, then_desc, p_then, else_desc,
p_else, output_desc, output, condition,
condition_size));
size_t workspace_size = 0;
PADDLE_ENFORCE_MLU_SUCCESS(cnnlGetSelectV2WorkspaceSize(
handle, condition_desc, then_desc, else_desc, &workspace_size));
auto& dev_ctx = GetDevCtxFromCTX(ctx);
Tensor workspace = ctx.AllocateTmpTensor<int8_t, MLUDeviceContext>(
{static_cast<int64_t>(workspace_size)}, dev_ctx);
void* workspace_ptr = workspace.mutable_data(ctx.GetPlace());
PADDLE_ENFORCE_MLU_SUCCESS(cnnlSelectV2(
handle, condition_desc, condition_ptr, then_desc, then_ptr, else_desc,
else_ptr, workspace_ptr, workspace_size, output_desc, output_ptr));
}
/*static */ void MLUCnnl::GatherNd(const ExecutionContext& ctx,
......
......@@ -684,11 +684,12 @@ class MLUCnnl {
const void* input2, const cnnlTensorDescriptor_t ouput_desc,
void* output);
static void Select(const ExecutionContext& ctx,
const cnnlTensorDescriptor_t then_desc, const void* p_then,
const cnnlTensorDescriptor_t else_desc, const void* p_else,
const cnnlTensorDescriptor_t output_desc, void* output,
const bool* condition, const int condition_size);
static void Select(
const ExecutionContext& ctx, const cnnlTensorDescriptor_t condition_desc,
const void* condition_ptr, const cnnlTensorDescriptor_t then_desc,
const void* then_ptr, const cnnlTensorDescriptor_t else_desc,
const void* else_ptr, const cnnlTensorDescriptor_t output_desc,
void* output_ptr);
static void AssignAdd(const ExecutionContext& ctx, const void* alpha,
const void* beta,
......
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/mlu/mlu_baseop.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T>
class WhereMLUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* condition = context.Input<framework::Tensor>("Condition");
auto* X = context.Input<framework::Tensor>("X");
auto* Y = context.Input<framework::Tensor>("Y");
auto* out = context.Output<framework::Tensor>("Out");
auto place = context.GetPlace();
out->mutable_data<T>(place);
MLUCnnlTensorDesc x_desc(*X);
MLUCnnlTensorDesc y_desc(*Y);
MLUCnnlTensorDesc condition_desc(*condition);
MLUCnnlTensorDesc out_desc(*out);
MLUCnnl::Select(context, condition_desc.get(), GetBasePtr(condition),
x_desc.get(), GetBasePtr(X), y_desc.get(), GetBasePtr(Y),
out_desc.get(), GetBasePtr(out));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_MLU_KERNEL(
where, ops::WhereMLUKernel<paddle::platform::MLUDeviceContext, float>,
ops::WhereMLUKernel<paddle::platform::MLUDeviceContext, int>);
#endif
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
sys.path.append("..")
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core
from op_test import OpTest
from paddle.fluid import compiler, Program, program_guard
from paddle.fluid.op import Operator
from paddle.fluid.backward import append_backward
from paddle.fluid.framework import _test_eager_guard
class TestWhereOp(OpTest):
def setUp(self):
self.op_type = 'where'
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.__class__.no_need_check_grad = True
self.python_api = paddle.where
self.init_config()
self.inputs = {'Condition': self.cond, 'X': self.x, 'Y': self.y}
self.outputs = {'Out': np.where(self.cond, self.x, self.y)}
def test_check_output(self):
self.check_output_with_place(self.place, check_eager=False)
def test_check_grad(self):
self.check_grad(['X', 'Y'], 'Out', check_eager=False)
def init_config(self):
self.x = np.random.uniform((-3), 5, 100).astype('float32')
self.y = np.random.uniform((-3), 5, 100).astype('float32')
self.cond = np.zeros(100).astype('bool')
class TestWhereOp2(TestWhereOp):
def init_config(self):
self.x = np.random.uniform((-5), 5, (60, 2)).astype('float32')
self.y = np.random.uniform((-5), 5, (60, 2)).astype('float32')
self.cond = np.ones((60, 2)).astype('bool')
class TestWhereOp3(TestWhereOp):
def init_config(self):
self.x = np.random.uniform((-3), 5, (20, 2, 4)).astype('float32')
self.y = np.random.uniform((-3), 5, (20, 2, 4)).astype('float32')
self.cond = np.array(np.random.randint(2, size=(20, 2, 4)), dtype=bool)
class TestWhereAPI(unittest.TestCase):
def setUp(self):
self.place = paddle.device.MLUPlace(0)
self.__class__.use_mlu = True
self.__class__.no_need_check_grad = True
self.init_data()
def init_data(self):
self.shape = [10, 15]
self.cond = np.array(np.random.randint(2, size=self.shape), dtype=bool)
self.x = np.random.uniform((-2), 3, self.shape).astype(np.float32)
self.y = np.random.uniform((-2), 3, self.shape).astype(np.float32)
self.out = np.where(self.cond, self.x, self.y)
def ref_x_backward(self, dout):
return np.where((self.cond == True), dout, 0)
def ref_y_backward(self, dout):
return np.where((self.cond == False), dout, 0)
def test_api(self, use_mlu=False):
for x_stop_gradient in [False, True]:
for y_stop_gradient in [False, True]:
with fluid.program_guard(Program(), Program()):
cond = fluid.layers.data(name='cond',
shape=self.shape,
dtype='bool')
x = fluid.layers.data(name='x',
shape=self.shape,
dtype='float32')
y = fluid.layers.data(name='y',
shape=self.shape,
dtype='float32')
x.stop_gradient = x_stop_gradient
y.stop_gradient = y_stop_gradient
result = paddle.where(cond, x, y)
append_backward(layers.mean(result))
for use_mlu in [False, True]:
place = (paddle.device.MLUPlace(0)
if use_mlu else fluid.CPUPlace())
exe = fluid.Executor(place)
fetch_list = [result, result.grad_name]
if (x_stop_gradient is False):
fetch_list.append(x.grad_name)
if (y_stop_gradient is False):
fetch_list.append(y.grad_name)
out = exe.run(fluid.default_main_program(),
feed={
'cond': self.cond,
'x': self.x,
'y': self.y
},
fetch_list=fetch_list)
assert np.array_equal(out[0], self.out)
if (x_stop_gradient is False):
assert np.array_equal(out[2],
self.ref_x_backward(out[1]))
if (y.stop_gradient is False):
assert np.array_equal(
out[3], self.ref_y_backward(out[1]))
elif (y.stop_gradient is False):
assert np.array_equal(out[2],
self.ref_y_backward(out[1]))
def test_api_broadcast(self, use_mlu=False):
main_program = Program()
with fluid.program_guard(main_program):
x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32')
y = fluid.layers.data(name='y', shape=[4, 2], dtype='float32')
x_i = np.array([[0.9383, 0.1983, 3.2, 1.2]]).astype('float32')
y_i = np.array([[1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0,
1.0]]).astype('float32')
result = paddle.where((x > 1), x=x, y=y)
for use_mlu in [False, True]:
place = (paddle.device.MLUPlace(0)
if use_mlu else fluid.CPUPlace())
exe = fluid.Executor(place)
out = exe.run(fluid.default_main_program(),
feed={
'x': x_i,
'y': y_i
},
fetch_list=[result])
assert np.array_equal(out[0], np.where((x_i > 1), x_i, y_i))
def test_scalar(self):
paddle.enable_static()
main_program = Program()
with fluid.program_guard(main_program):
cond_shape = [2, 4]
cond = fluid.layers.data(name='cond',
shape=cond_shape,
dtype='bool')
x_data = 1.0
y_data = 2.0
cond_data = np.array([False, False, True, True]).astype('bool')
result = paddle.where(condition=cond, x=x_data, y=y_data)
for use_mlu in [False, True]:
place = (paddle.device.MLUPlace(0)
if use_mlu else fluid.CPUPlace())
exe = fluid.Executor(place)
out = exe.run(fluid.default_main_program(),
feed={'cond': cond_data},
fetch_list=[result])
expect = np.where(cond_data, x_data, y_data)
assert np.array_equal(out[0], expect)
def __test_where_with_broadcast_static(self, cond_shape, x_shape, y_shape):
paddle.enable_static()
main_program = Program()
with fluid.program_guard(main_program):
cond = fluid.layers.data(name='cond',
shape=cond_shape,
dtype='bool')
x = fluid.layers.data(name='x', shape=x_shape, dtype='float32')
y = fluid.layers.data(name='y', shape=y_shape, dtype='float32')
cond_data_tmp = np.random.random(size=cond_shape).astype('float32')
cond_data = (cond_data_tmp < 0.3)
x_data = np.random.random(size=x_shape).astype('float32')
y_data = np.random.random(size=y_shape).astype('float32')
result = paddle.where(condition=cond, x=x, y=y)
for use_mlu in [False, True]:
place = (paddle.device.MLUPlace(0)
if use_mlu else fluid.CPUPlace())
exe = fluid.Executor(place)
out = exe.run(fluid.default_main_program(),
feed={
'cond': cond_data,
'x': x_data,
'y': y_data
},
fetch_list=[result])
expect = np.where(cond_data, x_data, y_data)
assert np.array_equal(out[0], expect)
def test_static_api_broadcast_1(self):
cond_shape = [2, 4]
a_shape = [2, 2, 4]
b_shape = [2, 2, 4]
self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)
def test_static_api_broadcast_2(self):
cond_shape = [2, 1]
a_shape = [2, 2, 4]
b_shape = [2, 2, 4]
self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)
def test_static_api_broadcast_3(self):
cond_shape = [2, 2, 1]
a_shape = [2, 2, 4]
b_shape = [2, 2, 4]
self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)
def test_static_api_broadcast_4(self):
cond_shape = [2, 1, 4]
a_shape = [2, 2, 4]
b_shape = [2, 2, 4]
self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)
def test_static_api_broadcast_5(self):
cond_shape = [3, 2, 2, 4]
a_shape = [2, 2, 4]
b_shape = [2, 2, 4]
self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)
def test_static_api_broadcast_6(self):
cond_shape = [2, 2, 4]
a_shape = [2, 2, 1]
b_shape = [2, 2, 1]
self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)
def test_static_api_broadcast_7(self):
cond_shape = [2, 2, 4]
a_shape = [2, 1, 4]
b_shape = [2, 1, 4]
self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)
def test_static_api_broadcast_8(self):
cond_shape = [3, 2, 2, 4]
a_shape = [2, 2, 1]
b_shape = [2, 2, 1]
self.__test_where_with_broadcast_static(cond_shape, a_shape, b_shape)
class TestWhereDygraphAPI(unittest.TestCase):
def test_api(self):
with fluid.dygraph.guard():
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float32')
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float32')
cond_i = np.array([False, False, True, True]).astype('bool')
x = fluid.dygraph.to_variable(x_i)
y = fluid.dygraph.to_variable(y_i)
cond = fluid.dygraph.to_variable(cond_i)
out = paddle.where(cond, x, y)
assert np.array_equal(out.numpy(), np.where(cond_i, x_i, y_i))
def test_scalar(self):
with fluid.dygraph.guard():
cond_i = np.array([False, False, True, True]).astype('bool')
x = 1.0
y = 2.0
cond = fluid.dygraph.to_variable(cond_i)
out = paddle.where(cond, x, y)
assert np.array_equal(out.numpy(), np.where(cond_i, x, y))
def __test_where_with_broadcast_dygraph(self, cond_shape, a_shape, b_shape):
with fluid.dygraph.guard():
cond_tmp = paddle.rand(cond_shape)
cond = (cond_tmp < 0.3)
a = paddle.rand(a_shape)
b = paddle.rand(b_shape)
result = paddle.where(cond, a, b)
result = result.numpy()
expect = np.where(cond, a, b)
self.assertTrue(np.array_equal(expect, result))
def test_dygraph_api_broadcast_1(self):
cond_shape = [2, 4]
a_shape = [2, 2, 4]
b_shape = [2, 2, 4]
self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)
def test_dygraph_api_broadcast_2(self):
cond_shape = [2, 1]
a_shape = [2, 2, 4]
b_shape = [2, 2, 4]
self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)
def test_dygraph_api_broadcast_3(self):
cond_shape = [2, 2, 1]
a_shape = [2, 2, 4]
b_shape = [2, 2, 4]
self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)
def test_dygraph_api_broadcast_4(self):
cond_shape = [2, 1, 4]
a_shape = [2, 2, 4]
b_shape = [2, 2, 4]
self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)
def test_dygraph_api_broadcast_5(self):
cond_shape = [3, 2, 2, 4]
a_shape = [2, 2, 4]
b_shape = [2, 2, 4]
self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)
def test_dygraph_api_broadcast_6(self):
cond_shape = [2, 2, 4]
a_shape = [2, 2, 1]
b_shape = [2, 2, 1]
self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)
def test_dygraph_api_broadcast_7(self):
cond_shape = [2, 2, 4]
a_shape = [2, 1, 4]
b_shape = [2, 1, 4]
self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)
def test_dygraph_api_broadcast_8(self):
cond_shape = [3, 2, 2, 4]
a_shape = [2, 2, 1]
b_shape = [2, 2, 1]
self.__test_where_with_broadcast_dygraph(cond_shape, a_shape, b_shape)
def test_where_condition(self):
data = np.array([[True, False], [False, True]])
with program_guard(Program(), Program()):
x = fluid.layers.data(name='x', shape=[(-1), 2])
y = paddle.where(x)
self.assertEqual(type(y), tuple)
self.assertEqual(len(y), 2)
z = fluid.layers.concat(list(y), axis=1)
exe = fluid.Executor(paddle.device.MLUPlace(0))
(res, ) = exe.run(feed={'x': data},
fetch_list=[z.name],
return_numpy=False)
expect_out = np.array([[0, 0], [1, 1]])
self.assertTrue(np.allclose(expect_out, np.array(res)))
data = np.array([True, True, False])
with program_guard(Program(), Program()):
x = fluid.layers.data(name='x', shape=[(-1)])
y = paddle.where(x)
self.assertEqual(type(y), tuple)
self.assertEqual(len(y), 1)
z = fluid.layers.concat(list(y), axis=1)
exe = fluid.Executor(paddle.device.MLUPlace(0))
(res, ) = exe.run(feed={'x': data},
fetch_list=[z.name],
return_numpy=False)
expect_out = np.array([[0], [1]])
self.assertTrue(np.allclose(expect_out, np.array(res)))
class TestWhereOpError(unittest.TestCase):
def test_errors(self):
with program_guard(Program(), Program()):
x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype('float32')
y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype('float32')
cond_i = np.array([False, False, True, True]).astype('bool')
def test_Variable():
paddle.where(cond_i, x_i, y_i)
self.assertRaises(TypeError, test_Variable)
def test_type():
x = fluid.layers.data(name='x', shape=[4], dtype='bool')
y = fluid.layers.data(name='y', shape=[4], dtype='float16')
cond = fluid.layers.data(name='cond', shape=[4], dtype='int32')
paddle.where(cond, x, y)
self.assertRaises(TypeError, test_type)
def test_value_error(self):
with fluid.dygraph.guard():
cond_shape = [2, 2, 4]
cond_tmp = paddle.rand(cond_shape)
cond = (cond_tmp < 0.3)
a = paddle.rand(cond_shape)
self.assertRaises(ValueError, paddle.where, cond, a)
if __name__ == "__main__":
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册